Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):o2607–o2608. doi: 10.1107/S1600536811036294

Caloxanthone C: a pyran­oxanthone from the stem bark of Calophyllum soulattri

Gwendoline Cheng Lian Ee a,*, Siau Hui Mah a, Huey Chong Kwong a, Soek Sin Teh a, Mohamed Ibrahim Mohamed Tahir a, Sidik Silong a
PMCID: PMC3201296  PMID: 22064829

Abstract

The title compound [systematic name: 5,10-di­hy­droxy-2,2-di­methyl-12-(2-methyl­but-3-en-2-yl)­pyrano[3,2-b]xanthen-6(2H)-one], C23H22O5, isolated from the stem bark of Calophyllum soulattri, consists of four six-membered rings and a 2-methyl­but-3-en-2-yl side chain. The tricyclic xanthone ring system is almost planar [maximum deviation = 0.093 (2) Å], whereas the pyran­oid ring is in a distorted boat conformation. The 2-methyl­but-3-en-2-yl side chain is in a synperiplanar conformation. There are two intra­molecular O—H⋯O hydrogen bonds. In the crystal, mol­ecules are linked by C—H⋯O inter­actions, forming a zigzag chain propagating in [010].

Related literature

For related structures, see: Ee et al. (2010); Fun et al. (2006); Doriguetto et al. (2001); Boonnak et al. (2007); Ndjakou et al. (2007). For the biological activity of Calophyllum species, see: Dharmaratne et al. (1999, 2009); Zou et al. (2005); Ito et al. (1999, 2002); Ee et al. (2004). For standard bond lengths, see Allen et al. (1987).graphic file with name e-67-o2607-scheme1.jpg

Experimental

Crystal data

  • C23H22O5

  • M r = 378.42

  • Monoclinic, Inline graphic

  • a = 6.7013 (3) Å

  • b = 15.8951 (7) Å

  • c = 17.3891 (7) Å

  • β = 93.181 (4)°

  • V = 1849.39 (14) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.78 mm−1

  • T = 150 K

  • 0.34 × 0.15 × 0.07 mm

Data collection

  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006) T min = 0.890, T max = 0.947

  • 10133 measured reflections

  • 3503 independent reflections

  • 3048 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.170

  • S = 1.00

  • 3488 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536811036294/su2302sup1.cif

e-67-o2607-sup1.cif (23.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036294/su2302Isup2.hkl

e-67-o2607-Isup2.hkl (219.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036294/su2302Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O16—H16⋯O5 0.83 1.79 2.570 (2) 155
O28—H28⋯O1 0.81 2.25 2.690 (2) 115
C12—H12⋯O5i 0.94 2.51 3.441 (3) 168

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the Ministry of Science, Technology and Innovation (MOSTI) for a grant from the e-science fund.

supplementary crystallographic information

Comment

Calophyllum species are native to tropical areas, mainly in Asia, Australia, Africa and Polynesia. This genus is well known for various bioactivities due to the existence of a variety of secondary metabolites such as xanthones (Dharmaratne et al., 1999), coumarins (Ee et al., 2004) and flavanoids (Ito et al., 1999). Xanthones are known to have various biological activities such as, antifungal (Dharmaratne et al., 1999), anti-oxidant (Dharmaratne et al., 2009), anti-inflammatory (Zou et al., 2005) and anti-cancer (Ito et al., 2002). We present here the crystal structure of Caloxanthone C, isolated from the stem bark of Calophyllum soulattri.

The molecular structure of the title compound is illustrated in Fig. 1. The bond distances are in the normal range (Allen et al., 1987) and together with the bond angles are comparable to those reported for other pyranoxanthone structures (Ee et al. 2010; Fun et al. 2006; Doriguetto et al. 2001), and other closely related structures (Boonnak et al., 2007; Ndjakou et al. 2007).

The title molecule has a xanthone skeleton, which is essentially planar [maximum deviation 0.093 (2) Å for atom C14] with two intramolecular O-H···O hydrogen bonds (Fig. 1 & Table 1). Rings A (C2,C3,C24-C27), B (O1,C2-C4,C6,C7) and C (C6-C9,C14,C15) are practically coplanar, including atoms O28, O5, and O16, that are linked to them; the latter deviate from the individual mean planes by 0.009 (2) Å, 0.016 (2) Å, and 0.056 (2) Å, for O28 from ring A, O5 from ring B and O16 from ring C, respectively. Rings A and B nearly lie in the same plane, as they form a dihedral angle of only 0.46 (9)°, while rings B and C are inclined to one another by 4.25 (9)°. The mean planes of rings A and C, which intersect on a line approximately through the middle of ring B, are inclined to one another by 4.62 (10)°. The same dihedral angle is 7.78 (9) ° in the trihydroxy derivative of the title compound, reported on by (Fun et al., 2006), and 7.75 (7) ° for a similar pyranoxanthone structure (12-Acetyl-6-hydroxy-3,3,9,9-tetramethylfuro[3,4-b]pyrano[3,2-h]xanthene-7,11(3H,9H)-dione ) reported on by (Ee et al., 2010).

The mean torsional angle of ring D (C9,O10,C11-C14) is 21.08 (13)° and it adopts a conformation half way between an envelope and a half boat. This conformation is probably caused by the constraint of the C12═C13 double bond which results in considerable pucking of ring D, happening at C11. This conformation is similar to that observed in other pyranoxanthone structures, such as 12-Acetyl-6-hydroxy-3,3,9,9-tetramethylfuro[3,4-b]pyrano[3,2-h]xanthene-7,11(3H,9H)-dione (Ee et al., 2010) and 12-(1,1-Dimethyl-2-propenyl)-5,9,10-trihydroxy-2,2-dimethyl-2H,6H-pyrano[3,2-b]xanthen-6-one (Fun et al., 2006).

The orientation of the 2-methylbut-3-en-2-yl (C19—C23) side chain with respect to the benzene ring C is indicated by the torsion angle of C7—C8—C19—C20 = 27.6 (3)° [compared to 28.8 (3) ° in (Fun et al., 2006)], indicating a synperiplanar conformation.

In the crystal, there is an intermolecular C—H···O hydrogen bond (Table 1, Fig. 2) the leads to the fomation of a zigzag chain propagating in [010].

Experimental

The stem bark of Calophyllum soulattri was collected from the Sri Aman district in Sarawak, Malaysia. Approximately 1 kg of air-dried stem bark of Calophyllum soulattri was ground into a fine powder and extracted successively in a Soxhlet apparatus with n-hexane, dichloromethane, ethyl acetate and methanol for 72 h. The extracts were evaporated to dryness under vacuum to give 15.3 g of dichloromethane extract, which was subjected to column chromatography, over silica gel, several times. Stepwise gradient systems using n-hexane, dichloromethane, ethyl acetate and methanol and eluting through the columns resulted in separation and purification of the extract. Caloxanthone C, a yellowish crystal with the melting point of 210–212 °C was isolated. Single crystals, suitable for X-ray diffraction analysis, were prepared by the slow evaporation and diffusion of diethyl ether into a solution of Caloxanthone C in chloroform at room temperature.

Refinement

The H atoms could all be located in a difference Fourier map. They were initially refined with soft restraints on the bond lengths and angles to regularize their geometry [O—H = 0.82 Å, C—H = 0.93 - 0.98 Å], after which the positions were refined with riding constraints, with Uiso(H) = k × Ueq(O,C), with k = 1.5 for OH and CH3 H-atoms and k = 1.2 for all other H-atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the crystallographic numbering scheme and displacement ellipsoids drawn at the 50% probability level. The intramoleular O-H···O hydrogen bonds are shown as dashed lines [see Table 1 for details].

Fig. 2.

Fig. 2.

A view of the along the a-axis of the C-H···O hydrogen bonded (thin grey lines; see Table 1 for details) zizgzag chain in the crystal of the title compound [b-axis green; c-axis blue].

Crystal data

C23H22O5 F(000) = 800
Mr = 378.42 Dx = 1.359 Mg m3
Monoclinic, P21/n Melting point: 189 K
Hall symbol: -P 2yn Cu Kα radiation, λ = 1.54184 Å
a = 6.7013 (3) Å Cell parameters from 4840 reflections
b = 15.8951 (7) Å θ = 71–4°
c = 17.3891 (7) Å µ = 0.78 mm1
β = 93.181 (4)° T = 150 K
V = 1849.39 (14) Å3 Plate, yellow
Z = 4 0.34 × 0.15 × 0.07 mm

Data collection

Oxford Diffraction Gemini diffractometer 3503 independent reflections
Radiation source: sealed x-ray tube 3048 reflections with I > 2σ(I)
graphite Rint = 0.023
ω/2θ scans θmax = 70.9°, θmin = 3.8°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006) h = −8→8
Tmin = 0.890, Tmax = 0.947 k = 0→19
10133 measured reflections l = 0→21

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.056 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.08P)2 + 2.61P] , where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.170 (Δ/σ)max = 0.0002304
S = 1.00 Δρmax = 0.34 e Å3
3488 reflections Δρmin = −0.34 e Å3
254 parameters Extinction correction: Larson (1970), Equation 22
0 restraints Extinction coefficient: 27 (7)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. For this compound, 10133 numbers of reflections were collected and measured during the refinement. Symmetry related reflections were measured more than once and after merging the symmetry equivalent reflections there were only 3503 reflection left. 15 more reflections were filtered, as σ cutoff was set as -3 and (sinθ/x)set to>0.01 (to eliminate reflection measured near the vicinity of beam stop) therefore numbers of reflection reduced to 3488.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.2643 (2) 0.41026 (9) 0.57160 (8) 0.0229 (4)
O5 0.2129 (3) 0.53596 (10) 0.36618 (9) 0.0307 (5)
O10 0.2854 (2) 0.14802 (10) 0.44806 (9) 0.0278 (5)
O16 0.2066 (3) 0.39365 (10) 0.29598 (8) 0.0303 (5)
O28 0.3025 (3) 0.48977 (10) 0.70816 (9) 0.0353 (6)
C2 0.2663 (3) 0.49629 (13) 0.56988 (12) 0.0210 (6)
C3 0.2503 (3) 0.54285 (13) 0.50222 (12) 0.0218 (6)
C4 0.2296 (3) 0.49750 (14) 0.42909 (12) 0.0230 (6)
C6 0.2301 (3) 0.40664 (13) 0.43370 (12) 0.0203 (6)
C7 0.2456 (3) 0.36432 (13) 0.50527 (11) 0.0197 (6)
C8 0.2438 (3) 0.27680 (13) 0.51359 (12) 0.0208 (6)
C9 0.2496 (3) 0.23212 (13) 0.44407 (12) 0.0214 (6)
C11 0.2127 (4) 0.09367 (15) 0.38384 (13) 0.0309 (7)
C12 0.2517 (4) 0.13517 (16) 0.30843 (13) 0.0317 (7)
C13 0.2589 (3) 0.21808 (15) 0.30307 (13) 0.0272 (7)
C14 0.2370 (3) 0.27046 (14) 0.37081 (12) 0.0226 (6)
C15 0.2218 (3) 0.35722 (14) 0.36604 (12) 0.0230 (6)
C17 0.3296 (5) 0.01284 (17) 0.39606 (16) 0.0449 (9)
C18 −0.0109 (4) 0.07989 (16) 0.39128 (14) 0.0362 (8)
C19 0.2517 (3) 0.23222 (13) 0.59319 (12) 0.0247 (6)
C20 0.1635 (3) 0.28569 (13) 0.65545 (12) 0.0242 (6)
C21 0.2403 (4) 0.29604 (14) 0.72643 (13) 0.0275 (7)
C22 0.4673 (4) 0.20684 (17) 0.61492 (13) 0.0380 (8)
C23 0.1135 (5) 0.15364 (17) 0.59174 (15) 0.0455 (9)
C24 0.2559 (3) 0.63098 (14) 0.50689 (13) 0.0261 (7)
C25 0.2754 (3) 0.66952 (14) 0.57769 (15) 0.0289 (7)
C26 0.2914 (3) 0.62217 (15) 0.64509 (14) 0.0285 (7)
C27 0.2857 (3) 0.53529 (14) 0.64196 (13) 0.0253 (6)
H12 0.26450 0.10080 0.26490 0.0384*
H13 0.28030 0.24340 0.25580 0.0331*
H16 0.19700 0.44460 0.30570 0.0463*
H171 0.31860 −0.00790 0.44700 0.0664*
H172 0.28140 −0.02920 0.35990 0.0668*
H173 0.46950 0.02260 0.38840 0.0665*
H181 −0.03090 0.05220 0.43970 0.0529*
H182 −0.07820 0.13340 0.38910 0.0531*
H183 −0.06030 0.04520 0.35010 0.0534*
H20 0.03660 0.31080 0.64190 0.0285*
H211 0.36950 0.27610 0.74130 0.0327*
H212 0.16730 0.32320 0.76280 0.0333*
H221 0.55190 0.25610 0.62300 0.0565*
H222 0.51750 0.17280 0.57450 0.0567*
H223 0.47390 0.17320 0.66120 0.0565*
H231 0.09990 0.13450 0.64360 0.0671*
H232 −0.01540 0.17000 0.56910 0.0678*
H233 0.16600 0.10830 0.56210 0.0677*
H24 0.24530 0.66350 0.46210 0.0304*
H25 0.27720 0.72990 0.58170 0.0349*
H26 0.30550 0.64830 0.69310 0.0342*
H28 0.29350 0.44000 0.69800 0.0529*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0319 (8) 0.0176 (8) 0.0189 (7) −0.0017 (6) −0.0004 (6) −0.0005 (6)
O5 0.0401 (10) 0.0266 (9) 0.0250 (8) 0.0005 (7) −0.0005 (7) 0.0077 (6)
O10 0.0396 (9) 0.0191 (8) 0.0238 (8) 0.0034 (7) −0.0053 (7) −0.0037 (6)
O16 0.0421 (10) 0.0300 (9) 0.0184 (8) 0.0007 (7) −0.0007 (7) 0.0032 (6)
O28 0.0587 (12) 0.0246 (9) 0.0222 (8) −0.0023 (8) −0.0006 (7) −0.0024 (6)
C2 0.0197 (10) 0.0174 (10) 0.0260 (11) −0.0002 (8) 0.0012 (8) 0.0000 (8)
C3 0.0156 (10) 0.0217 (11) 0.0279 (11) −0.0009 (8) 0.0006 (8) 0.0012 (8)
C4 0.0198 (10) 0.0244 (11) 0.0247 (11) 0.0003 (8) 0.0011 (8) 0.0041 (9)
C6 0.0163 (10) 0.0230 (11) 0.0214 (10) −0.0002 (8) −0.0003 (8) 0.0011 (8)
C7 0.0189 (10) 0.0212 (11) 0.0189 (10) −0.0009 (8) 0.0001 (8) −0.0015 (8)
C8 0.0215 (10) 0.0205 (11) 0.0200 (10) −0.0011 (8) −0.0019 (8) 0.0004 (8)
C9 0.0203 (10) 0.0197 (11) 0.0239 (11) −0.0005 (8) −0.0021 (8) −0.0006 (8)
C11 0.0449 (14) 0.0216 (11) 0.0254 (11) 0.0011 (10) −0.0049 (10) −0.0080 (9)
C12 0.0371 (13) 0.0327 (13) 0.0250 (11) 0.0040 (10) 0.0001 (9) −0.0102 (10)
C13 0.0272 (11) 0.0340 (13) 0.0203 (10) 0.0016 (9) −0.0002 (8) −0.0033 (9)
C14 0.0196 (10) 0.0265 (11) 0.0212 (10) 0.0008 (8) −0.0019 (8) −0.0026 (9)
C15 0.0211 (10) 0.0285 (12) 0.0191 (10) 0.0005 (8) −0.0006 (8) 0.0032 (8)
C17 0.0671 (19) 0.0267 (13) 0.0397 (15) 0.0126 (13) −0.0079 (13) −0.0097 (11)
C18 0.0505 (16) 0.0276 (12) 0.0295 (12) −0.0087 (11) −0.0068 (11) −0.0020 (10)
C19 0.0356 (12) 0.0187 (10) 0.0196 (10) −0.0026 (9) −0.0012 (9) 0.0013 (8)
C20 0.0268 (11) 0.0203 (10) 0.0255 (11) −0.0029 (9) 0.0024 (8) 0.0049 (8)
C21 0.0334 (12) 0.0270 (11) 0.0225 (11) −0.0013 (9) 0.0052 (9) 0.0015 (9)
C22 0.0502 (16) 0.0403 (14) 0.0233 (12) 0.0203 (12) 0.0004 (11) 0.0061 (10)
C23 0.079 (2) 0.0295 (14) 0.0283 (13) −0.0245 (14) 0.0062 (13) 0.0016 (10)
C24 0.0226 (11) 0.0215 (11) 0.0339 (12) 0.0000 (8) −0.0002 (9) 0.0055 (9)
C25 0.0225 (11) 0.0189 (11) 0.0452 (14) −0.0012 (8) 0.0020 (10) −0.0024 (10)
C26 0.0276 (12) 0.0253 (12) 0.0323 (12) 0.0001 (9) −0.0001 (9) −0.0085 (9)
C27 0.0248 (11) 0.0241 (11) 0.0270 (11) −0.0021 (9) 0.0011 (9) −0.0019 (9)

Geometric parameters (Å, °)

O1—C2 1.368 (3) C19—C20 1.522 (3)
O1—C7 1.365 (2) C19—C22 1.527 (3)
O5—C4 1.253 (3) C20—C21 1.321 (3)
O10—C9 1.359 (3) C24—C25 1.375 (3)
O10—C11 1.473 (3) C25—C26 1.392 (3)
O16—C15 1.348 (3) C26—C27 1.383 (3)
O28—C27 1.359 (3) C12—H12 0.9400
O16—H16 0.8300 C13—H13 0.9300
O28—H28 0.8100 C17—H171 0.9500
C2—C27 1.398 (3) C17—H172 0.9600
C2—C3 1.389 (3) C17—H173 0.9700
C3—C24 1.404 (3) C18—H181 0.9700
C3—C4 1.462 (3) C18—H182 0.9600
C4—C6 1.446 (3) C18—H183 0.9500
C6—C7 1.413 (3) C20—H20 0.9600
C6—C15 1.413 (3) C21—H211 0.9400
C7—C8 1.399 (3) C21—H212 0.9300
C8—C9 1.405 (3) C22—H221 0.9700
C8—C19 1.553 (3) C22—H222 0.9600
C9—C14 1.411 (3) C22—H223 0.9700
C11—C17 1.514 (4) C23—H231 0.9600
C11—C18 1.527 (4) C23—H232 0.9600
C11—C12 1.504 (3) C23—H233 0.9600
C12—C13 1.322 (3) C24—H24 0.9300
C13—C14 1.457 (3) C25—H25 0.9600
C14—C15 1.385 (3) C26—H26 0.9300
C19—C23 1.554 (4)
C2—O1—C7 121.12 (16) C3—C24—C25 119.8 (2)
C9—O10—C11 119.21 (17) C24—C25—C26 120.8 (2)
C15—O16—H16 104.00 C25—C26—C27 120.4 (2)
C27—O28—H28 109.00 C2—C27—C26 118.6 (2)
O1—C2—C27 115.10 (18) O28—C27—C2 121.51 (19)
O1—C2—C3 123.42 (18) O28—C27—C26 119.9 (2)
C3—C2—C27 121.48 (19) C11—C12—H12 118.00
C4—C3—C24 122.92 (19) C13—C12—H12 121.00
C2—C3—C24 118.83 (19) C12—C13—H13 120.00
C2—C3—C4 118.25 (19) C14—C13—H13 120.00
O5—C4—C3 121.2 (2) C11—C17—H171 111.00
O5—C4—C6 122.38 (19) C11—C17—H172 110.00
C3—C4—C6 116.38 (18) C11—C17—H173 110.00
C4—C6—C7 121.59 (19) H171—C17—H172 109.00
C7—C6—C15 117.78 (19) H171—C17—H173 108.00
C4—C6—C15 120.60 (19) H172—C17—H173 108.00
O1—C7—C8 116.46 (17) C11—C18—H181 109.00
O1—C7—C6 119.23 (18) C11—C18—H182 109.00
C6—C7—C8 124.32 (19) C11—C18—H183 109.00
C7—C8—C19 123.08 (18) H181—C18—H182 110.00
C7—C8—C9 114.40 (18) H181—C18—H183 109.00
C9—C8—C19 122.35 (18) H182—C18—H183 110.00
C8—C9—C14 123.77 (19) C19—C20—H20 116.00
O10—C9—C8 117.82 (18) C21—C20—H20 118.00
O10—C9—C14 118.20 (18) C20—C21—H211 121.00
O10—C11—C17 104.15 (19) C20—C21—H212 120.00
O10—C11—C12 109.73 (19) H211—C21—H212 119.00
C12—C11—C18 110.8 (2) C19—C22—H221 111.00
O10—C11—C18 107.74 (18) C19—C22—H222 109.00
C12—C11—C17 112.4 (2) C19—C22—H223 111.00
C17—C11—C18 111.7 (2) H221—C22—H222 109.00
C11—C12—C13 120.5 (2) H221—C22—H223 109.00
C12—C13—C14 120.5 (2) H222—C22—H223 107.00
C9—C14—C13 118.7 (2) C19—C23—H231 109.00
C9—C14—C15 119.00 (19) C19—C23—H232 108.00
C13—C14—C15 122.1 (2) C19—C23—H233 112.00
O16—C15—C6 120.75 (19) H231—C23—H232 110.00
C6—C15—C14 120.28 (19) H231—C23—H233 109.00
O16—C15—C14 118.92 (19) H232—C23—H233 109.00
C8—C19—C22 109.03 (17) C3—C24—H24 120.00
C8—C19—C23 111.18 (18) C25—C24—H24 120.00
C20—C19—C23 101.88 (18) C24—C25—H25 121.00
C22—C19—C23 110.3 (2) C26—C25—H25 119.00
C20—C19—C22 111.78 (17) C25—C26—H26 121.00
C8—C19—C20 112.58 (17) C27—C26—H26 119.00
C19—C20—C21 126.0 (2)
C7—O1—C2—C3 −0.1 (3) O1—C7—C8—C9 −172.41 (17)
C7—O1—C2—C27 179.82 (17) O1—C7—C8—C19 3.0 (3)
C2—O1—C7—C6 0.6 (3) C6—C7—C8—C9 7.4 (3)
C2—O1—C7—C8 −179.54 (17) C6—C7—C8—C19 −177.21 (19)
C11—O10—C9—C8 154.62 (19) C7—C8—C9—O10 168.09 (17)
C11—O10—C9—C14 −30.5 (3) C7—C8—C9—C14 −6.5 (3)
C9—O10—C11—C12 42.9 (3) C19—C8—C9—O10 −7.3 (3)
C9—O10—C11—C17 163.42 (19) C19—C8—C9—C14 178.13 (19)
C9—O10—C11—C18 −77.9 (2) C7—C8—C19—C20 27.6 (3)
O1—C2—C3—C4 0.2 (3) C7—C8—C19—C22 −97.0 (2)
O1—C2—C3—C24 −179.41 (18) C7—C8—C19—C23 141.2 (2)
C27—C2—C3—C4 −179.74 (19) C9—C8—C19—C20 −157.36 (19)
C27—C2—C3—C24 0.6 (3) C9—C8—C19—C22 78.0 (2)
O1—C2—C27—O28 0.4 (3) C9—C8—C19—C23 −43.8 (3)
O1—C2—C27—C26 179.23 (18) O10—C9—C14—C13 1.2 (3)
C3—C2—C27—O28 −179.6 (2) O10—C9—C14—C15 −173.23 (18)
C3—C2—C27—C26 −0.8 (3) C8—C9—C14—C13 175.72 (19)
C2—C3—C4—O5 179.4 (2) C8—C9—C14—C15 1.3 (3)
C2—C3—C4—C6 −0.8 (3) O10—C11—C12—C13 −28.3 (3)
C24—C3—C4—O5 −1.0 (3) C17—C11—C12—C13 −143.7 (2)
C24—C3—C4—C6 178.85 (19) C18—C11—C12—C13 90.6 (3)
C2—C3—C24—C25 −0.5 (3) C11—C12—C13—C14 2.4 (4)
C4—C3—C24—C25 179.91 (19) C12—C13—C14—C9 13.0 (3)
O5—C4—C6—C7 −178.9 (2) C12—C13—C14—C15 −172.8 (2)
O5—C4—C6—C15 3.3 (3) C9—C14—C15—O16 −178.96 (19)
C3—C4—C6—C7 1.3 (3) C9—C14—C15—C6 3.5 (3)
C3—C4—C6—C15 −176.56 (18) C13—C14—C15—O16 6.8 (3)
C4—C6—C7—O1 −1.2 (3) C13—C14—C15—C6 −170.74 (19)
C4—C6—C7—C8 178.96 (19) C8—C19—C20—C21 −136.6 (2)
C15—C6—C7—O1 176.65 (18) C22—C19—C20—C21 −13.5 (3)
C15—C6—C7—C8 −3.2 (3) C23—C19—C20—C21 104.3 (3)
C4—C6—C15—O16 −2.2 (3) C3—C24—C25—C26 0.5 (3)
C4—C6—C15—C14 175.28 (19) C24—C25—C26—C27 −0.7 (3)
C7—C6—C15—O16 179.87 (19) C25—C26—C27—O28 179.67 (19)
C7—C6—C15—C14 −2.6 (3) C25—C26—C27—C2 0.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O16—H16···O5 0.83 1.79 2.570 (2) 155
O28—H28···O1 0.81 2.25 2.690 (2) 115
C12—H12···O5i 0.94 2.51 3.441 (3) 168

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2302).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkins Trans 2, pp. S1–19
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  3. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
  4. Boonnak, N., Fun, H.-K., Chantrapromma, S. & Karalai, C. (2007). Acta Cryst. E63, o3958–o3959.
  5. Dharmaratne, H. R., Napagoda, M. T. & Tennakoon, S. B. (2009). Nat. Prod. Res. 23, 539–545. [DOI] [PubMed]
  6. Dharmaratne, H. R., Wijesinghe, W. M. & Thevanasem, V. (1999). J. Ethnopharmacol. 66, 339–342. [DOI] [PubMed]
  7. Doriguetto, A. C., Santos, M. H., Ellena, J. A. & Nagem, T. J. (2001). Acta Cryst. C57, 1095–1097. [DOI] [PubMed]
  8. Ee, G. C. L., Ng, K. N., Taufiq-Yap, Y. H., Rahmani, M., Ali, A. M. & Muse, R. (2004). Nat. Prod. Res. 18, 123–128. [DOI] [PubMed]
  9. Ee, G. C. L., Teo, S. H., Kwong, H. C., Mohamed Tahir, M. I. & Silong, S. (2010). Acta Cryst. E66, o3331–o3332. [DOI] [PMC free article] [PubMed]
  10. Fun, H.-K., Ng, S.-L., Razak, I. A., Boonnak, N. & Chantrapromma, S. (2006). Acta Cryst. E62, o130–o132.
  11. Ito, C., Itoigawa, M., Mishina, Y., Filho, V. C., Mukainaka, T. & Tokuda, H. (2002). J. Nat. Prod. 65, 267–272. [DOI] [PubMed]
  12. Ito, C., Itoigawa, M., Miyamoto, Y., Rao, K. S., Takayasu, J. & Okuda, Y. (1999). J. Nat. Prod. 62, 1668–1671. [DOI] [PubMed]
  13. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  14. Ndjakou Lenta, B., Devkota, K. P., Neumann, B., Tsamo, E. & Sewald, N. (2007). Acta Cryst. E63, o1629–o1631.
  15. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  16. Zou, J., Jin, D., Chen, W., Wang, J., Liu, Q. & Zhu, X. (2005). J. Nat. Prod. 68, 1514–1518. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536811036294/su2302sup1.cif

e-67-o2607-sup1.cif (23.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036294/su2302Isup2.hkl

e-67-o2607-Isup2.hkl (219.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036294/su2302Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES