Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2781–o2782. doi: 10.1107/S1600536811038621

2-(Biphenyl-4-yl)-5-[3-(4,5,6,7-tetra­hydro­thieno[3,2-c]pyridine-5-ylsulfon­yl)thio­phen-2-yl]-1,3,4-oxa­diazole

Hoong-Kun Fun a,*,, Madhukar Hemamalini a, Sankappa Rai b, A M Isloor c, Prakash Shetty d
PMCID: PMC3201303  PMID: 22058820

Abstract

In the title mol­ecule, C25H19N3O3S3, the tetra­hydro­pyridine ring adopts a half-chair conformation. The dihedral angle between the least-squares plane through the tetra­hydro­pyridine ring and two thio­phene and two benzene rings are 6.25 (9), 89.49 (9), 76.43 (9) and 84.93 (8)°, respectively, while the dihedral angle between the 1,3,4-oxadiazole and tetra­hydro­pyridine rings is 81.14 (9)°. In the crystal, adjacent mol­ecules are connected via weak C—H⋯N hydrogen bonds, forming a chain along the b axis.

Related literature

For applications of 4,5,6,7-tetra­hydro­thieno[3,2-c]pyridine derivatives, see: Lopez-Rodriguez et al. (2001); Roth et al. (1994); Ying & Rusak (1997). For a related structure, see: Fun et al. (2011). For ring conformational analysis, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). graphic file with name e-67-o2781-scheme1.jpg

Experimental

Crystal data

  • C25H19N3O3S3

  • M r = 505.61

  • Triclinic, Inline graphic

  • a = 7.9108 (1) Å

  • b = 12.0943 (1) Å

  • c = 12.9498 (2) Å

  • α = 69.253 (1)°

  • β = 76.794 (1)°

  • γ = 77.460 (1)°

  • V = 1115.30 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 100 K

  • 0.33 × 0.16 × 0.09 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.889, T max = 0.966

  • 33050 measured reflections

  • 8887 independent reflections

  • 5904 reflections with I > 2σ(I)

  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.122

  • S = 1.03

  • 8887 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811038621/tk2792sup1.cif

e-67-o2781-sup1.cif (24KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038621/tk2792Isup2.hkl

e-67-o2781-Isup2.hkl (425.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811038621/tk2792Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24A⋯N1i 0.99 2.52 3.417 (2) 150

Symmetry code: (i) Inline graphic.

Acknowledgments

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship. AMI thanks the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for the Young Scientist award.

supplementary crystallographic information

Comment

4,5,6,7-Tetrahydrothieno[3,2-c]pyridine derivatives have been extensively studied in medicinal chemistry due to their various biological activities (Lopez-Rodriguez et al., 2001). 4,5,6,7-Tetrahydrothieno[3,2-c] pyridine oxadiazole derivatives are mainly used in CNS functions and disorders such as schizophrenia (Roth et al., 1994), depression, epilepsy, migraine, and control of circadian rhythm (Ying & Rusak, 1997). Keeping in view of the biological importance of this class of compound, we synthesized the title compound to study its X-ray crystal structure.

In the title compound (Fig. 1), the rings A (N3/C19,C20,C23–C25), B (N1/N2/O1/C13,C14), C (S3/C20–C23), D (S2/C15–C18) E (C7–C12) and F (C1–C6) are essentially planar. The tetrahydropyridine (N3/C19,C20, C23–C25) ring adopts a half-chair conformation with puckering parameters Q = 0.4970 (18) Å, θ = 129.3 (2)° and φ = 153.0 (3)° . The dihedral angle between the least-square planes of the rings are A/B = 81.14 (9)°, A/C = 6.25 (9)°, A/D = 89.49 (9)°, A/E = 84.93 (8)°, A/F = 76.43 (9)° B/C = 78.71 (10)°, B/D = 9.55 (10)°, B/E = 10.88 (9)°, B/F = 11.16 (10)°, C/D = 87.86 (9)°, C/E = 83.55 (9)°, C/F = 73.04 (9)°, D/E = 13.31 (9)° and D/F = 16.40 (9)°.

In the crystal structure, (Fig. 2), adjacent molecules are connected via weak intermolecular C—H···N (Table 1) hydrogen bonds to form one-dimensional chains along the b-axis.

Experimental

To a mixture of 3-(6,7-dihydrothieno[3,2-c]pyridine-5(4H)-ylsulfonyl) thiophene-2-carbohydrazide (0.5 g, 0.0014 mol) and biphenyl carboxylic acid (0.28 g, 0.0014 mol), neutral alumina (0.5 g) and POCl3 (1.1 g, 0.007 mol) were added. The resulting mixture was irradiated in a microwave oven for 5 min. Mass analysis of crude reaction mixture confirmed the completion of the reaction. The reaction mixture was concentrated and the residue was purified by column chromatography to get the title compound, which was recrystallised using acetone. Yield: 68%, m.p. 441–443 K.

Refinement

All hydrogen atoms were positioned geometrically [C–H = 0.95–0.99 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

A view of the crystal packing of the title compound (I). H atoms not involved in hydrogen bonding are omitted.

Crystal data

C25H19N3O3S3 Z = 2
Mr = 505.61 F(000) = 524
Triclinic, P1 Dx = 1.506 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.9108 (1) Å Cell parameters from 6236 reflections
b = 12.0943 (1) Å θ = 2.7–33.5°
c = 12.9498 (2) Å µ = 0.37 mm1
α = 69.253 (1)° T = 100 K
β = 76.794 (1)° Block, colourless
γ = 77.460 (1)° 0.33 × 0.16 × 0.09 mm
V = 1115.30 (2) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 8887 independent reflections
Radiation source: fine-focus sealed tube 5904 reflections with I > 2σ(I)
graphite Rint = 0.058
φ and ω scans θmax = 33.8°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −12→12
Tmin = 0.889, Tmax = 0.966 k = −18→18
33050 measured reflections l = −19→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.3497P] where P = (Fo2 + 2Fc2)/3
8887 reflections (Δ/σ)max = 0.001
307 parameters Δρmax = 0.47 e Å3
0 restraints Δρmin = −0.56 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.68865 (5) 0.88728 (4) 0.30396 (4) 0.01750 (9)
S2 0.21890 (5) 1.13555 (4) 0.34716 (4) 0.02341 (10)
S3 0.87479 (6) 0.36589 (4) 0.41597 (5) 0.03181 (13)
O1 0.72380 (15) 1.15330 (10) 0.22602 (10) 0.0197 (2)
O2 0.79409 (15) 0.90109 (11) 0.37398 (11) 0.0232 (3)
O3 0.74563 (16) 0.92047 (11) 0.18551 (11) 0.0230 (3)
N1 0.66367 (19) 1.34718 (13) 0.20268 (14) 0.0253 (3)
N2 0.51049 (19) 1.29548 (13) 0.25770 (14) 0.0250 (3)
N3 0.66204 (18) 0.74881 (12) 0.34721 (12) 0.0185 (3)
C1 1.5791 (2) 1.37068 (16) −0.08077 (16) 0.0227 (3)
H1A 1.5056 1.4454 −0.0869 0.027*
C2 1.7532 (2) 1.36806 (17) −0.13241 (16) 0.0252 (4)
H2A 1.7985 1.4409 −0.1724 0.030*
C3 1.8621 (2) 1.25980 (18) −0.12625 (18) 0.0293 (4)
H3A 1.9800 1.2582 −0.1643 0.035*
C4 1.7966 (2) 1.15442 (17) −0.06408 (18) 0.0290 (4)
H4A 1.8711 1.0801 −0.0579 0.035*
C5 1.6239 (2) 1.15597 (16) −0.01085 (16) 0.0232 (4)
H5A 1.5816 1.0827 0.0323 0.028*
C6 1.5102 (2) 1.26432 (15) −0.01967 (15) 0.0201 (3)
C7 1.3224 (2) 1.26503 (15) 0.03247 (14) 0.0192 (3)
C8 1.2404 (2) 1.16451 (16) 0.05717 (16) 0.0237 (4)
H8A 1.3061 1.0961 0.0392 0.028*
C9 1.0665 (2) 1.16279 (16) 0.10701 (16) 0.0233 (4)
H9A 1.0143 1.0934 0.1239 0.028*
C10 0.9670 (2) 1.26333 (15) 0.13265 (15) 0.0197 (3)
C11 1.0453 (2) 1.36463 (15) 0.10693 (16) 0.0214 (3)
H11A 0.9782 1.4338 0.1228 0.026*
C12 1.2206 (2) 1.36495 (15) 0.05825 (15) 0.0208 (3)
H12A 1.2727 1.4343 0.0421 0.025*
C13 0.7844 (2) 1.26086 (15) 0.18576 (15) 0.0195 (3)
C14 0.5534 (2) 1.18253 (15) 0.26865 (15) 0.0197 (3)
C15 0.4398 (2) 1.09154 (15) 0.31380 (15) 0.0186 (3)
C16 0.4768 (2) 0.97000 (15) 0.32871 (15) 0.0188 (3)
C17 0.3231 (2) 0.91496 (16) 0.36701 (16) 0.0242 (4)
H17A 0.3234 0.8322 0.3819 0.029*
C18 0.1748 (2) 0.99439 (16) 0.38000 (17) 0.0256 (4)
H18A 0.0600 0.9732 0.4046 0.031*
C19 0.6485 (2) 0.67707 (16) 0.46603 (15) 0.0224 (3)
H19A 0.5237 0.6786 0.5020 0.027*
H19B 0.7095 0.7098 0.5051 0.027*
C20 0.7328 (2) 0.55051 (15) 0.47309 (16) 0.0218 (3)
C21 0.7922 (2) 0.46336 (18) 0.56962 (18) 0.0300 (4)
H21A 0.7774 0.4762 0.6396 0.036*
C22 0.8730 (2) 0.35916 (18) 0.5505 (2) 0.0353 (5)
H22A 0.9222 0.2912 0.6051 0.042*
C23 0.7665 (2) 0.51108 (15) 0.38342 (16) 0.0220 (3)
C24 0.7232 (2) 0.58363 (15) 0.26954 (16) 0.0232 (4)
H24A 0.6660 0.5368 0.2420 0.028*
H24B 0.8321 0.6043 0.2163 0.028*
C25 0.5997 (2) 0.69765 (15) 0.27725 (16) 0.0215 (3)
H25A 0.5965 0.7564 0.2013 0.026*
H25B 0.4793 0.6791 0.3106 0.026*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01654 (16) 0.01276 (18) 0.0226 (2) −0.00104 (13) −0.00308 (15) −0.00578 (16)
S2 0.01898 (18) 0.0208 (2) 0.0301 (3) 0.00215 (15) −0.00360 (17) −0.01094 (19)
S3 0.0246 (2) 0.0142 (2) 0.0525 (3) 0.00070 (16) −0.0087 (2) −0.0063 (2)
O1 0.0199 (5) 0.0135 (6) 0.0258 (7) −0.0021 (4) −0.0021 (5) −0.0078 (5)
O2 0.0226 (6) 0.0184 (6) 0.0317 (7) −0.0033 (5) −0.0089 (5) −0.0088 (5)
O3 0.0250 (6) 0.0167 (6) 0.0232 (7) −0.0003 (5) −0.0006 (5) −0.0051 (5)
N1 0.0236 (7) 0.0159 (7) 0.0382 (10) −0.0021 (5) −0.0056 (6) −0.0108 (7)
N2 0.0219 (7) 0.0157 (7) 0.0392 (10) −0.0024 (5) −0.0043 (6) −0.0118 (7)
N3 0.0232 (6) 0.0120 (6) 0.0207 (7) −0.0023 (5) −0.0059 (5) −0.0046 (6)
C1 0.0264 (8) 0.0192 (8) 0.0242 (9) −0.0018 (6) −0.0054 (7) −0.0091 (7)
C2 0.0290 (8) 0.0233 (9) 0.0263 (10) −0.0076 (7) −0.0032 (7) −0.0102 (8)
C3 0.0225 (8) 0.0309 (10) 0.0386 (12) −0.0037 (7) −0.0016 (8) −0.0184 (9)
C4 0.0249 (8) 0.0232 (9) 0.0426 (12) 0.0038 (7) −0.0097 (8) −0.0167 (9)
C5 0.0258 (8) 0.0179 (8) 0.0278 (10) −0.0006 (6) −0.0090 (7) −0.0083 (7)
C6 0.0246 (7) 0.0177 (8) 0.0208 (9) −0.0016 (6) −0.0083 (6) −0.0076 (7)
C7 0.0242 (7) 0.0156 (8) 0.0177 (8) −0.0027 (6) −0.0055 (6) −0.0042 (7)
C8 0.0277 (8) 0.0169 (8) 0.0281 (10) −0.0029 (6) −0.0025 (7) −0.0107 (7)
C9 0.0275 (8) 0.0156 (8) 0.0288 (10) −0.0050 (6) −0.0038 (7) −0.0090 (7)
C10 0.0232 (7) 0.0155 (8) 0.0213 (9) −0.0027 (6) −0.0053 (6) −0.0060 (7)
C11 0.0255 (8) 0.0126 (7) 0.0260 (9) −0.0008 (6) −0.0057 (7) −0.0062 (7)
C12 0.0243 (8) 0.0142 (8) 0.0241 (9) −0.0041 (6) −0.0046 (7) −0.0053 (7)
C13 0.0229 (7) 0.0134 (7) 0.0237 (9) −0.0027 (6) −0.0070 (6) −0.0060 (7)
C14 0.0195 (7) 0.0177 (8) 0.0228 (9) 0.0009 (6) −0.0058 (6) −0.0084 (7)
C15 0.0192 (7) 0.0165 (8) 0.0204 (8) −0.0003 (6) −0.0035 (6) −0.0075 (7)
C16 0.0182 (7) 0.0158 (8) 0.0218 (9) −0.0007 (6) −0.0032 (6) −0.0065 (7)
C17 0.0208 (7) 0.0187 (8) 0.0323 (10) −0.0048 (6) −0.0009 (7) −0.0082 (8)
C18 0.0203 (7) 0.0232 (9) 0.0311 (10) −0.0043 (7) 0.0003 (7) −0.0080 (8)
C19 0.0258 (8) 0.0191 (8) 0.0216 (9) −0.0048 (6) −0.0029 (7) −0.0052 (7)
C20 0.0199 (7) 0.0161 (8) 0.0262 (9) −0.0056 (6) −0.0056 (7) −0.0001 (7)
C21 0.0296 (9) 0.0261 (10) 0.0310 (11) −0.0134 (7) −0.0100 (8) 0.0032 (8)
C22 0.0275 (9) 0.0190 (9) 0.0505 (14) −0.0079 (7) −0.0179 (9) 0.0094 (9)
C23 0.0174 (7) 0.0134 (8) 0.0328 (10) −0.0033 (6) −0.0038 (7) −0.0042 (7)
C24 0.0266 (8) 0.0163 (8) 0.0281 (10) −0.0031 (6) −0.0039 (7) −0.0091 (7)
C25 0.0252 (8) 0.0169 (8) 0.0248 (9) −0.0021 (6) −0.0095 (7) −0.0070 (7)

Geometric parameters (Å, °)

S1—O3 1.4295 (13) C8—C9 1.381 (2)
S1—O2 1.4350 (12) C8—H8A 0.9500
S1—N3 1.6116 (14) C9—C10 1.400 (2)
S1—C16 1.7793 (16) C9—H9A 0.9500
S2—C18 1.7012 (19) C10—C11 1.393 (2)
S2—C15 1.7138 (16) C10—C13 1.453 (2)
S3—C22 1.712 (3) C11—C12 1.387 (2)
S3—C23 1.7270 (17) C11—H11A 0.9500
O1—C14 1.3561 (19) C12—H12A 0.9500
O1—C13 1.367 (2) C14—C15 1.447 (2)
N1—C13 1.298 (2) C15—C16 1.386 (2)
N1—N2 1.409 (2) C16—C17 1.417 (2)
N2—C14 1.298 (2) C17—C18 1.365 (2)
N3—C19 1.467 (2) C17—H17A 0.9500
N3—C25 1.477 (2) C18—H18A 0.9500
C1—C2 1.386 (2) C19—C20 1.510 (2)
C1—C6 1.401 (2) C19—H19A 0.9900
C1—H1A 0.9500 C19—H19B 0.9900
C2—C3 1.389 (3) C20—C23 1.357 (3)
C2—H2A 0.9500 C20—C21 1.419 (3)
C3—C4 1.382 (3) C21—C22 1.363 (3)
C3—H3A 0.9500 C21—H21A 0.9500
C4—C5 1.382 (3) C22—H22A 0.9500
C4—H4A 0.9500 C23—C24 1.499 (3)
C5—C6 1.403 (2) C24—C25 1.528 (2)
C5—H5A 0.9500 C24—H24A 0.9900
C6—C7 1.484 (2) C24—H24B 0.9900
C7—C12 1.400 (2) C25—H25A 0.9900
C7—C8 1.405 (2) C25—H25B 0.9900
O3—S1—O2 119.80 (8) C7—C12—H12A 119.4
O3—S1—N3 107.36 (7) N1—C13—O1 112.21 (15)
O2—S1—N3 107.62 (7) N1—C13—C10 129.83 (16)
O3—S1—C16 107.66 (8) O1—C13—C10 117.95 (14)
O2—S1—C16 107.45 (7) N2—C14—O1 112.94 (15)
N3—S1—C16 106.22 (8) N2—C14—C15 127.56 (15)
C18—S2—C15 92.10 (8) O1—C14—C15 119.40 (14)
C22—S3—C23 91.92 (9) C16—C15—C14 130.54 (15)
C14—O1—C13 102.72 (12) C16—C15—S2 111.12 (12)
C13—N1—N2 106.34 (14) C14—C15—S2 118.16 (12)
C14—N2—N1 105.78 (14) C15—C16—C17 112.11 (14)
C19—N3—C25 114.76 (13) C15—C16—S1 126.07 (13)
C19—N3—S1 121.74 (11) C17—C16—S1 121.82 (13)
C25—N3—S1 121.27 (12) C18—C17—C16 112.37 (16)
C2—C1—C6 120.71 (16) C18—C17—H17A 123.8
C2—C1—H1A 119.6 C16—C17—H17A 123.8
C6—C1—H1A 119.6 C17—C18—S2 112.29 (13)
C1—C2—C3 120.59 (18) C17—C18—H18A 123.9
C1—C2—H2A 119.7 S2—C18—H18A 123.9
C3—C2—H2A 119.7 N3—C19—C20 107.80 (14)
C4—C3—C2 119.14 (17) N3—C19—H19A 110.1
C4—C3—H3A 120.4 C20—C19—H19A 110.1
C2—C3—H3A 120.4 N3—C19—H19B 110.1
C5—C4—C3 120.74 (17) C20—C19—H19B 110.1
C5—C4—H4A 119.6 H19A—C19—H19B 108.5
C3—C4—H4A 119.6 C23—C20—C21 113.21 (17)
C4—C5—C6 120.89 (17) C23—C20—C19 122.01 (16)
C4—C5—H5A 119.6 C21—C20—C19 124.71 (17)
C6—C5—H5A 119.6 C22—C21—C20 112.31 (19)
C1—C6—C5 117.87 (16) C22—C21—H21A 123.8
C1—C6—C7 121.56 (15) C20—C21—H21A 123.8
C5—C6—C7 120.56 (16) C21—C22—S3 111.67 (16)
C12—C7—C8 117.65 (15) C21—C22—H22A 124.2
C12—C7—C6 121.74 (15) S3—C22—H22A 124.2
C8—C7—C6 120.61 (15) C20—C23—C24 125.40 (15)
C9—C8—C7 121.50 (15) C20—C23—S3 110.88 (14)
C9—C8—H8A 119.2 C24—C23—S3 123.68 (13)
C7—C8—H8A 119.2 C23—C24—C25 108.88 (14)
C8—C9—C10 120.02 (16) C23—C24—H24A 109.9
C8—C9—H9A 120.0 C25—C24—H24A 109.9
C10—C9—H9A 120.0 C23—C24—H24B 109.9
C11—C10—C9 119.27 (15) C25—C24—H24B 109.9
C11—C10—C13 120.89 (15) H24A—C24—H24B 108.3
C9—C10—C13 119.84 (15) N3—C25—C24 109.48 (13)
C12—C11—C10 120.28 (15) N3—C25—H25A 109.8
C12—C11—H11A 119.9 C24—C25—H25A 109.8
C10—C11—H11A 119.9 N3—C25—H25B 109.8
C11—C12—C7 121.25 (16) C24—C25—H25B 109.8
C11—C12—H12A 119.4 H25A—C25—H25B 108.2
C13—N1—N2—C14 −0.1 (2) C13—O1—C14—C15 176.18 (15)
O3—S1—N3—C19 163.96 (12) N2—C14—C15—C16 −179.39 (18)
O2—S1—N3—C19 33.75 (15) O1—C14—C15—C16 4.5 (3)
C16—S1—N3—C19 −81.09 (14) N2—C14—C15—S2 5.9 (3)
O3—S1—N3—C25 −33.90 (14) O1—C14—C15—S2 −170.19 (12)
O2—S1—N3—C25 −164.11 (12) C18—S2—C15—C16 −0.32 (14)
C16—S1—N3—C25 81.06 (14) C18—S2—C15—C14 175.35 (15)
C6—C1—C2—C3 1.2 (3) C14—C15—C16—C17 −174.82 (18)
C1—C2—C3—C4 −2.6 (3) S2—C15—C16—C17 0.16 (19)
C2—C3—C4—C5 1.6 (3) C14—C15—C16—S1 5.0 (3)
C3—C4—C5—C6 0.8 (3) S2—C15—C16—S1 179.99 (10)
C2—C1—C6—C5 1.2 (3) O3—S1—C16—C15 −71.56 (17)
C2—C1—C6—C7 −177.54 (16) O2—S1—C16—C15 58.74 (17)
C4—C5—C6—C1 −2.2 (3) N3—S1—C16—C15 173.69 (15)
C4—C5—C6—C7 176.57 (16) O3—S1—C16—C17 108.25 (16)
C1—C6—C7—C12 −22.9 (3) O2—S1—C16—C17 −121.45 (15)
C5—C6—C7—C12 158.41 (17) N3—S1—C16—C17 −6.50 (17)
C1—C6—C7—C8 156.82 (17) C15—C16—C17—C18 0.1 (2)
C5—C6—C7—C8 −21.9 (3) S1—C16—C17—C18 −179.69 (14)
C12—C7—C8—C9 −1.2 (3) C16—C17—C18—S2 −0.4 (2)
C6—C7—C8—C9 179.15 (17) C15—S2—C18—C17 0.41 (16)
C7—C8—C9—C10 0.9 (3) C25—N3—C19—C20 50.82 (18)
C8—C9—C10—C11 0.3 (3) S1—N3—C19—C20 −145.95 (12)
C8—C9—C10—C13 −179.58 (17) N3—C19—C20—C23 −16.1 (2)
C9—C10—C11—C12 −1.1 (3) N3—C19—C20—C21 160.65 (16)
C13—C10—C11—C12 178.72 (17) C23—C20—C21—C22 0.9 (2)
C10—C11—C12—C7 0.8 (3) C19—C20—C21—C22 −176.09 (16)
C8—C7—C12—C11 0.3 (3) C20—C21—C22—S3 −0.7 (2)
C6—C7—C12—C11 179.98 (16) C23—S3—C22—C21 0.29 (15)
N2—N1—C13—O1 −0.2 (2) C21—C20—C23—C24 −178.48 (16)
N2—N1—C13—C10 −179.90 (17) C19—C20—C23—C24 −1.4 (3)
C14—O1—C13—N1 0.41 (19) C21—C20—C23—S3 −0.71 (19)
C14—O1—C13—C10 −179.86 (15) C19—C20—C23—S3 176.41 (13)
C11—C10—C13—N1 10.6 (3) C22—S3—C23—C20 0.25 (14)
C9—C10—C13—N1 −169.55 (18) C22—S3—C23—C24 178.07 (15)
C11—C10—C13—O1 −169.08 (15) C20—C23—C24—C25 −12.7 (2)
C9—C10—C13—O1 10.8 (2) S3—C23—C24—C25 169.83 (12)
N1—N2—C14—O1 0.4 (2) C19—N3—C25—C24 −67.81 (18)
N1—N2—C14—C15 −175.96 (17) S1—N3—C25—C24 128.87 (14)
C13—O1—C14—N2 −0.48 (19) C23—C24—C25—N3 43.51 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C24—H24A···N1i 0.99 2.52 3.417 (2) 150

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2792).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc 97, 1354–1358.
  4. Fun, H.-K., Hemamalini, M., Rai, S., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, o2743–o2744. [DOI] [PMC free article] [PubMed]
  5. Lopez-Rodriguez, M. L., Murcia, M., Benhamu, B., Viso, A., Campillo, M. & Pardo, L. (2001). Bioorg. Med. Chem. Lett. 11, 2807–2811. [DOI] [PubMed]
  6. Roth, B. L., Craigo, S. C., Choudhary, M. S., Uluer, A., Monsma, F. J. Jr, Shen, Y., Meltzer, H. Y. & Sibley, D. R. (1994). J. Pharm. Exp. Ther. 268, 1403–1410. [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Ying, S. W. & Rusak, B. (1997). Brain Res. 755, 246–254. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811038621/tk2792sup1.cif

e-67-o2781-sup1.cif (24KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038621/tk2792Isup2.hkl

e-67-o2781-Isup2.hkl (425.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811038621/tk2792Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES