Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 20;67(Pt 10):o2687–o2688. doi: 10.1107/S1600536811037457

(E)-2-[1-(1-Benzothio­phen-2-yl)ethyl­idene]-N-phenyl­hydrazinecarboxamide

Safa’a Faris Kayed a,*, Yang Farina a, Jim Simpson b, Ibrahim Baba a
PMCID: PMC3201294  PMID: 22058789

Abstract

The title compound, C17H15N3OS, crystallizes with two unique mol­ecules, denoted 1 and 2, in the asymmetric unit. The two mol­ecules are closely similar and overlay with an r.m.s. deviation of 0.053 Å. Both mol­ecules adopt E configurations with respect to the C=N bonds. The dihedral angles between the benzothio­phene groups and N-bound phenyl rings are 36.36 (9)° for mol­ecule 1 and 29.71 (9)° for mol­ecule 2. The C=N—NH—C(O)NH ethyl­idene–hydrazinecarboxamide units are also reasonably planar, with r.m.s. deviations of 0.061 and 0.056 Å, respectively, for the two mol­ecules. The methyl substituents lie 0.338 (3) and 0.396 (3) Å, respectively, from these planes. The C=N—NH—C(O)NH planes are inclined to the phenyl rings at 13.65 (11) and 15.56 (11)°, respectively, in mol­ecules 1 and 2. This conformation is enhanced by weak intra­molecular C—H⋯O hydrogen bonds between ortho-H atoms of the two phenyl rings and the carbonyl O atoms, which generate S(6) rings in each mol­ecule. In the crystal, pairs of mol­ecules are linked by pairs of inter­molecular N—H⋯O hydrogen bonds into dimers. Alternating dimers are further inter­connected by weak C—H⋯O contacts into zigzag rows along b. The rows are stacked along a by C—H⋯π contacts involving the benzene ring from molecule 2 and the thiophene ring from molecule 1 of adjacent benzothio­phene units.

Related literature

For background to the biological activity of semicarbazones, see: Alam et al. (2010); Sharma et al. (2006); Siji et al. (2010); Sriram et al. (2004). For related structures, see: Beraldo et al. (2001); Fun et al. (2009a ,b ); Mendoza-Meroño et al. (2011). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).graphic file with name e-67-o2687-scheme1.jpg

Experimental

Crystal data

  • C17H15N3OS

  • M r = 309.38

  • Triclinic, Inline graphic

  • a = 9.8858 (3) Å

  • b = 13.2737 (5) Å

  • c = 13.6121 (8) Å

  • α = 113.961 (3)°

  • β = 98.153 (3)°

  • γ = 107.778 (2)°

  • V = 1480.02 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 89 K

  • 0.38 × 0.14 × 0.05 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.826, T max = 1.000

  • 25263 measured reflections

  • 8650 independent reflections

  • 5747 reflections with I > 2σ(I)

  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.147

  • S = 1.07

  • 8650 reflections

  • 411 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000; molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037457/tk2786sup1.cif

e-67-o2687-sup1.cif (37KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037457/tk2786Isup2.hkl

e-67-o2687-Isup2.hkl (423.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037457/tk2786Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the S11, C11, C12, C13, C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H12N⋯O21 0.97 (2) 1.91 (2) 2.847 (2) 162.1 (19)
N22—H22N⋯O11 0.89 (2) 1.99 (2) 2.840 (2) 158 (2)
C113—H113⋯O11 0.95 2.29 2.886 (2) 120
C213—H213⋯O21 0.95 2.26 2.871 (2) 121
C15—H15⋯O11i 0.95 2.62 3.435 (2) 144
C24—H24⋯Cg1ii 0.95 2.80 3.482 (2) 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We wish to thank Universiti Kebangsaan Malaysia and the Ministry of Higher Education, Malaysia, for supporting this research through grants UKM-ST-01-FRGS0022–2006 and UKM-GUP-NBT-08–27-112. We also thank the University of Otago for the purchase of the diffractometer.

supplementary crystallographic information

Comment

Semicarbazones are of considerable interest because of their wide spectrum of biological applications, and display anticonvulsant (Alam et al., 2010), antitubercular (Sriram et al., 2004) and antimicrobial activity (Siji et al., 2010). The biological activity of semicarbazones is considered to be due to their ability to form chelate complexes with transition metals (Sharma et al., 2006).In view of the importance of these compounds, we report here the structure of the title semicarbazone derivative (Fig. 1).

The asymmetric unit of the title compound contains two molecules, 1 and 2. The benzothiophene group and the C9=N1—N2—C11(O1)N3 semicarbazone units are almost coplanar with N1—C9—C1—S1 torsion angles of -13.0 (2)° for 1 and -9.3 (2)° for 2. The phenyl rings show somewhat greater coplanarity with the semicarbazone linking units the C11—N3—C12—C13 angles being -13.3 (3)° for 1 and 5.4 (3)° for 2. The dihedral angles between the benzothiophene groups and the phenyl rings are 36.36 (7)° for 1 and 29.71 (8)° for 2. Both molecules adopt E configurations with respect to the C=N bonds. There are no important differences in the bond lengths and angles between the two unique molecules which overlay with an r.m.s. deviation of 0.053 Å (Macrae et al., 2008). The bond distances and angles are in a good agreement with values reported for similar structures (Beraldo et al., 2001; Fun et al., 2009a,b; Mendoza-Meroño et al. 2011). Intramolecular C113–H113···O11 and C113–H113···O11 hydrogen bonds are observed in both molecules and generate S(6) rings (Bernstein et al. 1995).

In the crystal structure, intermolecular N12—H12N···O21 and N22—H22N···O11 hydrogen bonds (Table 1) link the molecules into dimers (Fig. 2). A weak C110—H11A..O21 interaction further strengthens the dimer unit for molecule 1. Alternating dimers are further interconnected by weak C15–H15···O11 contacts generating zigzag rows along b. C24—H24..π contacts to the S11, C11, C12, C13, C18 thiophene rings of adjacent molecules form stacks along a, (Fig. 3).

Experimental

4-Phenyl-3-semicarbazide (1.51 g, 10 mmol) was dissolved in boiling ethanol (40 ml). A solution of 2-acetylbenzothiophene (1.77 g, 10 mmol) in ethanol (30 ml) was added to the 4-phenylsemicarbazide solution followed by the addition of three drops of sulphuric acid. The mixture was heated under reflux with stirring for 2 h. The solid product which separated upon cooling was filtered and recrystallized from a 1:1 mixture of dimethylsulphoxide and ethanol.

Refinement

H atoms bound to N1 and N3 were located in an electron density map and their coordinates were refined freely with Uiso= 1.2Ueq (N). All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.95 Å, Uiso=1.2Ueq (C) for aromatic and 0.98 Å, Uiso = 1.5Ueq (C) for the CH3 H atoms.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound with ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Dimers formed by the two unique molecules.Hydrogen bonds are shown as dashed lines.

Fig. 3.

Fig. 3.

Crystal packing with hydrogen bonds drawn as dashed lines.

Crystal data

C17H15N3OS Z = 4
Mr = 309.38 F(000) = 648
Triclinic, P1 Dx = 1.388 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.8858 (3) Å Cell parameters from 3121 reflections
b = 13.2737 (5) Å θ = 2.3–24.7°
c = 13.6121 (8) Å µ = 0.22 mm1
α = 113.961 (3)° T = 89 K
β = 98.153 (3)° Rectangular plate, colourless
γ = 107.778 (2)° 0.38 × 0.14 × 0.05 mm
V = 1480.02 (11) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer 8650 independent reflections
Radiation source: fine-focus sealed tube 5747 reflections with I > 2σ(I)
graphite Rint = 0.052
ω scans θmax = 30.1°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −13→13
Tmin = 0.826, Tmax = 1.000 k = −18→18
25263 measured reflections l = −19→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0651P)2 + 0.0525P] where P = (Fo2 + 2Fc2)/3
8650 reflections (Δ/σ)max < 0.001
411 parameters Δρmax = 0.70 e Å3
0 restraints Δρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S11 0.31292 (6) 1.02673 (4) 0.78076 (4) 0.02141 (13)
C11 0.2261 (2) 0.93460 (17) 0.63600 (16) 0.0182 (4)
C12 0.1846 (2) 0.99340 (18) 0.58266 (17) 0.0199 (4)
H12 0.1351 0.9563 0.5041 0.024*
C13 0.2253 (2) 1.11904 (17) 0.66052 (16) 0.0180 (4)
C14 0.2057 (2) 1.20934 (18) 0.63901 (18) 0.0223 (4)
H14 0.1568 1.1906 0.5647 0.027*
C15 0.2576 (2) 1.32550 (19) 0.72612 (18) 0.0251 (5)
H15 0.2451 1.3866 0.7112 0.030*
C16 0.3287 (2) 1.35423 (18) 0.83629 (18) 0.0240 (4)
H16 0.3640 1.4347 0.8951 0.029*
C17 0.3481 (2) 1.26718 (18) 0.86079 (17) 0.0221 (4)
H17 0.3952 1.2866 0.9358 0.027*
C18 0.2966 (2) 1.14948 (18) 0.77204 (17) 0.0201 (4)
C19 0.2066 (2) 0.80832 (17) 0.58560 (16) 0.0181 (4)
C110 0.1043 (2) 0.72127 (18) 0.46823 (16) 0.0237 (4)
H11A 0.1562 0.6766 0.4240 0.035*
H11B 0.0740 0.7653 0.4328 0.035*
H11C 0.0157 0.6649 0.4710 0.035*
N11 0.28160 (17) 0.78150 (14) 0.64940 (13) 0.0190 (3)
N12 0.26205 (18) 0.66309 (15) 0.60819 (14) 0.0200 (4)
H12N 0.193 (2) 0.6052 (19) 0.5336 (18) 0.024*
C111 0.3580 (2) 0.63400 (17) 0.66381 (16) 0.0189 (4)
O11 0.34514 (15) 0.52858 (12) 0.62557 (11) 0.0231 (3)
N13 0.46505 (19) 0.72820 (15) 0.75850 (14) 0.0212 (4)
H13N 0.460 (2) 0.798 (2) 0.7734 (18) 0.025*
C112 0.5902 (2) 0.72786 (18) 0.82322 (16) 0.0200 (4)
C113 0.6083 (2) 0.62516 (19) 0.81270 (19) 0.0298 (5)
H113 0.5327 0.5479 0.7611 0.036*
C114 0.7391 (3) 0.6363 (2) 0.8788 (2) 0.0356 (6)
H114 0.7524 0.5656 0.8703 0.043*
C115 0.8490 (2) 0.74708 (19) 0.95598 (17) 0.0246 (4)
H115 0.9372 0.7532 1.0007 0.030*
C116 0.8291 (2) 0.84825 (19) 0.96713 (17) 0.0277 (5)
H116 0.9038 0.9253 1.0205 0.033*
C117 0.7008 (2) 0.83968 (19) 0.90140 (18) 0.0300 (5)
H117 0.6887 0.9108 0.9100 0.036*
S21 0.10557 (5) −0.03449 (5) 0.26492 (4) 0.02144 (13)
C21 0.2802 (2) 0.07844 (17) 0.35461 (15) 0.0183 (4)
C22 0.3828 (2) 0.03329 (17) 0.37642 (16) 0.0172 (4)
H22 0.4829 0.0820 0.4238 0.021*
C23 0.3203 (2) −0.09632 (18) 0.31879 (16) 0.0195 (4)
C24 0.3903 (2) −0.17387 (18) 0.31967 (17) 0.0229 (4)
H24 0.4920 −0.1417 0.3625 0.027*
C25 0.3106 (2) −0.29689 (19) 0.25799 (17) 0.0248 (4)
H25 0.3577 −0.3494 0.2583 0.030*
C26 0.1598 (2) −0.34491 (19) 0.19454 (17) 0.0247 (4)
H26 0.1062 −0.4297 0.1523 0.030*
C27 0.0886 (2) −0.27078 (18) 0.19275 (17) 0.0233 (4)
H27 −0.0134 −0.3038 0.1502 0.028*
C28 0.1692 (2) −0.14626 (18) 0.25469 (16) 0.0193 (4)
C29 0.3002 (2) 0.20465 (18) 0.40077 (16) 0.0191 (4)
C210 0.4392 (2) 0.30265 (18) 0.49234 (16) 0.0228 (4)
H21A 0.4728 0.3703 0.4764 0.034*
H21B 0.5173 0.2720 0.4956 0.034*
H21C 0.4186 0.3298 0.5649 0.034*
N21 0.18945 (18) 0.22163 (14) 0.35750 (13) 0.0202 (4)
N22 0.19800 (19) 0.33747 (15) 0.40139 (14) 0.0225 (4)
H22N 0.261 (2) 0.388 (2) 0.4711 (19) 0.027*
C211 0.0935 (2) 0.36293 (18) 0.34891 (16) 0.0207 (4)
O21 0.09507 (17) 0.46410 (13) 0.38988 (12) 0.0291 (4)
N23 −0.00679 (18) 0.26752 (15) 0.25064 (14) 0.0203 (4)
H23N 0.005 (2) 0.201 (2) 0.2342 (18) 0.024*
C212 −0.1117 (2) 0.26998 (18) 0.17048 (16) 0.0198 (4)
C213 −0.1193 (2) 0.37503 (19) 0.17685 (17) 0.0238 (4)
H213 −0.0578 0.4508 0.2406 0.029*
C214 −0.2185 (2) 0.3675 (2) 0.08827 (18) 0.0287 (5)
H214 −0.2228 0.4393 0.0915 0.034*
C215 −0.3112 (2) 0.25807 (19) −0.00446 (17) 0.0254 (5)
H215 −0.3781 0.2544 −0.0645 0.030*
C216 −0.3048 (2) 0.15487 (19) −0.00818 (18) 0.0297 (5)
H216 −0.3685 0.0791 −0.0711 0.036*
C217 −0.2063 (2) 0.15971 (19) 0.07875 (17) 0.0270 (5)
H217 −0.2038 0.0875 0.0755 0.032*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S11 0.0247 (3) 0.0198 (3) 0.0174 (3) 0.0095 (2) 0.0014 (2) 0.0079 (2)
C11 0.0149 (9) 0.0197 (10) 0.0162 (10) 0.0056 (8) 0.0016 (7) 0.0072 (8)
C12 0.0156 (9) 0.0264 (11) 0.0246 (11) 0.0092 (8) 0.0068 (8) 0.0175 (9)
C13 0.0146 (9) 0.0204 (10) 0.0204 (10) 0.0076 (8) 0.0056 (7) 0.0106 (8)
C14 0.0181 (9) 0.0284 (11) 0.0273 (11) 0.0108 (9) 0.0081 (8) 0.0181 (10)
C15 0.0233 (10) 0.0234 (11) 0.0344 (12) 0.0106 (9) 0.0091 (9) 0.0179 (10)
C16 0.0242 (10) 0.0192 (10) 0.0279 (11) 0.0118 (9) 0.0076 (9) 0.0085 (9)
C17 0.0208 (10) 0.0242 (11) 0.0217 (10) 0.0107 (9) 0.0064 (8) 0.0101 (9)
C18 0.0179 (9) 0.0236 (10) 0.0217 (10) 0.0097 (8) 0.0053 (8) 0.0126 (9)
C19 0.0161 (9) 0.0199 (10) 0.0166 (9) 0.0067 (8) 0.0057 (7) 0.0072 (8)
C110 0.0255 (10) 0.0209 (10) 0.0196 (10) 0.0084 (9) 0.0013 (8) 0.0077 (9)
N11 0.0190 (8) 0.0154 (8) 0.0192 (8) 0.0058 (7) 0.0046 (7) 0.0065 (7)
N12 0.0219 (9) 0.0159 (8) 0.0167 (8) 0.0064 (7) 0.0006 (7) 0.0054 (7)
C111 0.0181 (9) 0.0190 (10) 0.0142 (9) 0.0046 (8) 0.0008 (7) 0.0066 (8)
O11 0.0287 (8) 0.0139 (7) 0.0172 (7) 0.0068 (6) −0.0029 (6) 0.0035 (6)
N13 0.0250 (9) 0.0142 (8) 0.0180 (9) 0.0091 (7) −0.0022 (7) 0.0039 (7)
C112 0.0215 (10) 0.0221 (10) 0.0132 (9) 0.0091 (8) 0.0020 (8) 0.0063 (8)
C113 0.0295 (12) 0.0174 (10) 0.0288 (12) 0.0068 (9) −0.0057 (9) 0.0055 (9)
C114 0.0383 (13) 0.0270 (12) 0.0319 (13) 0.0187 (11) −0.0051 (10) 0.0064 (10)
C115 0.0231 (10) 0.0307 (12) 0.0180 (10) 0.0124 (9) 0.0029 (8) 0.0097 (9)
C116 0.0242 (11) 0.0255 (11) 0.0193 (11) 0.0023 (9) −0.0041 (8) 0.0070 (9)
C117 0.0320 (12) 0.0183 (11) 0.0265 (12) 0.0069 (9) −0.0064 (9) 0.0061 (9)
S21 0.0167 (2) 0.0221 (3) 0.0208 (3) 0.0069 (2) 0.00048 (19) 0.0083 (2)
C21 0.0158 (9) 0.0215 (10) 0.0134 (9) 0.0058 (8) 0.0021 (7) 0.0066 (8)
C22 0.0146 (9) 0.0168 (9) 0.0165 (9) 0.0046 (7) 0.0052 (7) 0.0057 (8)
C23 0.0162 (9) 0.0224 (10) 0.0168 (10) 0.0068 (8) 0.0037 (7) 0.0076 (8)
C24 0.0168 (9) 0.0274 (11) 0.0228 (11) 0.0101 (9) 0.0051 (8) 0.0099 (9)
C25 0.0256 (11) 0.0264 (11) 0.0251 (11) 0.0152 (9) 0.0074 (9) 0.0113 (9)
C26 0.0244 (11) 0.0212 (11) 0.0223 (11) 0.0063 (9) 0.0053 (8) 0.0075 (9)
C27 0.0216 (10) 0.0245 (11) 0.0188 (10) 0.0067 (9) 0.0019 (8) 0.0090 (9)
C28 0.0192 (9) 0.0231 (10) 0.0154 (9) 0.0088 (8) 0.0046 (8) 0.0088 (8)
C29 0.0190 (9) 0.0234 (10) 0.0173 (10) 0.0095 (8) 0.0078 (8) 0.0104 (8)
C210 0.0207 (10) 0.0242 (11) 0.0179 (10) 0.0072 (9) 0.0030 (8) 0.0075 (9)
N21 0.0248 (9) 0.0180 (8) 0.0154 (8) 0.0088 (7) 0.0044 (7) 0.0061 (7)
N22 0.0244 (9) 0.0187 (9) 0.0146 (8) 0.0083 (7) −0.0023 (7) 0.0019 (7)
C211 0.0213 (10) 0.0197 (10) 0.0152 (10) 0.0059 (8) 0.0009 (8) 0.0062 (8)
O21 0.0336 (9) 0.0218 (8) 0.0188 (8) 0.0127 (7) −0.0054 (6) 0.0009 (6)
N23 0.0224 (8) 0.0167 (8) 0.0165 (9) 0.0082 (7) −0.0003 (7) 0.0049 (7)
C212 0.0189 (9) 0.0213 (10) 0.0160 (10) 0.0064 (8) 0.0021 (8) 0.0081 (8)
C213 0.0245 (10) 0.0223 (11) 0.0197 (10) 0.0087 (9) 0.0012 (8) 0.0079 (9)
C214 0.0308 (12) 0.0301 (12) 0.0303 (12) 0.0173 (10) 0.0054 (10) 0.0166 (10)
C215 0.0237 (10) 0.0325 (12) 0.0194 (10) 0.0127 (9) 0.0021 (8) 0.0123 (9)
C216 0.0280 (11) 0.0238 (12) 0.0215 (11) 0.0049 (9) −0.0059 (9) 0.0050 (9)
C217 0.0295 (11) 0.0203 (11) 0.0220 (11) 0.0068 (9) −0.0027 (9) 0.0077 (9)

Geometric parameters (Å, °)

S11—C18 1.734 (2) S21—C28 1.745 (2)
S11—C11 1.7427 (19) S21—C21 1.7473 (19)
C11—C12 1.369 (2) C21—C22 1.381 (2)
C11—C19 1.466 (3) C21—C29 1.466 (3)
C12—C13 1.449 (3) C22—C23 1.440 (3)
C12—H12 0.9500 C22—H22 0.9500
C13—C14 1.404 (3) C23—C24 1.407 (3)
C13—C18 1.410 (3) C23—C28 1.410 (3)
C14—C15 1.380 (3) C24—C25 1.380 (3)
C14—H14 0.9500 C24—H24 0.9500
C15—C16 1.400 (3) C25—C26 1.408 (3)
C15—H15 0.9500 C25—H25 0.9500
C16—C17 1.383 (3) C26—C27 1.379 (3)
C16—H16 0.9500 C26—H26 0.9500
C17—C18 1.402 (3) C27—C28 1.397 (3)
C17—H17 0.9500 C27—H27 0.9500
C19—N11 1.289 (2) C29—N21 1.293 (2)
C19—C110 1.496 (3) C29—C210 1.497 (3)
C110—H11A 0.9800 C210—H21A 0.9800
C110—H11B 0.9800 C210—H21B 0.9800
C110—H11C 0.9800 C210—H21C 0.9800
N11—N12 1.375 (2) N21—N22 1.374 (2)
N12—C111 1.371 (2) N22—C211 1.376 (2)
N12—H12N 0.97 (2) N22—H22N 0.89 (2)
C111—O11 1.235 (2) C211—O21 1.221 (2)
C111—N13 1.357 (2) C211—N23 1.363 (2)
N13—C112 1.416 (2) N23—C212 1.413 (2)
N13—H13N 0.89 (2) N23—H23N 0.87 (2)
C112—C113 1.382 (3) C212—C217 1.387 (3)
C112—C117 1.388 (3) C212—C213 1.388 (3)
C113—C114 1.396 (3) C213—C214 1.390 (3)
C113—H113 0.9500 C213—H213 0.9500
C114—C115 1.376 (3) C214—C215 1.383 (3)
C114—H114 0.9500 C214—H214 0.9500
C115—C116 1.368 (3) C215—C216 1.372 (3)
C115—H115 0.9500 C215—H215 0.9500
C116—C117 1.389 (3) C216—C217 1.387 (3)
C116—H116 0.9500 C216—H216 0.9500
C117—H117 0.9500 C217—H217 0.9500
C18—S11—C11 91.28 (9) C28—S21—C21 91.28 (9)
C12—C11—C19 127.84 (18) C22—C21—C29 128.03 (17)
C12—C11—S11 113.22 (15) C22—C21—S21 112.81 (14)
C19—C11—S11 118.94 (14) C29—C21—S21 119.10 (14)
C11—C12—C13 111.86 (18) C21—C22—C23 112.03 (17)
C11—C12—H12 124.1 C21—C22—H22 124.0
C13—C12—H12 124.1 C23—C22—H22 124.0
C14—C13—C18 118.69 (18) C24—C23—C28 119.07 (18)
C14—C13—C12 129.36 (18) C24—C23—C22 128.48 (18)
C18—C13—C12 111.93 (17) C28—C23—C22 112.45 (17)
C15—C14—C13 119.85 (19) C25—C24—C23 119.75 (18)
C15—C14—H14 120.1 C25—C24—H24 120.1
C13—C14—H14 120.1 C23—C24—H24 120.1
C14—C15—C16 120.69 (19) C24—C25—C26 120.27 (19)
C14—C15—H15 119.7 C24—C25—H25 119.9
C16—C15—H15 119.7 C26—C25—H25 119.9
C17—C16—C15 121.00 (19) C27—C26—C25 121.06 (19)
C17—C16—H16 119.5 C27—C26—H26 119.5
C15—C16—H16 119.5 C25—C26—H26 119.5
C16—C17—C18 118.25 (19) C26—C27—C28 118.75 (18)
C16—C17—H17 120.9 C26—C27—H27 120.6
C18—C17—H17 120.9 C28—C27—H27 120.6
C17—C18—C13 121.51 (18) C27—C28—C23 121.10 (18)
C17—C18—S11 126.77 (15) C27—C28—S21 127.46 (15)
C13—C18—S11 111.71 (15) C23—C28—S21 111.44 (15)
N11—C19—C11 115.21 (17) N21—C29—C21 114.78 (17)
N11—C19—C110 124.97 (18) N21—C29—C210 124.63 (18)
C11—C19—C110 119.82 (16) C21—C29—C210 120.58 (17)
C19—C110—H11A 109.5 C29—C210—H21A 109.5
C19—C110—H11B 109.5 C29—C210—H21B 109.5
H11A—C110—H11B 109.5 H21A—C210—H21B 109.5
C19—C110—H11C 109.5 C29—C210—H21C 109.5
H11A—C110—H11C 109.5 H21A—C210—H21C 109.5
H11B—C110—H11C 109.5 H21B—C210—H21C 109.5
C19—N11—N12 117.57 (16) C29—N21—N22 117.60 (16)
C111—N12—N11 119.32 (16) N21—N22—C211 119.89 (16)
C111—N12—H12N 121.2 (13) N21—N22—H22N 115.3 (14)
N11—N12—H12N 118.4 (13) C211—N22—H22N 123.5 (14)
O11—C111—N13 124.78 (17) O21—C211—N23 124.92 (18)
O11—C111—N12 120.06 (17) O21—C211—N22 120.69 (18)
N13—C111—N12 115.14 (17) N23—C211—N22 114.39 (18)
C111—N13—C112 127.34 (17) C211—N23—C212 127.10 (17)
C111—N13—H13N 113.6 (14) C211—N23—H23N 113.9 (14)
C112—N13—H13N 118.4 (14) C212—N23—H23N 118.6 (14)
C113—C112—C117 119.18 (18) C217—C212—C213 119.81 (18)
C113—C112—N13 124.47 (18) C217—C212—N23 116.38 (18)
C117—C112—N13 116.35 (18) C213—C212—N23 123.75 (18)
C112—C113—C114 119.2 (2) C212—C213—C214 118.85 (19)
C112—C113—H113 120.4 C212—C213—H213 120.6
C114—C113—H113 120.4 C214—C213—H213 120.6
C115—C114—C113 121.6 (2) C215—C214—C213 121.6 (2)
C115—C114—H114 119.2 C215—C214—H214 119.2
C113—C114—H114 119.2 C213—C214—H214 119.2
C116—C115—C114 118.76 (19) C216—C215—C214 118.77 (19)
C116—C115—H115 120.6 C216—C215—H215 120.6
C114—C115—H115 120.6 C214—C215—H215 120.6
C115—C116—C117 120.8 (2) C215—C216—C217 120.9 (2)
C115—C116—H116 119.6 C215—C216—H216 119.6
C117—C116—H116 119.6 C217—C216—H216 119.6
C112—C117—C116 120.4 (2) C216—C217—C212 120.05 (19)
C112—C117—H117 119.8 C216—C217—H217 120.0
C116—C117—H117 119.8 C212—C217—H217 120.0
C18—S11—C11—C12 −0.58 (16) C28—S21—C21—C22 −0.23 (15)
C18—S11—C11—C19 178.95 (16) C28—S21—C21—C29 −177.63 (16)
C19—C11—C12—C13 −178.81 (18) C29—C21—C22—C23 177.56 (18)
S11—C11—C12—C13 0.7 (2) S21—C21—C22—C23 0.4 (2)
C11—C12—C13—C14 178.41 (19) C21—C22—C23—C24 179.47 (19)
C11—C12—C13—C18 −0.4 (2) C21—C22—C23—C28 −0.5 (2)
C18—C13—C14—C15 0.8 (3) C28—C23—C24—C25 0.1 (3)
C12—C13—C14—C15 −177.90 (19) C22—C23—C24—C25 −179.82 (19)
C13—C14—C15—C16 −0.6 (3) C23—C24—C25—C26 −0.1 (3)
C14—C15—C16—C17 −0.2 (3) C24—C25—C26—C27 −0.2 (3)
C15—C16—C17—C18 0.8 (3) C25—C26—C27—C28 0.5 (3)
C16—C17—C18—C13 −0.6 (3) C26—C27—C28—C23 −0.5 (3)
C16—C17—C18—S11 177.95 (15) C26—C27—C28—S21 179.33 (15)
C14—C13—C18—C17 −0.2 (3) C24—C23—C28—C27 0.2 (3)
C12—C13—C18—C17 178.72 (17) C22—C23—C28—C27 −179.86 (17)
C14—C13—C18—S11 −178.98 (14) C24—C23—C28—S21 −179.65 (15)
C12—C13—C18—S11 0.0 (2) C22—C23—C28—S21 0.3 (2)
C11—S11—C18—C17 −178.33 (19) C21—S21—C28—C27 −179.87 (19)
C11—S11—C18—C13 0.33 (15) C21—S21—C28—C23 −0.05 (15)
C12—C11—C19—N11 166.45 (19) C22—C21—C29—N21 173.78 (18)
S11—C11—C19—N11 −13.0 (2) S21—C21—C29—N21 −9.3 (2)
C12—C11—C19—C110 −13.9 (3) C22—C21—C29—C210 −7.3 (3)
S11—C11—C19—C110 166.64 (15) S21—C21—C29—C210 169.70 (15)
C11—C19—N11—N12 177.05 (16) C21—C29—N21—N22 176.63 (16)
C110—C19—N11—N12 −2.6 (3) C210—C29—N21—N22 −2.3 (3)
C19—N11—N12—C111 168.46 (17) C29—N21—N22—C211 171.23 (18)
N11—N12—C111—O11 −177.39 (17) N21—N22—C211—O21 176.31 (18)
N11—N12—C111—N13 1.1 (3) N21—N22—C211—N23 −4.0 (3)
O11—C111—N13—C112 8.0 (3) O21—C211—N23—C212 9.9 (3)
N12—C111—N13—C112 −170.44 (18) N22—C211—N23—C212 −169.85 (18)
C111—N13—C112—C113 −13.3 (3) C211—N23—C212—C217 −177.5 (2)
C111—N13—C112—C117 166.3 (2) C211—N23—C212—C213 5.4 (3)
C117—C112—C113—C114 −1.6 (3) C217—C212—C213—C214 −2.5 (3)
N13—C112—C113—C114 177.9 (2) N23—C212—C213—C214 174.54 (19)
C112—C113—C114—C115 1.4 (4) C212—C213—C214—C215 1.3 (3)
C113—C114—C115—C116 −0.3 (4) C213—C214—C215—C216 0.3 (3)
C114—C115—C116—C117 −0.4 (3) C214—C215—C216—C217 −0.6 (3)
C113—C112—C117—C116 0.9 (3) C215—C216—C217—C212 −0.7 (3)
N13—C112—C117—C116 −178.7 (2) C213—C212—C217—C216 2.2 (3)
C115—C116—C117—C112 0.2 (3) N23—C212—C217—C216 −175.0 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the S11, C11, C12, C13, C18 ring.
D—H···A D—H H···A D···A D—H···A
N12—H12N···O21 0.97 (2) 1.91 (2) 2.847 (2) 162.1 (19)
N22—H22N···O11 0.89 (2) 1.99 (2) 2.840 (2) 158 (2)
C113—H113···O11 0.95 2.29 2.886 (2) 120.
C213—H213···O21 0.95 2.26 2.871 (2) 121.
C15—H15···O11i 0.95 2.62 3.435 (2) 144.
C24—H24···Cg1ii 0.95 2.80 3.482 (2) 130

Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2786).

References

  1. Alam, O., Mullick, P., Verma, S. P., Gilani, S. J., Khan, S. A., Siddiqui, N. & Ahsan, W. (2010). Eur. J. Med. Chem. 45, 2467–2472. [DOI] [PubMed]
  2. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  3. Beraldo, H., Nacif, W. F. & West, D. X. (2001). Spectrochim. Acta A, 57, 1847–1854. [DOI] [PubMed]
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  5. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Fun, H.-K., Balasubramani, K., Vijesh, A. M., Malladii, S. & Isloor, A. M. (2009a). Acta Cryst. E65, o2072. [DOI] [PMC free article] [PubMed]
  7. Fun, H.-K., Yeap, C. S., Padaki, M., Malladi, S. & Isloor, A. M. (2009b). Acta Cryst. E65, o1807–o1808. [DOI] [PMC free article] [PubMed]
  8. Hunter, K. A. & Simpson, J. (1999). TITAN2000 University of Otago, New Zealand.
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Mendoza-Meroño, R., Menéndez-Taboada, L., Fernández-Zapico, E. & García-Granda, S. (2011). Acta Cryst. E67, o1135. [DOI] [PMC free article] [PubMed]
  11. Sharma, R., Agarwal, S. K., Rawat, S. & Nagar, M. (2006). Transition Met Chem. 31, 201–206.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Siji, V. L., Kumar, M. R. S., Suma, S. & Kurup, M. R. P. (2010). Spectrochim. Acta A, 76, 22–28. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Sriram, D., Yogeeswari, P. & Thirumurugan, R. (2004). Bioorg. Med. Chem. Lett. 14, 3923–3924. [DOI] [PubMed]
  16. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037457/tk2786sup1.cif

e-67-o2687-sup1.cif (37KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037457/tk2786Isup2.hkl

e-67-o2687-Isup2.hkl (423.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037457/tk2786Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES