Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2697. doi: 10.1107/S1600536811037524

(E)-2-{1-[(6-Chloro­pyridin-3-yl)meth­yl]imidazolidin-2-yl­idene}-2-cyano-N-(2-methylphenyl)acetamide

Jian Wu a,*
PMCID: PMC3201308  PMID: 22065122

Abstract

In the title compound, C19H18N5O, the imidazolidine ring makes dihedral angles of 87.62 (17) and 28.27 (11)° with the pyridine and benzene rings, respectively. An intra­molecular N—H⋯O hydrogen bond is observed between the carbonyl O atom and an imidazolidine H atom. In the crystal, an inter­molecular N—H⋯N hydrogen bond gives rise to a linear chain running along the b axis.

Related literature

For background to neonicotinoids and their biological activity, see: Shao et al. (2008); Nishimura et al. (1994); Mori et al. (2002); Ohno et al. (2009); Tomizawa et al. (2000); Wu et al. (2011).graphic file with name e-67-o2697-scheme1.jpg

Experimental

Crystal data

  • C19H18ClN5O

  • M r = 367.83

  • Monoclinic, Inline graphic

  • a = 16.2019 (18) Å

  • b = 7.6240 (9) Å

  • c = 14.7368 (18) Å

  • β = 97.007 (3)°

  • V = 1806.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.26 × 0.23 × 0.21 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997) T min = 0.943, T max = 0.953

  • 19209 measured reflections

  • 3512 independent reflections

  • 2618 reflections with I > 2σ(I)

  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.139

  • S = 1.03

  • 3512 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037524/ng5220sup1.cif

e-67-o2697-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037524/ng5220Isup2.hkl

e-67-o2697-Isup2.hkl (168.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037524/ng5220Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536811037524/ng5220Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N4i 0.86 2.49 3.044 (3) 123
N3—H3A⋯O1 0.86 2.07 2.659 (2) 126

Symmetry code: (i) Inline graphic.

Acknowledgments

The author gratefully acknowledges the National Natural Science Foundation of China (Nos 20872021 and 21162004) and the Agricultural Scientific and Technological Project of Guizhou Province (No. 20103068) for financial support. The author also acknowledges the assistance of Professor Q. L. Zhang of Guiyang Medical University.

supplementary crystallographic information

Comment

Neonicotinoids, an interesting class of insecticide known to act on the central nervous system of insects, are widely used in agriculture due to their broad spectrum activity and low mammalian toxicity. As a part of our ongoing investigation of neonicotinoids analogs, we presented a series of neonicotinoid analogs bearing amide moieties that exhibit good activity against Nilaparvata lugens at 100 mg/L (Wu et al., 2011). However,the accurate configuration of the active compound in our previous work has not been reported. Herein, we report the crystal structure of the title compound, (E)-2-(1-((6-chloropyridin-3-yl)methyl)imidazolidin-2-ylidene)-2- cyano-N-(o-tolyl)acetamide. It is noteworthy that the crystal of neonicotinoid analog bearing an amide moiety was obtained for the first time.

In the molecule of the title compound (Fig. 1), the imidazoline ring makes dihedral angles of 87.62 (17) ° with pyridine ring and 28.27 (11) ° with benzene ring. An intramolecular N—H···O hydrogen bond is observed between the O atom of carbonyl and imidazoline H atom; The ststructure possesses an intramolecular N3—H3A···O1 hydrogen bond with N3—H3A = 0.86 Å, H3A—O1 = 2.0661 Å, N3—O1 = 2.659 (2) Å, and N—H···O = 125.44 °. In the crystal structure, there are N3—H3A···N4i hydrogen bonds and C—H···π interactions between neighboring molecules, which with the length for bonds N3—H3A, H3A—N4, H3A—N4 were 0.86 Å, 2.4883 Å, 3.044 (3) Å and the angles for N—H···N, C8—H8B···Cg(2)ii were 123.03 ° and 113.20 °, respectively; Furthermore, the length for H8B···Cg(2)ii and C8···Cg(2)ii were 3.1386 Å and 3.632 (3) Å, the angle of C19—H12A···Cg(3)iii is 130.96 °; In addition, the length of H12A···Cg(3)iii and C19···Cg(3)iii were 3.0384 Å and 3.827 (3) Å, respectively [symmetry codes: (i) x,-1 + y,z, (ii) x,-1 + y,z, (iii) x,1 - y,1 - z].

Experimental

A mixture of 2-cyano-3,3-bis(methylthio)-N-(o-tolyl)acrylamide (1 mmol) and N-((6-chloropyridin-3-yl) methyl) ethane-1,2-diamine (1 mmol) was stirred in refluxing ethanol (10 ml). The progress of the reaction was monitored by TLC. After the completion of the reaction, the mixture was cooled to room temperature, block-shaped crystals were formed, which was filtered off, washed with ethanol and dried in the air.

Refinement

All H atoms were placed in calculated positions and refined as riding on the parent C atoms with C—H = 0.93–0.97 Å, N—H = 0.86 Å, and Uiso(H) = 1.2 Ueq (C, N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.

Crystal data

C19H18ClN5O F(000) = 768
Mr = 367.83 Dx = 1.352 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 19209 reflections
a = 16.2019 (18) Å θ = 1.3–26.0°
b = 7.6240 (9) Å µ = 0.23 mm1
c = 14.7368 (18) Å T = 293 K
β = 97.007 (3)° Prism, colourless
V = 1806.7 (4) Å3 0.26 × 0.23 × 0.21 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 3512 independent reflections
Radiation source: fine-focus sealed tube 2618 reflections with I > 2σ(I)
graphite Rint = 0.060
φ and ω scans θmax = 26.0°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) h = −19→19
Tmin = 0.943, Tmax = 0.953 k = −9→9
19209 measured reflections l = −18→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0717P)2 + 0.3718P] where P = (Fo2 + 2Fc2)/3
3512 reflections (Δ/σ)max = 0.001
238 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.48863 (12) −0.2075 (2) −0.41527 (13) 0.0530 (5)
C2 0.42330 (13) −0.1992 (3) −0.48356 (13) 0.0598 (5)
H2 0.4244 −0.2600 −0.5381 0.072*
C3 0.35610 (13) −0.0979 (3) −0.46850 (13) 0.0552 (5)
H3 0.3105 −0.0890 −0.5132 0.066*
C4 0.35663 (11) −0.0093 (2) −0.38658 (12) 0.0477 (4)
C5 0.42631 (13) −0.0274 (3) −0.32411 (14) 0.0623 (6)
H5 0.4278 0.0335 −0.2693 0.075*
C6 0.28226 (13) 0.0973 (3) −0.36788 (15) 0.0641 (6)
H6A 0.2542 0.1407 −0.4254 0.077*
H6B 0.2437 0.0219 −0.3407 0.077*
N2 0.30409 (10) 0.2454 (2) −0.30700 (11) 0.0570 (4)
C8 0.32548 (15) 0.5482 (3) −0.28080 (15) 0.0673 (6)
H8A 0.3771 0.5860 −0.2461 0.081*
H8B 0.2989 0.6479 −0.3132 0.081*
C9 0.26236 (11) 0.2939 (2) −0.23634 (12) 0.0497 (5)
C10 0.22032 (12) 0.1820 (2) −0.18154 (13) 0.0506 (5)
C11 0.23108 (16) −0.0018 (3) −0.18395 (18) 0.0735 (6)
C12 0.17737 (11) 0.2533 (2) −0.10901 (12) 0.0479 (4)
H12B 0.1949 −0.1608 0.0393 0.108 (10)*
H12C 0.1391 −0.2427 0.1011 0.117 (11)*
H12A 0.1041 −0.2307 −0.0043 0.133 (11)*
C13 0.10396 (11) 0.1528 (3) 0.02201 (14) 0.0540 (5)
C14 0.07069 (13) 0.3118 (3) 0.04596 (15) 0.0631 (6)
H14 0.0718 0.4087 0.0078 0.076*
C15 0.03602 (16) 0.3252 (4) 0.12656 (17) 0.0790 (7)
H15 0.0133 0.4313 0.1424 0.095*
C16 0.03473 (18) 0.1828 (4) 0.18372 (18) 0.0889 (8)
H16 0.0118 0.1928 0.2384 0.107*
C17 0.06735 (16) 0.0262 (4) 0.15965 (18) 0.0836 (7)
H17 0.0658 −0.0694 0.1986 0.100*
C18 0.10247 (13) 0.0055 (3) 0.07951 (16) 0.0652 (6)
C19 0.13699 (18) −0.1683 (3) 0.0544 (2) 0.0883 (8)
N1 0.49193 (11) −0.1261 (2) −0.33656 (12) 0.0644 (5)
C7 0.33994 (16) 0.4000 (3) −0.34602 (16) 0.0731 (7)
H7A 0.3124 0.4240 −0.4069 0.088*
H7B 0.3989 0.3835 −0.3493 0.088*
N3 0.27094 (11) 0.4658 (2) −0.22247 (11) 0.0592 (4)
H3A 0.2465 0.5223 −0.1828 0.071*
N4 0.2387 (2) −0.1517 (3) −0.1790 (2) 0.1184 (10)
N5 0.13992 (11) 0.1309 (2) −0.05957 (12) 0.0611 (5)
H5A 0.1381 0.0262 −0.0814 0.073*
O1 0.17555 (9) 0.41125 (17) −0.09060 (9) 0.0620 (4)
Cl1 0.57548 (4) −0.33450 (9) −0.43072 (4) 0.0805 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0587 (11) 0.0458 (10) 0.0560 (11) 0.0075 (8) 0.0131 (9) −0.0006 (9)
C2 0.0789 (13) 0.0558 (12) 0.0450 (11) 0.0146 (10) 0.0080 (9) −0.0111 (9)
C3 0.0672 (12) 0.0540 (11) 0.0427 (10) 0.0125 (9) −0.0005 (8) −0.0057 (8)
C4 0.0561 (10) 0.0442 (10) 0.0431 (10) 0.0042 (8) 0.0076 (8) −0.0042 (8)
C5 0.0650 (12) 0.0714 (14) 0.0496 (11) 0.0127 (10) 0.0032 (9) −0.0184 (10)
C6 0.0623 (12) 0.0744 (14) 0.0548 (12) 0.0141 (10) 0.0040 (9) −0.0206 (10)
N2 0.0692 (10) 0.0508 (10) 0.0532 (9) 0.0108 (8) 0.0160 (8) −0.0081 (8)
C8 0.0861 (15) 0.0555 (12) 0.0639 (13) 0.0111 (11) 0.0236 (11) 0.0056 (10)
C9 0.0564 (10) 0.0471 (11) 0.0452 (10) 0.0146 (8) 0.0046 (8) −0.0048 (8)
C10 0.0572 (11) 0.0408 (10) 0.0540 (11) 0.0068 (8) 0.0072 (8) −0.0082 (8)
C11 0.0889 (16) 0.0509 (14) 0.0875 (16) 0.0048 (11) 0.0375 (13) −0.0124 (11)
C12 0.0520 (10) 0.0436 (10) 0.0473 (10) 0.0052 (8) 0.0027 (8) −0.0048 (8)
C13 0.0453 (10) 0.0568 (12) 0.0600 (12) −0.0044 (8) 0.0067 (8) −0.0024 (9)
C14 0.0614 (12) 0.0642 (14) 0.0654 (13) 0.0096 (10) 0.0145 (10) 0.0006 (10)
C15 0.0834 (16) 0.0865 (18) 0.0714 (15) 0.0118 (13) 0.0267 (13) −0.0074 (13)
C16 0.0936 (19) 0.108 (2) 0.0700 (16) 0.0016 (16) 0.0287 (14) 0.0055 (16)
C17 0.0858 (17) 0.0905 (19) 0.0765 (17) −0.0106 (14) 0.0182 (14) 0.0223 (14)
C18 0.0568 (11) 0.0588 (13) 0.0791 (15) −0.0077 (10) 0.0051 (11) 0.0058 (11)
C19 0.0933 (19) 0.0552 (15) 0.117 (2) −0.0042 (13) 0.0150 (16) 0.0151 (15)
N1 0.0613 (10) 0.0739 (12) 0.0561 (10) 0.0134 (9) −0.0004 (8) −0.0134 (9)
C7 0.0949 (17) 0.0642 (14) 0.0654 (14) 0.0189 (12) 0.0303 (12) 0.0051 (11)
N3 0.0820 (11) 0.0422 (9) 0.0569 (10) 0.0107 (8) 0.0229 (8) −0.0018 (7)
N4 0.178 (3) 0.0454 (13) 0.150 (2) 0.0096 (14) 0.092 (2) −0.0105 (13)
N5 0.0693 (11) 0.0447 (9) 0.0724 (12) −0.0027 (8) 0.0210 (9) −0.0106 (8)
O1 0.0873 (10) 0.0426 (8) 0.0596 (9) 0.0034 (7) 0.0229 (7) −0.0087 (6)
Cl1 0.0730 (4) 0.0846 (5) 0.0850 (5) 0.0292 (3) 0.0141 (3) −0.0110 (3)

Geometric parameters (Å, °)

C1—N1 1.311 (3) C10—C12 1.450 (3)
C1—C2 1.370 (3) C11—N4 1.151 (3)
C1—Cl1 1.7458 (19) C12—O1 1.236 (2)
C2—C3 1.375 (3) C12—N5 1.370 (3)
C2—H2 0.9300 C13—C14 1.390 (3)
C3—C4 1.383 (3) C13—N5 1.408 (3)
C3—H3 0.9300 C13—C18 1.408 (3)
C4—C5 1.374 (3) C14—C15 1.378 (3)
C4—C6 1.506 (3) C14—H14 0.9300
C5—N1 1.334 (3) C15—C16 1.376 (4)
C5—H5 0.9300 C15—H15 0.9300
C6—N2 1.459 (3) C16—C17 1.370 (4)
C6—H6A 0.9700 C16—H16 0.9300
C6—H6B 0.9700 C17—C18 1.381 (4)
N2—C9 1.360 (2) C17—H17 0.9300
N2—C7 1.462 (3) C18—C19 1.502 (4)
C8—N3 1.449 (3) C19—H12B 0.9917
C8—C7 1.520 (3) C19—H12C 0.8887
C8—H8A 0.9700 C19—H12A 1.0711
C8—H8B 0.9700 C7—H7A 0.9700
C9—N3 1.331 (2) C7—H7B 0.9700
C9—C10 1.407 (3) N3—H3A 0.8600
C10—C11 1.413 (3) N5—H5A 0.8600
N1—C1—C2 124.94 (18) N5—C12—C10 114.85 (16)
N1—C1—Cl1 115.56 (15) C14—C13—N5 122.25 (19)
C2—C1—Cl1 119.50 (15) C14—C13—C18 120.5 (2)
C1—C2—C3 117.60 (18) N5—C13—C18 117.29 (19)
C1—C2—H2 121.2 C15—C14—C13 119.7 (2)
C3—C2—H2 121.2 C15—C14—H14 120.2
C2—C3—C4 119.67 (18) C13—C14—H14 120.2
C2—C3—H3 120.2 C16—C15—C14 120.5 (2)
C4—C3—H3 120.2 C16—C15—H15 119.8
C5—C4—C3 116.93 (17) C14—C15—H15 119.8
C5—C4—C6 122.82 (17) C17—C16—C15 119.6 (2)
C3—C4—C6 120.23 (17) C17—C16—H16 120.2
N1—C5—C4 124.64 (18) C15—C16—H16 120.2
N1—C5—H5 117.7 C16—C17—C18 122.2 (2)
C4—C5—H5 117.7 C16—C17—H17 118.9
N2—C6—C4 113.00 (17) C18—C17—H17 118.9
N2—C6—H6A 109.0 C17—C18—C13 117.6 (2)
C4—C6—H6A 109.0 C17—C18—C19 121.1 (2)
N2—C6—H6B 109.0 C13—C18—C19 121.4 (2)
C4—C6—H6B 109.0 C18—C19—H12B 113.3
H6A—C6—H6B 107.8 C18—C19—H12C 110.6
C9—N2—C6 125.12 (18) H12B—C19—H12C 105.3
C9—N2—C7 109.92 (16) C18—C19—H12A 115.3
C6—N2—C7 117.40 (17) H12B—C19—H12A 103.6
N3—C8—C7 101.83 (18) H12C—C19—H12A 108.1
N3—C8—H8A 111.4 C1—N1—C5 116.21 (17)
C7—C8—H8A 111.4 N2—C7—C8 104.54 (17)
N3—C8—H8B 111.4 N2—C7—H7A 110.8
C7—C8—H8B 111.4 C8—C7—H7A 110.8
H8A—C8—H8B 109.3 N2—C7—H7B 110.8
N3—C9—N2 109.43 (17) C8—C7—H7B 110.8
N3—C9—C10 123.91 (16) H7A—C7—H7B 108.9
N2—C9—C10 126.56 (17) C9—N3—C8 113.30 (16)
C9—C10—C11 121.14 (18) C9—N3—H3A 123.3
C9—C10—C12 120.36 (16) C8—N3—H3A 123.3
C11—C10—C12 117.51 (19) C12—N5—C13 129.02 (17)
N4—C11—C10 174.7 (3) C12—N5—H5A 115.5
O1—C12—N5 121.52 (17) C13—N5—H5A 115.5
O1—C12—C10 123.60 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3A···N4i 0.86 2.49 3.044 (3) 123.
N3—H3A···O1 0.86 2.07 2.659 (2) 126.

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5220).

References

  1. Bruker (2002). APEX2, SAINT and SADABS Bruker AXS, Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Mori, K., Okumoto, T., Kawahara, N. & Ozoe, Y. (2002). Pestic. Mngt Sci. 58, 190–196. [DOI] [PubMed]
  5. Nishimura, K., Kanda, Y., Okazawa, A. & Ueno, T. (1994). Pestic. Biochem. Physiol. 50, 51–59.
  6. Ohno, I., Tomizawa, M., Durkin, K. A., Naruse, Y., Casida, J. E. & Kagabu, S. (2009). Chem. Res. Toxicol. 22, 476–482. [DOI] [PubMed]
  7. Shao, X. S., Zhang, W. W., Peng, Y. Q., Li, Z., Tian, Z. Z. & Qian, X. H. (2008). Bioorg. Med. Chem. Lett. 18, 6513–6516. [DOI] [PubMed]
  8. Sheldrick, G. M. (1997). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Tomizawa, M., Lee, D. L. & Casida, J. E. (2000). J. Agric. Food Chem. 48, 6016–6024. [DOI] [PubMed]
  11. Wu, J., Yang, S., Song, B. A., Bhadury, P. S., Hu, D. Y., Zeng, S. & Xie, H. P. (2011). J. Heterocycl. Chem. 48, 901–906.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037524/ng5220sup1.cif

e-67-o2697-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037524/ng5220Isup2.hkl

e-67-o2697-Isup2.hkl (168.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037524/ng5220Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536811037524/ng5220Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES