Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2732. doi: 10.1107/S1600536811037895

2,6,6-Trimethyl­cyclo­hexene-1-carbaldehyde oxime

Rajasekaran Parthasarathy a, Samson Jegan Jenniefer b, Packianathan Thomas Muthiah b,*, Nagarajan Sulochana c
PMCID: PMC3201277  PMID: 22065695

Abstract

In the crystal of the title compound C10H17NO, synthesized by the reaction of β-cyclo­citral with hydroxyl­amine hydro­chloride, inversion-related mol­ecules are linked by a pair of O—H⋯N hydrogen-bonding inter­actions between the oxime functionalities, forming R 2 2(6) loops. The molecular conformation is stabilized by intra­molecular methyl C—H⋯N inter­actions. The cyclohexene ring has the typical half-chair conformation.

Related literature

For applications of oximes in organic syntheses, see: Cerny et al. (1969); Donaruma & Heldt (1960); Kutney et al. (1992); Touster (1953). For graph-set notation, see: Etter et al. (1990); Bernstein et al. (1995).graphic file with name e-67-o2732-scheme1.jpg

Experimental

Crystal data

  • C10H17NO

  • M r = 167.25

  • Triclinic, Inline graphic

  • a = 7.5670 (3) Å

  • b = 7.7208 (3) Å

  • c = 9.3072 (4) Å

  • α = 81.212 (3)°

  • β = 76.590 (3)°

  • γ = 71.385 (3)°

  • V = 499.43 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.09 × 0.06 × 0.05 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.994, T max = 0.997

  • 13971 measured reflections

  • 3341 independent reflections

  • 2134 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.191

  • S = 1.06

  • 3341 reflections

  • 118 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037895/zs2144sup1.cif

e-67-o2732-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037895/zs2144Isup2.hkl

e-67-o2732-Isup2.hkl (160.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037895/zs2144Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.86 (3) 2.02 (3) 2.8346 (18) 158 (2)
C9—H9A⋯N1 0.96 2.57 3.1979 (19) 123
C10—H10A⋯N1 0.96 2.43 3.0762 (17) 125

Symmetry code: (i) Inline graphic.

Acknowledgments

PTM and SJJ thank the DST India (FIST programme) for the use of the diffractometer at the School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu, India.

supplementary crystallographic information

Comment

An oxime is an important functional group in organic chemistry because it is not only used as an efficient protecting group for carbonyls but also may be used for the purification of carbonyl compounds (Donaruma & Heldt, 1960). Moreover oximes are used for the preparation of many compounds such as amines by reduction (Cerny et al., 1969), nitro compounds by oxidation, amides by the Beckmann rearrangement and carbonyl compounds from non carbonyl compounds (Touster, 1953). The title compound C10H17NO is a key intermediate in the synthesis of aroma compounds such as β-cyclogeranyl nitrile which can be used for the synthesis of the important aroma compound β-damascone (Kutney et al., 1992). Herein, we report the crystal structure of the title compound (Fig. 1) in which each molecule is connected to an inversion-related molecule through O—H···N hydrogen bonds, (Table 1) forming a cyclic dimer [graph-set R22(6) (Etter et al., 1990; Bernstein et al., 1995] (Fig. 2). These cyclic DA—AD (Donor Acceptor–Acceptor Donor) interactions involving pairs of O—H···N hydrogen bonds between the oxime functionalities are similar to the O—H···O interactions observed in carboxylic acid dimers. The crystal structure is stabilized by intramolecular methyl C—H···Noxime hydrogen-bonding interactions.

Experimental

To a mixture of 4.6 g (0.065 mol) of hydroxylamine hydrochloride in 50 ml of H2O and 10 g (0.065 mol) of β-cyclocitral, a solution of 3.5 g (0.033 mol) of sodium carbonate in 15 ml of H2O was added dropwise. The mixture was stirred at room temperature for ten minutes and the solid product which formed was collected and recrystallized from hexane.

Refinement

The H atoms attached to C7 and O1 were located from a difference Fourier map and were refined freely. The remaining H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) set at 1.2Ueq(C) except for the methyl hydrogen atoms which were refined with Uiso(H) set at 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The centrosymmetric R22(6) hydrogen-bonded dimer units, with hydrogen bonds shown as dashed lines. For symmetry code (i), see Table 1.

Crystal data

C10H17NO Z = 2
Mr = 167.25 F(000) = 184
Triclinic, P1 Dx = 1.112 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.5670 (3) Å Cell parameters from 3341 reflections
b = 7.7208 (3) Å θ = 2.3–33.0°
c = 9.3072 (4) Å µ = 0.07 mm1
α = 81.212 (3)° T = 296 K
β = 76.590 (3)° Prism, colourless
γ = 71.385 (3)° 0.09 × 0.06 × 0.05 mm
V = 499.43 (4) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3341 independent reflections
Radiation source: fine-focus sealed tube 2134 reflections with I > 2σ(I)
graphite Rint = 0.022
φ and ω scans θmax = 33.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −11→11
Tmin = 0.994, Tmax = 0.997 k = −11→11
13971 measured reflections l = −12→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0999P)2 + 0.036P] where P = (Fo2 + 2Fc2)/3
3341 reflections (Δ/σ)max < 0.001
118 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.14 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.60371 (16) −0.14350 (15) 0.37650 (16) 0.0794 (5)
N1 0.67895 (14) 0.00174 (14) 0.37695 (13) 0.0552 (4)
C1 0.94463 (15) 0.11492 (15) 0.25083 (13) 0.0425 (3)
C2 1.12581 (16) 0.05523 (17) 0.17581 (14) 0.0492 (3)
C3 1.26022 (18) 0.1703 (2) 0.1444 (2) 0.0680 (5)
C4 1.1923 (2) 0.3358 (2) 0.2335 (2) 0.0772 (6)
C5 0.9848 (2) 0.42925 (19) 0.2342 (2) 0.0656 (5)
C6 0.85762 (15) 0.30698 (15) 0.30624 (14) 0.0458 (3)
C7 0.83019 (17) −0.01188 (16) 0.27932 (16) 0.0505 (4)
C8 1.2169 (2) −0.1322 (2) 0.11773 (18) 0.0689 (5)
C9 0.8338 (2) 0.2967 (2) 0.47500 (17) 0.0641 (5)
C10 0.66297 (19) 0.40088 (18) 0.26268 (19) 0.0627 (5)
H1 0.509 (3) −0.126 (3) 0.450 (3) 0.107 (7)*
H3A 1.27880 0.21180 0.03980 0.0820*
H3B 1.38250 0.09430 0.16530 0.0820*
H4A 1.21150 0.29760 0.33440 0.0930*
H4B 1.26500 0.42070 0.19030 0.0930*
H5A 0.96760 0.46760 0.13290 0.0790*
H5B 0.94450 0.53850 0.28720 0.0790*
H7 0.866 (2) −0.116 (2) 0.2260 (19) 0.074 (5)*
H8A 1.29070 −0.21220 0.18590 0.1030*
H8B 1.29810 −0.12140 0.02290 0.1030*
H8C 1.11960 −0.18180 0.10750 0.1030*
H9A 0.75450 0.22010 0.52080 0.0960*
H9B 0.77580 0.41760 0.50780 0.0960*
H9C 0.95610 0.24580 0.50220 0.0960*
H10A 0.57850 0.32850 0.30550 0.0940*
H10B 0.67810 0.41230 0.15670 0.0940*
H10C 0.61080 0.52050 0.29870 0.0940*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0698 (7) 0.0627 (6) 0.1080 (10) −0.0392 (5) 0.0201 (6) −0.0293 (6)
N1 0.0466 (5) 0.0490 (5) 0.0702 (8) −0.0218 (4) 0.0031 (5) −0.0113 (5)
C1 0.0377 (5) 0.0448 (5) 0.0424 (6) −0.0118 (4) −0.0047 (4) −0.0018 (4)
C2 0.0404 (5) 0.0555 (6) 0.0453 (7) −0.0109 (5) −0.0021 (5) −0.0023 (5)
C3 0.0404 (6) 0.0793 (9) 0.0796 (11) −0.0225 (6) 0.0014 (6) −0.0022 (8)
C4 0.0539 (8) 0.0782 (10) 0.1078 (14) −0.0362 (7) −0.0069 (8) −0.0105 (9)
C5 0.0586 (8) 0.0526 (7) 0.0853 (11) −0.0243 (6) −0.0051 (7) −0.0019 (7)
C6 0.0399 (5) 0.0433 (5) 0.0530 (7) −0.0131 (4) −0.0055 (5) −0.0046 (5)
C7 0.0459 (6) 0.0439 (6) 0.0588 (8) −0.0136 (4) 0.0000 (5) −0.0105 (5)
C8 0.0548 (7) 0.0692 (9) 0.0673 (10) −0.0053 (6) 0.0068 (7) −0.0172 (7)
C9 0.0694 (8) 0.0688 (8) 0.0574 (8) −0.0237 (7) −0.0063 (7) −0.0171 (7)
C10 0.0491 (7) 0.0496 (7) 0.0859 (11) −0.0041 (5) −0.0184 (7) −0.0100 (6)

Geometric parameters (Å, °)

O1—N1 1.4113 (16) C4—H4A 0.9700
O1—H1 0.86 (3) C4—H4B 0.9700
N1—C7 1.2714 (18) C5—H5A 0.9700
C1—C6 1.5334 (16) C5—H5B 0.9700
C1—C7 1.4608 (18) C7—H7 0.942 (15)
C1—C2 1.3530 (18) C8—H8A 0.9600
C2—C8 1.5136 (19) C8—H8B 0.9600
C2—C3 1.506 (2) C8—H8C 0.9600
C3—C4 1.514 (2) C9—H9A 0.9600
C4—C5 1.503 (2) C9—H9B 0.9600
C5—C6 1.534 (2) C9—H9C 0.9600
C6—C9 1.532 (2) C10—H10A 0.9600
C6—C10 1.538 (2) C10—H10B 0.9600
C3—H3A 0.9700 C10—H10C 0.9600
C3—H3B 0.9700
N1—O1—H1 103.3 (15) H4A—C4—H4B 108.00
O1—N1—C7 111.09 (11) C4—C5—H5A 109.00
C2—C1—C6 122.81 (11) C4—C5—H5B 109.00
C6—C1—C7 119.71 (10) C6—C5—H5A 109.00
C2—C1—C7 117.48 (11) C6—C5—H5B 109.00
C1—C2—C8 124.63 (12) H5A—C5—H5B 108.00
C3—C2—C8 112.81 (12) N1—C7—H7 113.3 (10)
C1—C2—C3 122.55 (12) C1—C7—H7 121.4 (10)
C2—C3—C4 113.94 (13) C2—C8—H8A 109.00
C3—C4—C5 109.66 (13) C2—C8—H8B 109.00
C4—C5—C6 113.33 (12) C2—C8—H8C 109.00
C1—C6—C9 110.71 (10) H8A—C8—H8B 109.00
C1—C6—C10 110.80 (10) H8A—C8—H8C 109.00
C5—C6—C9 109.05 (12) H8B—C8—H8C 109.00
C5—C6—C10 106.66 (11) C6—C9—H9A 109.00
C9—C6—C10 109.18 (11) C6—C9—H9B 109.00
C1—C6—C5 110.33 (10) C6—C9—H9C 109.00
N1—C7—C1 125.29 (12) H9A—C9—H9B 109.00
C2—C3—H3A 109.00 H9A—C9—H9C 109.00
C2—C3—H3B 109.00 H9B—C9—H9C 110.00
C4—C3—H3A 109.00 C6—C10—H10A 109.00
C4—C3—H3B 109.00 C6—C10—H10B 109.00
H3A—C3—H3B 108.00 C6—C10—H10C 109.00
C3—C4—H4A 110.00 H10A—C10—H10B 110.00
C3—C4—H4B 110.00 H10A—C10—H10C 109.00
C5—C4—H4A 110.00 H10B—C10—H10C 109.00
C5—C4—H4B 110.00
O1—N1—C7—C1 −179.61 (12) C7—C1—C6—C10 −49.10 (16)
C6—C1—C2—C3 2.0 (2) C2—C1—C7—N1 161.31 (13)
C6—C1—C2—C8 −179.34 (12) C6—C1—C7—N1 −18.5 (2)
C7—C1—C2—C3 −177.72 (13) C1—C2—C3—C4 13.8 (2)
C7—C1—C2—C8 0.89 (19) C8—C2—C3—C4 −165.00 (13)
C2—C1—C6—C5 13.24 (17) C2—C3—C4—C5 −44.02 (19)
C2—C1—C6—C9 −107.58 (14) C3—C4—C5—C6 61.57 (18)
C2—C1—C6—C10 131.13 (13) C4—C5—C6—C1 −45.18 (17)
C7—C1—C6—C5 −167.00 (12) C4—C5—C6—C9 76.62 (16)
C7—C1—C6—C9 72.19 (15) C4—C5—C6—C10 −165.59 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1i 0.86 (3) 2.02 (3) 2.8346 (18) 158 (2)
C9—H9A···N1 0.96 2.57 3.1979 (19) 123
C10—H10A···N1 0.96 2.43 3.0762 (17) 125

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2144).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cerny, M., Malek, J., Capka, M. & Chvalowsky, V. (1969). Collect. Czech. Chem. Commun. 34, 1025–1032.
  4. Donaruma, L. G. & Heldt, W. Z. (1960). Org. React. 11, 1–156.
  5. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  6. Kutney, J. P., Gunning, P. J., Clewley, R. G., Somerville, J. & Rettig, S. J. (1992). Can. J. Chem. 70, 2094–2114.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Touster, O. (1953). Org. React. 7, 327–377.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037895/zs2144sup1.cif

e-67-o2732-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037895/zs2144Isup2.hkl

e-67-o2732-Isup2.hkl (160.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037895/zs2144Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES