Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2759. doi: 10.1107/S1600536811037111

1-Methyl-3,3-bis­[(4-methyl­phen­yl)sulfan­yl]piperidin-2-one

Julio Zukerman-Schpector a,*, Paulo R Olivato b, Carlos R Cerqueira Jr b, Jean M M Santos b, Seik Weng Ng c,d, Edward R T Tiekink c
PMCID: PMC3201309  PMID: 22065241

Abstract

The piperidone ring in the title compound, C20H23NOS2, has a half-chair distorted to a twisted-boat conformation [Q T = 0.5200 (17) Å]. One of the S-bound benzene rings is almost perpendicular to the least-squares plane through the piperidone ring, whereas the other is not [dihedral angles = 75.28 (5) and 46.41 (5) Å, respectively]. In the crystal, the presence of C—H⋯O and C—H⋯π inter­actions leads to the formation of supra­molecular layers in the ab plane.

Related literature

For background to β-thio­carbonyl compounds, see: Vinhato et al. (2011); Olivato et al. (2009). For related structures, see: Zukerman-Schpector et al. (2008, 2010). For ring conformational analysis, see: Cremer & Pople (1975). For the synthesis, see: Hashmat & McDermott (2002); Zoretic & Soja (1976).graphic file with name e-67-o2759-scheme1.jpg

Experimental

Crystal data

  • C20H23NOS2

  • M r = 357.53

  • Monoclinic, Inline graphic

  • a = 7.8943 (1) Å

  • b = 9.8078 (2) Å

  • c = 23.9145 (4) Å

  • β = 92.803 (1)°

  • V = 1849.38 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.65 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.15 mm

Data collection

  • Agilent SuperNova Dual Cu at zero diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.558, T max = 0.692

  • 14169 measured reflections

  • 3719 independent reflections

  • 3465 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.107

  • S = 1.06

  • 3719 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037111/hg5094sup1.cif

e-67-o2759-sup1.cif (20.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037111/hg5094Isup2.hkl

e-67-o2759-Isup2.hkl (178.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037111/hg5094Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.95 2.37 3.294 (3) 166
C1—H1b⋯Cg1ii 0.98 2.84 3.624 (2) 137
C15—H15⋯Cg1iii 0.95 2.88 3.459 (2) 120

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We thank the Brazilian agencies FAPESP, CNPq (fellowships to JZ-S and PRO) and CAPES (808/2009 to JZ-S) for financial support. The authors also thank the University of Malaya for support of the crystallographic facility.

supplementary crystallographic information

Comment

As part of our on-going research on the conformational and electronic interactions in β-thio-carbonyl and β-bis-thio-carbonyl compounds, e.g. N,N-diethyl-2-[(4'-substituted)phelysulfonyl] acetamides, N-methoxy-N-methyl-2-[(4'-substituted) phenylthio]propanamides, 1-methyl-3-phenylsulfonyl-2-piperidone and 3,3-bis[(4-chlorophenyl)sulfanyl]-1-methyl-2-piperidone, utilizing spectroscopic, theoretical and X-ray diffraction methods (Vinhato, et al. 2011; Olivato et al., 2009; Zukerman-Schpector et al. 2008, 2010), the title compound, (I), was synthesized and its crystal structure determined.

In (I), Fig. 1, the piperidone ring has a distorted half-chair conformation with the C3 atom lying 0.687 (2) Å out of the plane defined by the other five atoms (r.m.s. deviation = 0.0833 Å). The ring puckering parameters are: q2 = 0.4309 (17) Å, q3 = 0.2909 (17) Å, QT = 0.5200 (17) Å, φ2 = 145.6 (2) ° (Cremer & Pople, 1975). The S2-bound benzene ring is orientated to be almost perpendicular to the plane through the piperidone ring [dihedral angle = 75.28 (5) °]. The S1-bond benzene ring is somewhat splayed with respect to the other rings, forming dihedral angles of 46.41 (5) and 59.02 (5) ° with those through the piperidone and S2-bound benzene rings, respectively.

The crystal packing of (I), Table 1, is sustained by C—H···O and C—H···π interactions that lead to the formation of supramolecular layers in the ab plane, Fig. 1. The S1-benzene accepts to C—H···π contacts. Layers stack along the c axis as illustrated in Fig.3.

Experimental

Firstly, 4-methylthiophenol (5.0 g, 40 mmol) was reacted with bromine (1.1 ml, 20 mmol) in dichloromethane (250 ml) on hydrated silica gel support (25 g of SiO2 and 12 ml of water) to give 4-methylphenyl disulfide (4.1 g, yield = 83%). A white solid was obtained after filtration and evaporation without further purification (Hashmat & McDermott, 2002). 1-Methyl-2-piperidinone (1.9 g, 17 mmol) was added drop-wise to a cooled (195 K) solution of hexamethylphosphoramide (HMPA) (3.1 ml, 17 mmol), diisopropylamine (2.6 ml, 17 mmol) and butyllithium (13.5 ml, 17 mmol) in THF (60 ml). After 20 minutes, 4-methylphenyl disulfide (4.1 g, 17 mmol) dissolved in THF (10 ml) was added drop-wise to the enolate solution (Zoretic & Soja, 1976). After the mixture was stirred for 4 h at 195 K, water (80 ml) was added at room temperature and extraction with chloroform was performed. The organic layer was dried over anhydrous sodium sulfate. After evaporation of solvent, a crude solid was obtained. Purification through flash chromatography with a solution of hexane and ethyl acetate in a 7:3 ratio give the pure product (3.3 g, yield = 56%). Suitable crystals for X-ray analysis were obtained by vapour diffusion of n-hexane into a chloroform solution of (I) held at 283 K; m.p. 392–393 K. IR (cm-1): ν(C=O) 1662. NMR (CDCl3, p.p.m.): δ 1.88–1.93 (2H, m), 1.96–1.99 (2H, m), 2.38 (6H, s), 2.93 (3H, s), 3.163.18 (2H, t, J = 6.1 Hz), 7.15–7.17 (4H, d, J = 7.8 Hz,Aryl-H), 7.52–7.54 (4H, m, Aryl-H). Analysis found: C 67.22, H 6.45, N 3.95%. C20H23ONS2 requires: C 67.19, H 6.48, N 3.92%.

Refinement

The H atoms were geometrically placed (C–H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).

Fig. 2.

Fig. 2.

Supramolecular layer in the ab plane of (I) mediated by C—H···O and C—H···π interactions, shown as orange and purple dashed lines, respectively.

Fig. 3.

Fig. 3.

A view in projection down the a axis of the unit-cell contents of (I) showing the stacking of layers alog the c axis. The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.

Crystal data

C20H23NOS2 F(000) = 760
Mr = 357.53 Dx = 1.284 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2yn Cell parameters from 8545 reflections
a = 7.8943 (1) Å θ = 3.7–74.2°
b = 9.8078 (2) Å µ = 2.65 mm1
c = 23.9145 (4) Å T = 100 K
β = 92.803 (1)° Block, colourless
V = 1849.38 (5) Å3 0.25 × 0.20 × 0.15 mm
Z = 4

Data collection

Agilent SuperNova Dual Cu at zero diffractometer with an Atlas detector 3719 independent reflections
Radiation source: fine-focus sealed tube 3465 reflections with I > 2σ(I)
graphite Rint = 0.042
Detector resolution: 10.4041 pixels mm-1 θmax = 74.4°, θmin = 3.7°
ω scans h = −7→9
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −11→12
Tmin = 0.558, Tmax = 0.692 l = −29→29
14169 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.7727P] where P = (Fo2 + 2Fc2)/3
3719 reflections (Δ/σ)max < 0.001
220 parameters Δρmax = 0.68 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.56118 (5) 0.85032 (4) 0.742407 (16) 0.02168 (13)
S2 0.59643 (5) 0.63592 (4) 0.658865 (16) 0.02231 (13)
N1 0.15516 (17) 0.80815 (15) 0.66875 (6) 0.0232 (3)
O1 0.38510 (15) 0.88872 (12) 0.62753 (5) 0.0266 (3)
C1 0.0471 (2) 0.8882 (2) 0.62973 (8) 0.0307 (4)
H1A 0.0871 0.8783 0.5918 0.046*
H1B 0.0517 0.9844 0.6407 0.046*
H1C −0.0701 0.8554 0.6305 0.046*
C2 0.0687 (2) 0.73621 (18) 0.71307 (7) 0.0265 (3)
H2A 0.0091 0.6556 0.6968 0.032*
H2B −0.0174 0.7973 0.7284 0.032*
C3 0.1907 (2) 0.69027 (17) 0.76010 (7) 0.0229 (3)
H3A 0.1333 0.6258 0.7848 0.028*
H3B 0.2293 0.7698 0.7828 0.028*
C4 0.3418 (2) 0.62117 (16) 0.73509 (6) 0.0201 (3)
H4A 0.3021 0.5441 0.7112 0.024*
H4B 0.4182 0.5844 0.7655 0.024*
C5 0.43854 (18) 0.72223 (16) 0.70031 (6) 0.0193 (3)
C6 0.32331 (19) 0.81387 (16) 0.66234 (6) 0.0204 (3)
C7 0.62175 (19) 0.76581 (16) 0.80585 (6) 0.0194 (3)
C8 0.5588 (2) 0.81362 (17) 0.85544 (7) 0.0240 (3)
H8 0.4773 0.8849 0.8546 0.029*
C9 0.6155 (2) 0.75683 (18) 0.90622 (7) 0.0259 (4)
H9 0.5729 0.7907 0.9400 0.031*
C10 0.7334 (2) 0.65141 (17) 0.90856 (7) 0.0241 (3)
C11 0.7935 (2) 0.60218 (16) 0.85848 (7) 0.0220 (3)
H11 0.8727 0.5292 0.8592 0.026*
C12 0.73859 (19) 0.65906 (16) 0.80755 (6) 0.0197 (3)
H12 0.7808 0.6251 0.7737 0.024*
C13 0.7979 (3) 0.5920 (2) 0.96396 (7) 0.0344 (4)
H13 0.7035 0.5831 0.9889 0.052*
H13B 0.8844 0.6524 0.9812 0.052*
H13C 0.8474 0.5020 0.9577 0.052*
C14 0.46802 (19) 0.53540 (17) 0.61152 (6) 0.0220 (3)
C15 0.4551 (2) 0.39502 (18) 0.61902 (7) 0.0242 (3)
H15 0.5083 0.3533 0.6512 0.029*
C16 0.3648 (2) 0.31557 (19) 0.57978 (7) 0.0273 (4)
H16 0.3568 0.2199 0.5854 0.033*
C17 0.2859 (2) 0.37422 (19) 0.53241 (7) 0.0276 (4)
C18 0.2970 (2) 0.5147 (2) 0.52567 (7) 0.0318 (4)
H18 0.2420 0.5563 0.4938 0.038*
C19 0.3866 (2) 0.59541 (19) 0.56450 (7) 0.0288 (4)
H19 0.3926 0.6912 0.5591 0.035*
C20 0.1961 (2) 0.2880 (2) 0.48744 (8) 0.0356 (4)
H20A 0.0953 0.3364 0.4724 0.053*
H20B 0.1621 0.2010 0.5036 0.053*
H20C 0.2730 0.2709 0.4572 0.053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0222 (2) 0.0165 (2) 0.0259 (2) −0.00289 (13) −0.00351 (15) 0.00200 (13)
S2 0.0170 (2) 0.0272 (2) 0.0228 (2) 0.00184 (14) 0.00158 (14) −0.00095 (14)
N1 0.0186 (6) 0.0239 (7) 0.0269 (7) 0.0039 (5) −0.0015 (5) −0.0002 (5)
O1 0.0270 (6) 0.0237 (6) 0.0289 (6) −0.0027 (5) −0.0023 (5) 0.0067 (5)
C1 0.0246 (9) 0.0338 (10) 0.0329 (9) 0.0076 (7) −0.0077 (7) −0.0009 (7)
C2 0.0188 (8) 0.0266 (9) 0.0342 (9) −0.0007 (6) 0.0038 (6) −0.0022 (7)
C3 0.0221 (8) 0.0212 (8) 0.0259 (8) −0.0039 (6) 0.0055 (6) −0.0023 (6)
C4 0.0201 (7) 0.0169 (7) 0.0233 (8) −0.0018 (6) 0.0011 (6) −0.0005 (6)
C5 0.0174 (7) 0.0184 (7) 0.0221 (7) −0.0003 (6) 0.0005 (5) 0.0001 (6)
C6 0.0209 (7) 0.0154 (7) 0.0246 (8) −0.0002 (6) −0.0018 (6) −0.0017 (6)
C7 0.0178 (7) 0.0176 (7) 0.0225 (7) −0.0032 (6) −0.0016 (5) −0.0002 (6)
C8 0.0201 (8) 0.0225 (8) 0.0295 (8) 0.0011 (6) 0.0012 (6) −0.0055 (6)
C9 0.0253 (8) 0.0297 (9) 0.0231 (8) −0.0047 (7) 0.0043 (6) −0.0069 (6)
C10 0.0248 (8) 0.0252 (8) 0.0219 (8) −0.0079 (6) −0.0012 (6) −0.0001 (6)
C11 0.0208 (7) 0.0190 (8) 0.0260 (8) −0.0013 (6) −0.0013 (6) 0.0001 (6)
C12 0.0180 (7) 0.0190 (8) 0.0221 (7) −0.0017 (6) 0.0017 (6) −0.0031 (5)
C13 0.0435 (11) 0.0347 (10) 0.0244 (9) −0.0040 (8) −0.0040 (7) 0.0023 (7)
C14 0.0193 (7) 0.0265 (8) 0.0204 (7) 0.0044 (6) 0.0032 (5) −0.0016 (6)
C15 0.0234 (8) 0.0265 (8) 0.0226 (8) 0.0041 (6) 0.0027 (6) 0.0016 (6)
C16 0.0270 (8) 0.0256 (9) 0.0297 (8) 0.0005 (7) 0.0062 (6) −0.0023 (7)
C17 0.0216 (8) 0.0363 (10) 0.0251 (8) 0.0026 (7) 0.0029 (6) −0.0070 (7)
C18 0.0353 (9) 0.0364 (10) 0.0232 (8) 0.0098 (8) −0.0046 (7) −0.0013 (7)
C19 0.0346 (9) 0.0267 (9) 0.0250 (8) 0.0059 (7) −0.0008 (7) 0.0009 (7)
C20 0.0312 (9) 0.0441 (11) 0.0316 (9) −0.0026 (8) 0.0034 (7) −0.0116 (8)

Geometric parameters (Å, °)

S1—C7 1.7738 (16) C9—C10 1.390 (3)
S1—C5 1.8531 (16) C9—H9 0.9500
S2—C14 1.7802 (17) C10—C11 1.396 (2)
S2—C5 1.8366 (16) C10—C13 1.513 (2)
N1—C6 1.345 (2) C11—C12 1.390 (2)
N1—C1 1.462 (2) C11—H11 0.9500
N1—C2 1.469 (2) C12—H12 0.9500
O1—C6 1.229 (2) C13—H13 0.9800
C1—H1A 0.9800 C13—H13B 0.9800
C1—H1B 0.9800 C13—H13C 0.9800
C1—H1C 0.9800 C14—C15 1.393 (2)
C2—C3 1.513 (2) C14—C19 1.398 (2)
C2—H2A 0.9900 C15—C16 1.390 (2)
C2—H2B 0.9900 C15—H15 0.9500
C3—C4 1.520 (2) C16—C17 1.390 (2)
C3—H3A 0.9900 C16—H16 0.9500
C3—H3B 0.9900 C17—C18 1.391 (3)
C4—C5 1.523 (2) C17—C20 1.516 (2)
C4—H4A 0.9900 C18—C19 1.387 (3)
C4—H4B 0.9900 C18—H18 0.9500
C5—C6 1.542 (2) C19—H19 0.9500
C7—C8 1.389 (2) C20—H20A 0.9800
C7—C12 1.395 (2) C20—H20B 0.9800
C8—C9 1.390 (2) C20—H20C 0.9800
C8—H8 0.9500
C7—S1—C5 105.06 (7) C9—C8—H8 120.1
C14—S2—C5 102.60 (7) C8—C9—C10 121.29 (15)
C6—N1—C1 116.97 (14) C8—C9—H9 119.4
C6—N1—C2 126.74 (14) C10—C9—H9 119.4
C1—N1—C2 116.19 (14) C9—C10—C11 118.54 (15)
N1—C1—H1A 109.5 C9—C10—C13 121.17 (16)
N1—C1—H1B 109.5 C11—C10—C13 120.28 (16)
H1A—C1—H1B 109.5 C12—C11—C10 120.56 (16)
N1—C1—H1C 109.5 C12—C11—H11 119.7
H1A—C1—H1C 109.5 C10—C11—H11 119.7
H1B—C1—H1C 109.5 C11—C12—C7 120.31 (15)
N1—C2—C3 112.24 (13) C11—C12—H12 119.8
N1—C2—H2A 109.2 C7—C12—H12 119.8
C3—C2—H2A 109.2 C10—C13—H13 109.5
N1—C2—H2B 109.2 C10—C13—H13B 109.5
C3—C2—H2B 109.2 H13—C13—H13B 109.5
H2A—C2—H2B 107.9 C10—C13—H13C 109.5
C2—C3—C4 108.87 (13) H13—C13—H13C 109.5
C2—C3—H3A 109.9 H13B—C13—H13C 109.5
C4—C3—H3A 109.9 C15—C14—C19 119.09 (15)
C2—C3—H3B 109.9 C15—C14—S2 120.57 (12)
C4—C3—H3B 109.9 C19—C14—S2 120.24 (13)
H3A—C3—H3B 108.3 C16—C15—C14 120.38 (15)
C3—C4—C5 110.42 (13) C16—C15—H15 119.8
C3—C4—H4A 109.6 C14—C15—H15 119.8
C5—C4—H4A 109.6 C15—C16—C17 120.85 (17)
C3—C4—H4B 109.6 C15—C16—H16 119.6
C5—C4—H4B 109.6 C17—C16—H16 119.6
H4A—C4—H4B 108.1 C16—C17—C18 118.45 (16)
C4—C5—C6 113.82 (12) C16—C17—C20 121.49 (17)
C4—C5—S2 111.49 (11) C18—C17—C20 120.01 (17)
C6—C5—S2 110.31 (10) C19—C18—C17 121.37 (16)
C4—C5—S1 114.02 (10) C19—C18—H18 119.3
C6—C5—S1 101.67 (10) C17—C18—H18 119.3
S2—C5—S1 104.79 (7) C18—C19—C14 119.84 (17)
O1—C6—N1 121.93 (14) C18—C19—H19 120.1
O1—C6—C5 120.32 (14) C14—C19—H19 120.1
N1—C6—C5 117.75 (13) C17—C20—H20A 109.5
C8—C7—C12 119.48 (15) C17—C20—H20B 109.5
C8—C7—S1 118.66 (12) H20A—C20—H20B 109.5
C12—C7—S1 121.73 (12) C17—C20—H20C 109.5
C7—C8—C9 119.81 (16) H20A—C20—H20C 109.5
C7—C8—H8 120.1 H20B—C20—H20C 109.5
C6—N1—C2—C3 12.2 (2) C5—S1—C7—C12 68.39 (14)
C1—N1—C2—C3 −163.84 (14) C12—C7—C8—C9 1.4 (2)
N1—C2—C3—C4 −47.35 (18) S1—C7—C8—C9 −174.50 (12)
C2—C3—C4—C5 63.55 (16) C7—C8—C9—C10 −0.7 (2)
C3—C4—C5—C6 −43.61 (17) C8—C9—C10—C11 −0.5 (2)
C3—C4—C5—S2 −169.18 (10) C8—C9—C10—C13 178.60 (16)
C3—C4—C5—S1 72.41 (14) C9—C10—C11—C12 1.1 (2)
C14—S2—C5—C4 65.40 (12) C13—C10—C11—C12 −178.10 (15)
C14—S2—C5—C6 −62.08 (12) C10—C11—C12—C7 −0.3 (2)
C14—S2—C5—S1 −170.79 (8) C8—C7—C12—C11 −0.9 (2)
C7—S1—C5—C4 31.05 (13) S1—C7—C12—C11 174.87 (12)
C7—S1—C5—C6 153.97 (10) C5—S2—C14—C15 −105.11 (14)
C7—S1—C5—S2 −91.12 (8) C5—S2—C14—C19 78.55 (14)
C1—N1—C6—O1 4.1 (2) C19—C14—C15—C16 1.1 (2)
C2—N1—C6—O1 −171.93 (15) S2—C14—C15—C16 −175.31 (12)
C1—N1—C6—C5 −175.70 (14) C14—C15—C16—C17 0.0 (2)
C2—N1—C6—C5 8.2 (2) C15—C16—C17—C18 −1.1 (3)
C4—C5—C6—O1 −171.64 (14) C15—C16—C17—C20 176.18 (16)
S2—C5—C6—O1 −45.45 (17) C16—C17—C18—C19 1.1 (3)
S1—C5—C6—O1 65.30 (16) C20—C17—C18—C19 −176.26 (16)
C4—C5—C6—N1 8.2 (2) C17—C18—C19—C14 0.0 (3)
S2—C5—C6—N1 134.37 (13) C15—C14—C19—C18 −1.1 (2)
S1—C5—C6—N1 −114.88 (13) S2—C14—C19—C18 175.28 (14)
C5—S1—C7—C8 −115.80 (13)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.
D—H···A D—H H···A D···A D—H···A
C11—H11···O1i 0.95 2.37 3.294 (3) 166
C1—H1b···Cg1ii 0.98 2.84 3.624 (2) 137
C15—H15···Cg1iii 0.95 2.88 3.459 (2) 120

Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5094).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Hashmat, A. M. & McDermott, M. (2002). Tetrahedron Lett. 43, 6271–6273.
  7. Olivato, P. R., Domingues, N. L. C., Mondino, M. G., Tormena, C. F., Rittner, R. & Dal Colle, M. (2009). J. Mol. Struct. 920, 393–400.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Vinhato, E., Olivato, P. R., Rodrigues, A., Zukerman-Schpector, J. & Dal Colle, M. (2011). J. Mol. Struct. 1002, 97–106.
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  11. Zoretic, P. A. & Soja, P. (1976). J. Org. Chem. 41, 3587–3589.
  12. Zukerman-Schpector, J., De Simone, C. A., Olivato, P. R., Cerqueira, C. R., Santos, J. M. M. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1863. [DOI] [PMC free article] [PubMed]
  13. Zukerman-Schpector, J., Olivato, P. R., Cerqueira, C. R. Jr, Vinhato, E. & Tiekink, E. R. T. (2008). Acta Cryst. E64, o835–o836. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037111/hg5094sup1.cif

e-67-o2759-sup1.cif (20.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037111/hg5094Isup2.hkl

e-67-o2759-Isup2.hkl (178.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037111/hg5094Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES