Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):m1445–m1446. doi: 10.1107/S160053681103889X

{5,5′-Dimeth­oxy-2,2′-[1,1′-(2,2-dimethyl­propane-1,3-diyldinitrilo)­diethyl­idyne]diphenolato-κ4 O,N,N′,O′}copper(II) monohydrate

Akbar Ghaemi a,, Saeed Rayati b, Ehsan Elahi a, Seik Weng Ng c,d, Edward R T Tiekink c,*
PMCID: PMC3201301  PMID: 22058715

Abstract

The tetra­dentate dianion in the title complex hydrate, [Cu(C23H28N2O4)]·H2O, provides the CuII atom with a cis-N2O2 donor set. There is a significant twist from a regular square-planar geometry with the dihedral angle formed between the two six-membered CuOC3N chelate rings being 32.14 (8)°. The water mol­ecule forms hydrogen bonds to each of the coordinating O atoms of a given complex mol­ecule. Supra­molecular layers in the bc plane are formed in the crystal packing through C—H⋯O and C—H⋯π inter­actions.

Related literature

For the catalytic potential of Schiff base complexes of CuII, see: Gupta & Sutar (2008); Rayati et al. (2010). For the structure of the ligand, see: Ghaemi et al. (2011). For crystallization conditions, see: Harrowfield et al. (1996).graphic file with name e-67-m1445-scheme1.jpg

Experimental

Crystal data

  • [Cu(C23H28N2O4)]·H2O

  • M r = 478.03

  • Triclinic, Inline graphic

  • a = 10.4721 (7) Å

  • b = 10.8023 (9) Å

  • c = 10.8487 (7) Å

  • α = 106.699 (7)°

  • β = 99.823 (5)°

  • γ = 100.035 (6)°

  • V = 1125.37 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 294 K

  • 0.40 × 0.40 × 0.20 mm

Data collection

  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.643, T max = 1.000

  • 11143 measured reflections

  • 5034 independent reflections

  • 4332 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.105

  • S = 0.99

  • 5034 reflections

  • 285 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) general, I. DOI: 10.1107/S160053681103889X/hg5100sup1.cif

e-67-m1445-sup1.cif (24.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103889X/hg5100Isup2.hkl

e-67-m1445-Isup2.hkl (246.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu—O2 1.8825 (16)
Cu—O3 1.8776 (15)
Cu—N1 1.9597 (17)
Cu—N2 1.9524 (18)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1w⋯O2 0.84 2.12 2.832 (3) 142
O1w—H2w⋯O3 0.84 2.32 3.035 (3) 143
C7—H7c⋯O1wi 0.96 2.55 3.476 (5) 163
C16—H16c⋯O2ii 0.96 2.52 3.409 (3) 153
C14—H14b⋯Cg1ii 0.97 2.62 3.426 (2) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We gratefully acknowledge practical support of this study by K. N. Toosi University of Technology, Islamic Azad University (Saveh Branch), and thank the University of Malaya for supporting the crystallographic facility.

supplementary crystallographic information

Comment

Synthetic copper(II) Schiff base complexes have long been of great interest because of their potential as catalysts in the oxidation of various organic compounds (Gupta & Sutar, 2008). In continuation of research in this field (Rayati et al., 2010), the title complex, (I), was investigated.

The tetradentate dianion in the title monohydrate, (I), Fig. 1, provides a cis-N2O2 donor set, Table 1. Three six-membered chelate rings are formed as a result of coordination of the dianion. The CuNC3N ring adopts a half-chair conformation. While the CuOC3N chelate ring containing the O3 atom approaches planarity with a r.m.s. deviation of 0.031 Å, the other ring displays significant distortions. Thus, the r.m.s. deviation for the O2-containing CuOC3N chelate ring is 0.163 Å with maximum deviations of 0.162 (2) Å for atom O2 and -0.159 (1) Å for the Cu atom. The dihedral angle formed between the two CuOC3N chelate rings is 32.14 (8)° indicating a significant distortion from a regular square planar geometry. Each of the methoxy groups is co-planar with the benzene ring to which it is attached as seen in the values of the C7—O1—C3—C2 and C23—O4—C20—C19 of -0.8 (4) and -179.3 (3)°, respectively. The water molecule of solvation is associated with the complex, forming a bridge via its hydrogen atoms between the two coordinated oxygen atoms, Table 2.

The crystal packing features C—H···O and C—H···π interactions, Table 2, that assemble molecules into layers in the bc plane, Fig. 2, which stack along the a axis, Fig. 3.

Experimental

The title complex was obtained by the template method in a branch tube (Harrowfield et al., 1996). The recently described (Ghaemi et al., 2011) N,N'-bis(2-hydroxy-4-methoxyacetophenone)-2,2-dimethylpropane-1,3-diamine (0.40 g, 1 mmol) and copper(II) acetate monohydrate (0.199 g, 1 mmol) were placed in the main arm of a branched tube. Ethanol was added to fill both arms. The tube was sealed and the main arm immersed in an oil bath at 333 K while the other was held at ambient temperature. After one week, crystals deposited in the cooler arm. These were filtered off and air dried. Yield: 75%. FT—IR data: ν(C═N) 1595 cm-1.

Refinement

The H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). The water-H atoms were placed in calculated positions (O—H = 0.84 Å; 1.5Uequiv(O) on the basis of hydrogen bonding.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

Supramolecular layer in the bc plane in (I) sustained by C—H···O and C—H···π interactions shown as blue and black dashed lines, respectively. The O—H···O hydrogen bonds are shown as orange dashed lines.

Fig. 3.

Fig. 3.

A view in projection down the c axis of the unit-cell contents of (I), highlighting the stacking of layers along the a axis. The C—H···O and C—H···π interactions shown as blue and black dashed lines, respectively, and the O—H···O hydrogen bonds are shown as orange dashed lines.

Crystal data

[Cu(C23H28N2O4)]·H2O Z = 2
Mr = 478.03 F(000) = 502
Triclinic, P1 Dx = 1.411 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.4721 (7) Å Cell parameters from 5694 reflections
b = 10.8023 (9) Å θ = 2.3–29.3°
c = 10.8487 (7) Å µ = 1.01 mm1
α = 106.699 (7)° T = 294 K
β = 99.823 (5)° Block, dark-brown
γ = 100.035 (6)° 0.40 × 0.40 × 0.20 mm
V = 1125.37 (14) Å3

Data collection

Agilent SuperNova Dual diffractometer with Atlas detector 5034 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 4332 reflections with I > 2σ(I)
Mirror Rint = 0.024
Detector resolution: 10.4041 pixels mm-1 θmax = 27.5°, θmin = 2.5°
ω scan h = −12→13
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −14→13
Tmin = 0.643, Tmax = 1.000 l = −14→11
11143 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.3861P] where P = (Fo2 + 2Fc2)/3
5034 reflections (Δ/σ)max = 0.002
285 parameters Δρmax = 0.26 e Å3
6 restraints Δρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu 0.48963 (3) 0.47337 (3) 0.24182 (2) 0.04175 (11)
O1 0.04084 (19) −0.0426 (2) −0.1635 (2) 0.0746 (6)
O2 0.40205 (16) 0.30214 (16) 0.12419 (15) 0.0519 (4)
O3 0.62185 (18) 0.39699 (17) 0.30882 (16) 0.0580 (5)
O4 0.96607 (19) 0.3235 (2) 0.60237 (19) 0.0702 (5)
O1w 0.5646 (3) 0.1173 (3) 0.1144 (3) 0.1143 (10)
H1w 0.4956 0.1403 0.0867 0.171*
H2w 0.6121 0.1815 0.1794 0.171*
N1 0.40191 (19) 0.55577 (19) 0.12292 (18) 0.0440 (4)
N2 0.54285 (18) 0.63414 (17) 0.39652 (18) 0.0404 (4)
C1 0.2881 (2) 0.2697 (2) 0.0363 (2) 0.0429 (5)
C2 0.2249 (2) 0.1342 (2) −0.0152 (2) 0.0472 (5)
H2 0.2638 0.0743 0.0155 0.057*
C3 0.1068 (2) 0.0873 (3) −0.1098 (2) 0.0553 (6)
C4 0.0476 (3) 0.1766 (3) −0.1551 (3) 0.0685 (8)
H4 −0.0329 0.1462 −0.2182 0.082*
C5 0.1076 (3) 0.3079 (3) −0.1070 (3) 0.0607 (7)
H5 0.0664 0.3657 −0.1392 0.073*
C6 0.2299 (2) 0.3623 (2) −0.0100 (2) 0.0461 (5)
C7 0.0998 (3) −0.1364 (3) −0.1189 (3) 0.0780 (9)
H7A 0.0449 −0.2245 −0.1647 0.117*
H7B 0.1071 −0.1161 −0.0255 0.117*
H7C 0.1869 −0.1317 −0.1367 0.117*
C8 0.2965 (2) 0.5025 (3) 0.0267 (2) 0.0481 (6)
C9 0.2384 (3) 0.5809 (3) −0.0542 (3) 0.0696 (8)
H9A 0.2902 0.6711 −0.0212 0.104*
H9B 0.1480 0.5795 −0.0475 0.104*
H9C 0.2401 0.5420 −0.1452 0.104*
C10 0.4828 (3) 0.6911 (2) 0.1535 (2) 0.0520 (6)
H10A 0.4573 0.7230 0.0801 0.062*
H10B 0.5759 0.6882 0.1623 0.062*
C11 0.4675 (3) 0.7898 (2) 0.2811 (3) 0.0511 (6)
C12 0.3407 (3) 0.8406 (3) 0.2542 (3) 0.0714 (8)
H12A 0.3482 0.8891 0.1932 0.107*
H12B 0.3301 0.8980 0.3358 0.107*
H12C 0.2646 0.7665 0.2170 0.107*
C13 0.5910 (3) 0.9054 (3) 0.3299 (3) 0.0732 (8)
H13A 0.5994 0.9441 0.2615 0.110*
H13B 0.6688 0.8732 0.3519 0.110*
H13C 0.5822 0.9713 0.4070 0.110*
C14 0.4513 (2) 0.7208 (2) 0.3848 (2) 0.0456 (5)
H14A 0.4652 0.7883 0.4703 0.055*
H14B 0.3604 0.6681 0.3623 0.055*
C15 0.6363 (2) 0.6611 (2) 0.5039 (2) 0.0434 (5)
C16 0.6651 (3) 0.7919 (2) 0.6149 (3) 0.0632 (7)
H16A 0.6322 0.8562 0.5812 0.095*
H16B 0.7596 0.8230 0.6508 0.095*
H16C 0.6218 0.7794 0.6831 0.095*
C17 0.7159 (2) 0.5667 (2) 0.5215 (2) 0.0423 (5)
C18 0.8061 (3) 0.5949 (3) 0.6445 (2) 0.0564 (6)
H18 0.8115 0.6730 0.7120 0.068*
C19 0.8854 (3) 0.5134 (3) 0.6686 (3) 0.0635 (7)
H19 0.9418 0.5351 0.7516 0.076*
C20 0.8819 (2) 0.3976 (3) 0.5691 (2) 0.0508 (6)
C21 0.7941 (2) 0.3632 (2) 0.4486 (2) 0.0459 (5)
H21 0.7917 0.2854 0.3822 0.055*
C22 0.7074 (2) 0.4443 (2) 0.4242 (2) 0.0425 (5)
C23 0.9685 (3) 0.2051 (4) 0.5051 (3) 0.0800 (9)
H23A 1.0308 0.1625 0.5422 0.120*
H23B 0.9951 0.2259 0.4315 0.120*
H23C 0.8812 0.1465 0.4754 0.120*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu 0.04730 (18) 0.04062 (18) 0.03637 (16) 0.01857 (13) 0.00166 (12) 0.01100 (12)
O1 0.0582 (11) 0.0691 (13) 0.0700 (12) 0.0033 (10) −0.0159 (10) 0.0074 (10)
O2 0.0550 (9) 0.0437 (9) 0.0456 (9) 0.0209 (8) −0.0136 (7) 0.0063 (7)
O3 0.0669 (11) 0.0539 (10) 0.0417 (8) 0.0319 (9) −0.0107 (8) 0.0014 (7)
O4 0.0647 (12) 0.0861 (14) 0.0622 (11) 0.0343 (11) −0.0056 (9) 0.0297 (11)
O1w 0.0964 (18) 0.0788 (16) 0.153 (2) 0.0434 (14) −0.0017 (17) 0.0207 (17)
N1 0.0504 (10) 0.0491 (11) 0.0414 (9) 0.0236 (9) 0.0130 (8) 0.0198 (8)
N2 0.0443 (10) 0.0368 (9) 0.0434 (9) 0.0130 (8) 0.0108 (8) 0.0154 (8)
C1 0.0449 (12) 0.0550 (13) 0.0294 (9) 0.0224 (10) 0.0044 (9) 0.0110 (9)
C2 0.0471 (12) 0.0536 (14) 0.0371 (11) 0.0195 (11) 0.0007 (9) 0.0099 (10)
C3 0.0486 (13) 0.0643 (16) 0.0437 (12) 0.0144 (12) 0.0010 (10) 0.0087 (12)
C4 0.0521 (15) 0.087 (2) 0.0535 (15) 0.0173 (15) −0.0137 (12) 0.0185 (15)
C5 0.0559 (15) 0.0807 (19) 0.0504 (14) 0.0302 (14) −0.0010 (12) 0.0283 (14)
C6 0.0480 (12) 0.0607 (15) 0.0348 (10) 0.0256 (11) 0.0063 (9) 0.0178 (10)
C7 0.0662 (18) 0.0586 (17) 0.086 (2) 0.0091 (15) −0.0071 (16) 0.0059 (16)
C8 0.0545 (13) 0.0627 (15) 0.0400 (11) 0.0308 (12) 0.0133 (10) 0.0251 (11)
C9 0.0762 (19) 0.079 (2) 0.0666 (17) 0.0324 (16) 0.0040 (14) 0.0419 (16)
C10 0.0565 (14) 0.0581 (15) 0.0553 (14) 0.0217 (12) 0.0194 (11) 0.0313 (12)
C11 0.0610 (14) 0.0421 (12) 0.0596 (14) 0.0211 (11) 0.0165 (12) 0.0242 (11)
C12 0.087 (2) 0.0629 (17) 0.0770 (19) 0.0444 (16) 0.0179 (16) 0.0274 (15)
C13 0.084 (2) 0.0560 (16) 0.081 (2) 0.0073 (15) 0.0165 (17) 0.0320 (15)
C14 0.0522 (13) 0.0409 (12) 0.0482 (12) 0.0187 (10) 0.0169 (10) 0.0136 (10)
C15 0.0487 (12) 0.0373 (11) 0.0406 (11) 0.0041 (10) 0.0098 (10) 0.0113 (9)
C16 0.086 (2) 0.0412 (13) 0.0514 (14) 0.0139 (13) 0.0024 (13) 0.0066 (11)
C17 0.0414 (11) 0.0394 (11) 0.0411 (11) 0.0037 (9) 0.0021 (9) 0.0136 (9)
C18 0.0568 (14) 0.0482 (14) 0.0470 (13) 0.0036 (12) −0.0092 (11) 0.0069 (11)
C19 0.0554 (15) 0.0667 (17) 0.0531 (14) 0.0070 (13) −0.0161 (12) 0.0173 (13)
C20 0.0406 (12) 0.0599 (15) 0.0524 (13) 0.0119 (11) 0.0003 (10) 0.0252 (12)
C21 0.0434 (12) 0.0536 (14) 0.0422 (11) 0.0174 (10) 0.0060 (9) 0.0169 (10)
C22 0.0400 (11) 0.0478 (12) 0.0378 (11) 0.0098 (10) 0.0018 (9) 0.0157 (9)
C23 0.082 (2) 0.099 (2) 0.077 (2) 0.056 (2) 0.0146 (17) 0.0381 (19)

Geometric parameters (Å, °)

Cu—O2 1.8825 (16) C9—H9C 0.9600
Cu—O3 1.8776 (15) C10—C11 1.538 (3)
Cu—N1 1.9597 (17) C10—H10A 0.9700
Cu—N2 1.9524 (18) C10—H10B 0.9700
O1—C3 1.358 (3) C11—C13 1.528 (4)
O1—C7 1.428 (3) C11—C14 1.535 (3)
O2—C1 1.316 (3) C11—C12 1.538 (3)
O3—C22 1.312 (3) C12—H12A 0.9600
O4—C20 1.361 (3) C12—H12B 0.9600
O4—C23 1.412 (4) C12—H12C 0.9600
O1w—H1w 0.8400 C13—H13A 0.9600
O1w—H2w 0.8400 C13—H13B 0.9600
N1—C8 1.296 (3) C13—H13C 0.9600
N1—C10 1.469 (3) C14—H14A 0.9700
N2—C15 1.310 (3) C14—H14B 0.9700
N2—C14 1.466 (3) C15—C17 1.458 (3)
C1—C2 1.400 (3) C15—C16 1.512 (3)
C1—C6 1.421 (3) C16—H16A 0.9600
C2—C3 1.374 (3) C16—H16B 0.9600
C2—H2 0.9300 C16—H16C 0.9600
C3—C4 1.390 (4) C17—C22 1.412 (3)
C4—C5 1.353 (4) C17—C18 1.414 (3)
C4—H4 0.9300 C18—C19 1.359 (4)
C5—C6 1.420 (3) C18—H18 0.9300
C5—H5 0.9300 C19—C20 1.387 (4)
C6—C8 1.459 (4) C19—H19 0.9300
C7—H7A 0.9600 C20—C21 1.373 (3)
C7—H7B 0.9600 C21—C22 1.411 (3)
C7—H7C 0.9600 C21—H21 0.9300
C8—C9 1.511 (3) C23—H23A 0.9600
C9—H9A 0.9600 C23—H23B 0.9600
C9—H9B 0.9600 C23—H23C 0.9600
O3—Cu—O2 87.70 (7) C13—C11—C10 107.4 (2)
O3—Cu—N2 93.30 (7) C14—C11—C10 110.41 (18)
O2—Cu—N2 161.99 (8) C13—C11—C12 110.3 (2)
O3—Cu—N1 156.09 (8) C14—C11—C12 106.3 (2)
O2—Cu—N1 91.13 (7) C10—C11—C12 110.7 (2)
N2—Cu—N1 95.08 (8) C11—C12—H12A 109.5
C3—O1—C7 117.2 (2) C11—C12—H12B 109.5
C1—O2—Cu 126.53 (14) H12A—C12—H12B 109.5
C22—O3—Cu 128.03 (15) C11—C12—H12C 109.5
C20—O4—C23 118.3 (2) H12A—C12—H12C 109.5
H1w—O1w—H2w 107.4 H12B—C12—H12C 109.5
C8—N1—C10 123.47 (19) C11—C13—H13A 109.5
C8—N1—Cu 128.32 (17) C11—C13—H13B 109.5
C10—N1—Cu 108.06 (14) H13A—C13—H13B 109.5
C15—N2—C14 121.92 (19) C11—C13—H13C 109.5
C15—N2—Cu 127.82 (15) H13A—C13—H13C 109.5
C14—N2—Cu 109.93 (14) H13B—C13—H13C 109.5
O2—C1—C2 116.13 (19) N2—C14—C11 114.24 (18)
O2—C1—C6 124.1 (2) N2—C14—H14A 108.7
C2—C1—C6 119.7 (2) C11—C14—H14A 108.7
C3—C2—C1 121.7 (2) N2—C14—H14B 108.7
C3—C2—H2 119.1 C11—C14—H14B 108.7
C1—C2—H2 119.1 H14A—C14—H14B 107.6
O1—C3—C2 124.5 (2) N2—C15—C17 121.6 (2)
O1—C3—C4 116.1 (2) N2—C15—C16 120.9 (2)
C2—C3—C4 119.4 (3) C17—C15—C16 117.5 (2)
C5—C4—C3 119.7 (2) C15—C16—H16A 109.5
C5—C4—H4 120.1 C15—C16—H16B 109.5
C3—C4—H4 120.1 H16A—C16—H16B 109.5
C4—C5—C6 123.6 (2) C15—C16—H16C 109.5
C4—C5—H5 118.2 H16A—C16—H16C 109.5
C6—C5—H5 118.2 H16B—C16—H16C 109.5
C5—C6—C1 115.8 (2) C22—C17—C18 116.3 (2)
C5—C6—C8 120.7 (2) C22—C17—C15 124.43 (19)
C1—C6—C8 123.2 (2) C18—C17—C15 119.3 (2)
O1—C7—H7A 109.5 C19—C18—C17 123.1 (2)
O1—C7—H7B 109.5 C19—C18—H18 118.5
H7A—C7—H7B 109.5 C17—C18—H18 118.5
O1—C7—H7C 109.5 C18—C19—C20 119.9 (2)
H7A—C7—H7C 109.5 C18—C19—H19 120.1
H7B—C7—H7C 109.5 C20—C19—H19 120.1
N1—C8—C6 121.1 (2) O4—C20—C21 124.7 (2)
N1—C8—C9 122.0 (2) O4—C20—C19 115.5 (2)
C6—C8—C9 116.9 (2) C21—C20—C19 119.7 (2)
C8—C9—H9A 109.4 C20—C21—C22 120.9 (2)
C8—C9—H9B 109.4 C20—C21—H21 119.6
H9A—C9—H9B 109.5 C22—C21—H21 119.6
C8—C9—H9C 109.6 O3—C22—C21 115.4 (2)
H9A—C9—H9C 109.5 O3—C22—C17 124.6 (2)
H9B—C9—H9C 109.5 C21—C22—C17 119.95 (19)
N1—C10—C11 113.23 (19) O4—C23—H23A 109.5
N1—C10—H10A 108.9 O4—C23—H23B 109.5
C11—C10—H10A 108.9 H23A—C23—H23B 109.5
N1—C10—H10B 108.9 O4—C23—H23C 109.5
C11—C10—H10B 108.9 H23A—C23—H23C 109.5
H10A—C10—H10B 107.7 H23B—C23—H23C 109.5
C13—C11—C14 111.8 (2)
O3—Cu—O2—C1 178.8 (2) C5—C6—C8—N1 174.0 (2)
N2—Cu—O2—C1 85.3 (3) C1—C6—C8—N1 −13.1 (3)
N1—Cu—O2—C1 −25.1 (2) C5—C6—C8—C9 −7.1 (3)
O2—Cu—O3—C22 −158.8 (2) C1—C6—C8—C9 165.8 (2)
N2—Cu—O3—C22 3.2 (2) C8—N1—C10—C11 108.3 (3)
N1—Cu—O3—C22 113.6 (2) Cu—N1—C10—C11 −76.0 (2)
O3—Cu—N1—C8 104.7 (3) N1—C10—C11—C13 158.1 (2)
O2—Cu—N1—C8 17.8 (2) N1—C10—C11—C14 36.0 (3)
N2—Cu—N1—C8 −145.2 (2) N1—C10—C11—C12 −81.4 (2)
O3—Cu—N1—C10 −70.8 (2) C15—N2—C14—C11 113.8 (2)
O2—Cu—N1—C10 −157.67 (15) Cu—N2—C14—C11 −72.3 (2)
N2—Cu—N1—C10 39.26 (15) C13—C11—C14—N2 −75.8 (3)
O3—Cu—N2—C15 −2.6 (2) C10—C11—C14—N2 43.7 (3)
O2—Cu—N2—C15 90.1 (3) C12—C11—C14—N2 163.8 (2)
N1—Cu—N2—C15 −160.20 (19) C14—N2—C15—C17 172.1 (2)
O3—Cu—N2—C14 −176.04 (14) Cu—N2—C15—C17 −0.6 (3)
O2—Cu—N2—C14 −83.4 (2) C14—N2—C15—C16 −7.6 (3)
N1—Cu—N2—C14 26.38 (15) Cu—N2—C15—C16 179.70 (18)
Cu—O2—C1—C2 −163.66 (16) N2—C15—C17—C22 4.5 (4)
Cu—O2—C1—C6 18.1 (3) C16—C15—C17—C22 −175.7 (2)
O2—C1—C2—C3 −178.5 (2) N2—C15—C17—C18 −173.7 (2)
C6—C1—C2—C3 −0.2 (3) C16—C15—C17—C18 6.0 (3)
C7—O1—C3—C2 −0.8 (4) C22—C17—C18—C19 2.6 (4)
C7—O1—C3—C4 179.8 (3) C15—C17—C18—C19 −179.0 (2)
C1—C2—C3—O1 −180.0 (2) C17—C18—C19—C20 1.4 (4)
C1—C2—C3—C4 −0.6 (4) C23—O4—C20—C21 2.8 (4)
O1—C3—C4—C5 −179.7 (3) C23—O4—C20—C19 −179.3 (3)
C2—C3—C4—C5 0.9 (4) C18—C19—C20—O4 179.2 (2)
C3—C4—C5—C6 −0.4 (5) C18—C19—C20—C21 −2.9 (4)
C4—C5—C6—C1 −0.3 (4) O4—C20—C21—C22 178.0 (2)
C4—C5—C6—C8 173.1 (3) C19—C20—C21—C22 0.3 (4)
O2—C1—C6—C5 178.8 (2) Cu—O3—C22—C21 178.78 (16)
C2—C1—C6—C5 0.7 (3) Cu—O3—C22—C17 −0.6 (4)
O2—C1—C6—C8 5.6 (3) C20—C21—C22—O3 −175.6 (2)
C2—C1—C6—C8 −172.6 (2) C20—C21—C22—C17 3.9 (4)
C10—N1—C8—C6 172.0 (2) C18—C17—C22—O3 174.3 (2)
Cu—N1—C8—C6 −2.9 (3) C15—C17—C22—O3 −4.0 (4)
C10—N1—C8—C9 −6.9 (4) C18—C17—C22—C21 −5.1 (3)
Cu—N1—C8—C9 178.26 (18) C15—C17—C22—C21 176.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1w—H1w···O2 0.84 2.12 2.832 (3) 142
O1w—H2w···O3 0.84 2.32 3.035 (3) 143
C7—H7c···O1wi 0.96 2.55 3.476 (5) 163
C16—H16c···O2ii 0.96 2.52 3.409 (3) 153
C14—H14b···Cg1ii 0.97 2.62 3.426 (2) 141

Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5100).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Ghaemi, A., Rayati, S., Elahi, E., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst E67, o2760. [DOI] [PMC free article] [PubMed]
  5. Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420–1450.
  6. Harrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165–1169.
  7. Rayati, S., Zakavi, S., Koliaei, M., Wojtczak, A. & Kozakiewicz, A. (2010). Inorg. Chem. Commun. 13, 203–207.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) general, I. DOI: 10.1107/S160053681103889X/hg5100sup1.cif

e-67-m1445-sup1.cif (24.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103889X/hg5100Isup2.hkl

e-67-m1445-Isup2.hkl (246.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES