Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):m1433–m1434. doi: 10.1107/S1600536811038347

Poly[diaquabis­(μ4-fumarato-κ4 O 1:O 1′:O 4:O 4′)(μ4-fumarato-κ6 O 1:O 1,O 1′:O 4:O 4,O 4′)(μ2-fumaric acid-κ2 O 1:O 4)dipraseodymium(III)]

Pei-lian Liu a, Wanwan Cao a, Jin Wang a, Rong-hua Zeng a, Zhuo Zeng a,b,*
PMCID: PMC3201313  PMID: 22058712

Abstract

The title complex, [Pr2(C4H2O4)3(C4H4O4)(H2O)2]n, was synthesized by reaction of praseodymium(III) nitrate hexa­hydrate with fumaric acid in a water–ethanol (4:1) solution. The asymmetric unit comprises a Pr3+ cation, one and a half fumarate dianions (L 2−), one half-mol­ecule of fumaric acid (H2L) and one coordinated water mol­ecule. The carboxyl­ate groups of the fumarate dianion and fumaric acid exhibit different coordination modes. In one fumarate dianion, two carboxyl­ate groups are chelating with two Pr3+ cations, and the other two O atoms each coordinate a Pr3+ cation. Each O atom of the second fumarate dianion binds to a different Pr3+ cation. The fumaric acid employs one O atom at each end to bridge two Pr3+ cations. The Pr3+ cation is coordinated in a distorted tricapped trigonal–prismatic environment by eight O atoms of fumarate dianion or fumaric acid ligands and one water O atom. The PrO9 coordination polyhedra are edge-shared through one carboxyl­ate O atom and two carboxyl­ate groups, generating infinite praseodymium–oxygen chains, which are further connected by the ligands into a three-dimensional framework. The crystal structure is stabilized by O—H⋯O hydrogen-bond inter­actions between the coordin­ated water mol­ecule and the carboxyl­ate O atoms.

Related literature

For the structural diversity and potential use as superconductors and magnetic materials of metal complexes of carboxyl­ates, see: Kim et al. (2004); Ye et al. (2005). For applications of rare earth carboxyl­ates, see: Baggio & Perec (2004); Seo et al. (2000).graphic file with name e-67-m1433-scheme1.jpg

Experimental

Crystal data

  • [Pr2(C4H2O4)3(C4H4O4)(H2O)2]]

  • M r = 776.10

  • Monoclinic, Inline graphic

  • a = 8.3714 (3) Å

  • b = 14.6034 (6) Å

  • c = 8.7518 (4) Å

  • β = 103.118 (2)°

  • V = 1042.00 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.72 mm−1

  • T = 298 K

  • 0.26 × 0.19 × 0.15 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.355, T max = 0.493

  • 10102 measured reflections

  • 2394 independent reflections

  • 2175 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.016

  • wR(F 2) = 0.041

  • S = 1.05

  • 2394 reflections

  • 170 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.75 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811038347/hg5089sup1.cif

e-67-m1433-sup1.cif (19.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038347/hg5089Isup2.hkl

e-67-m1433-Isup2.hkl (114.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O7 0.93 2.50 2.815 (3) 100
O1W—H2W⋯O7i 0.83 (1) 2.11 (1) 2.911 (2) 165 (2)
O2—H2A⋯O9ii 0.82 1.86 2.661 (2) 167
O1W—H1W⋯O5iii 0.82 (1) 2.09 (2) 2.816 (2) 147 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors gratefully acknowledge the support of the Department of Science and Technology, Guangdong Province [grant Nos. 2010 A020507001–76, 5300410, FIPL-05–003].

supplementary crystallographic information

Comment

Metal complexes of carboxylates have attracted much attention due to their wide range of structural diversities and potential use on superconductors and magnetic materials (Kim et al., 2004; Ye et al., 2005). What is more, a particularly attractive goal is the rare-earth carboxylates, because of their special application on the 4f-block elements and their unique f-f electronic transitions. (Seo et al., 2000; Baggio et al., 2004). In this paper, we report the title complex (scheme. 1), obtained by the reaction of praseodymium(III) nitrate hexahydrate with fumaric acid in a water-ethanol (4:1) solution.

The structure of the asymmetric unit of the title complex is shown in Fig. 1. It comprises a Pr3+ cation, 1.5 fumarate dianions (L2-), 0.5 fumaric acid (H2L) and one water ligand. The carboxylate groups of the fumarate dianion and fumaric acid exhibit different coordination modes. In one fumarate dianion, two carboxylate groups are chelating with two Pr3+ cations, and other two O atoms(O4 and O4iv) are coordinated with Pr3+ cation respectively. The other fumarate dianion bridges four Pr3+ cations with monodentate mode, and the fumaric acid bridges two Pr3+ cations with monodentate mode. In the crystallographic asymmetric unit, the Pr3+ cation is sited within a distorted tricapped trigonal prism defined by nine O atoms derived from seven different bridging ligands and a coordinated water molecule. One of the carboxylate groups, derived from L2-, is chelating, and the remaining six carboxylates coordinate in a monodentate mode. The Pr—O bond distances range from 2.4040 (15) to 2.7719 (16) Å. The O—Pr—O bond angles range from 72.35 (5) to 146.04 (5)°. The PrO9 coordination polyhedra are edge-shared through one carboxylate O atoms (O4) and two carboxylate groups (O8—C4—O9 and O6—C1—O7) to generate infinite praseodymium-oxygen chains (Fig. 2). The chains are further connected by the ligands to form a three-dimensional framework. The crystal is stabilized by hydrogen bond interactions between the coordinated water and carboxylate O atoms.

Experimental

Fumaric acid (0.5 mmol, 0.058 g), Praseodymium(III) nitrate hexahydrate(0.3 mmol, 0.13 g) was dissolved in a water-ethanol(4:1) solution(10 ml). The mixture was transferred to a 20 ml Teflon-lined stainless steel autoclave, which was heated at 413 K for 96 h. The reactor was cooled to room temperature over a period of 24 h. Blue crystals were obtained after filtrated, washed with water and vacuum dried.

Refinement

Carbon-bound H atoms were included in the riding-model approximation, with C—H =0.93Å and with Uiso(H) = 1.2Ueq(C). H atom bound to carboxyl-O atom was initially located in a difference map but was then fixed in the riding-model approximation, with O—H = 0.82Å and with Uiso(H) = 1.5 Ueq(O). Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O—H = 0.82Å and H···H = 1.29 Å, and with Uiso(H) = 1.5 Ueq(O).

Figures

Fig. 1.

Fig. 1.

View of the local coordination of praseodymium(III) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i)x,1/2 - y,-1/2 + z; (ii)1 + x,y,z; (iii)1 + x,1/2 - y,-1/2 + z; (iv)1 - x,-y,1 - z; (v)2 - x,-y,1 - z.]

Fig. 2.

Fig. 2.

Perspective view of the crystal packing.

Crystal data

[Pr2(C4H2O4)3(C4H4O4)(H2O)2] F(000) = 744
Mr = 776.10 Dx = 2.474 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7002 reflections
a = 8.3714 (3) Å θ = 2.5–27.5°
b = 14.6034 (6) Å µ = 4.72 mm1
c = 8.7518 (4) Å T = 298 K
β = 103.118 (2)° Block, blue
V = 1042.00 (7) Å3 0.26 × 0.19 × 0.15 mm
Z = 2

Data collection

Bruker APEXII CCD area-detector diffractometer 2394 independent reflections
Radiation source: fine-focus sealed tube 2175 reflections with I > 2σ(I)
graphite Rint = 0.027
phi and ω scans θmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −9→10
Tmin = 0.355, Tmax = 0.493 k = −16→18
10102 measured reflections l = −11→6

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.041 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0212P)2 + 0.5013P] where P = (Fo2 + 2Fc2)/3
2394 reflections (Δ/σ)max = 0.001
170 parameters Δρmax = 0.44 e Å3
3 restraints Δρmin = −0.75 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3406 (3) 0.31371 (13) 0.2443 (3) 0.0132 (5)
C2 0.1598 (3) 0.31134 (14) 0.2330 (3) 0.0170 (5)
H2 0.0902 0.2974 0.1369 0.020*
C3 0.0955 (3) 0.32820 (15) 0.3540 (3) 0.0155 (4)
H3 0.1665 0.3451 0.4476 0.019*
C4 −0.0831 (3) 0.32223 (14) 0.3522 (3) 0.0128 (4)
C5 0.5360 (3) 0.10365 (14) 0.3762 (2) 0.0133 (4)
C6 0.5244 (3) 0.04325 (14) 0.5105 (3) 0.0160 (4)
H6 0.5522 0.0668 0.6118 0.019*
C8 0.9749 (3) 0.06063 (16) 0.3044 (3) 0.0191 (5)
O1 0.8615 (2) 0.11349 (12) 0.30016 (19) 0.0244 (4)
O2 1.0535 (2) 0.05332 (15) 0.1918 (2) 0.0356 (5)
H2A 1.0106 0.0868 0.1187 0.053*
C7 1.0333 (3) −0.00121 (16) 0.4388 (3) 0.0199 (5)
H7 1.1178 −0.0422 0.4369 0.024*
O4 0.5972 (2) 0.18329 (9) 0.40478 (19) 0.0143 (3)
O5 0.4920 (2) 0.07499 (11) 0.23774 (17) 0.0208 (4)
O6 0.39185 (18) 0.27539 (11) 0.13689 (17) 0.0174 (3)
O7 0.43025 (18) 0.35433 (10) 0.36074 (17) 0.0149 (3)
O8 −0.1853 (2) 0.30866 (10) 0.2257 (2) 0.0174 (4)
O9 −0.1193 (2) 0.33071 (11) 0.48376 (19) 0.0182 (3)
O1W 0.6829 (2) 0.02369 (11) 0.02361 (19) 0.0198 (4)
H2W 0.645 (3) −0.0181 (14) 0.068 (2) 0.030*
H1W 0.656 (3) 0.0080 (17) −0.0692 (12) 0.030*
Pr1 0.632685 (13) 0.190489 (7) 0.097718 (13) 0.00921 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0123 (11) 0.0141 (11) 0.0138 (12) 0.0023 (7) 0.0040 (9) 0.0036 (8)
C2 0.0118 (11) 0.0233 (13) 0.0153 (13) −0.0014 (8) 0.0018 (10) −0.0034 (8)
C3 0.0116 (10) 0.0221 (11) 0.0132 (11) −0.0022 (8) 0.0035 (9) −0.0013 (9)
C4 0.0139 (11) 0.0108 (10) 0.0139 (11) −0.0008 (8) 0.0039 (9) −0.0009 (8)
C5 0.0156 (10) 0.0123 (10) 0.0139 (11) −0.0005 (8) 0.0071 (9) −0.0005 (8)
C6 0.0226 (12) 0.0147 (11) 0.0117 (11) −0.0013 (9) 0.0063 (9) 0.0005 (8)
C8 0.0173 (11) 0.0225 (12) 0.0171 (12) 0.0025 (9) 0.0031 (10) 0.0016 (9)
O1 0.0270 (9) 0.0292 (10) 0.0171 (9) 0.0133 (7) 0.0055 (8) 0.0058 (7)
O2 0.0323 (11) 0.0532 (13) 0.0258 (10) 0.0204 (9) 0.0160 (9) 0.0184 (9)
C7 0.0188 (11) 0.0219 (12) 0.0174 (12) 0.0080 (9) 0.0008 (9) 0.0023 (9)
O4 0.0200 (8) 0.0108 (7) 0.0129 (8) −0.0021 (6) 0.0054 (7) −0.0012 (6)
O5 0.0348 (10) 0.0173 (8) 0.0117 (8) −0.0093 (7) 0.0082 (7) −0.0021 (6)
O6 0.0152 (8) 0.0242 (8) 0.0144 (8) 0.0039 (6) 0.0068 (7) −0.0032 (6)
O7 0.0135 (7) 0.0168 (8) 0.0136 (8) 0.0011 (6) 0.0013 (6) −0.0012 (6)
O8 0.0142 (8) 0.0217 (9) 0.0152 (9) −0.0037 (6) 0.0013 (7) −0.0020 (6)
O9 0.0172 (8) 0.0240 (8) 0.0159 (9) −0.0035 (7) 0.0089 (7) −0.0041 (7)
O1W 0.0248 (9) 0.0150 (8) 0.0201 (9) −0.0034 (6) 0.0057 (8) −0.0025 (7)
Pr1 0.00954 (7) 0.01013 (7) 0.00840 (8) 0.00028 (4) 0.00300 (5) 0.00065 (4)

Geometric parameters (Å, °)

C1—O6 1.251 (3) O1—Pr1 2.5560 (16)
C1—O7 1.268 (3) O2—H2A 0.8200
C1—O7 1.268 (3) C7—C7ii 1.316 (5)
C1—C2 1.495 (3) C7—H7 0.9300
C2—C3 1.315 (3) O4—Pr1iii 2.4717 (14)
C2—H2 0.9300 O4—Pr1 2.7719 (16)
C3—C4 1.495 (3) O5—Pr1 2.5278 (15)
C3—H3 0.9300 O6—Pr1 2.4563 (14)
C4—O8 1.252 (3) O7—Pr1iii 2.4508 (15)
C4—O9 1.261 (3) O8—Pr1iv 2.4040 (15)
C5—O5 1.256 (2) O9—Pr1v 2.5184 (15)
C5—O4 1.273 (2) O1W—Pr1 2.5795 (16)
C5—C6 1.490 (3) O1W—H2W 0.825 (10)
C6—C6i 1.328 (4) O1W—H1W 0.824 (9)
C6—H6 0.9300 Pr1—O8vi 2.4040 (15)
C8—O1 1.218 (3) Pr1—O7vii 2.4508 (15)
C8—O2 1.308 (3) Pr1—O4vii 2.4717 (14)
C8—C7 1.475 (3) Pr1—O9viii 2.5184 (15)
O6—C1—O7 124.9 (2) H2W—O1W—H1W 102.5 (14)
O6—C1—O7 124.9 (2) O8vi—Pr1—O7vii 146.04 (5)
O6—C1—C2 117.1 (2) O8vi—Pr1—O6 91.49 (5)
O7—C1—C2 118.04 (19) O7vii—Pr1—O6 79.69 (5)
O7—C1—C2 118.04 (19) O8vi—Pr1—O4vii 75.42 (5)
C3—C2—C1 122.4 (2) O7vii—Pr1—O4vii 70.62 (5)
C3—C2—H2 118.8 O6—Pr1—O4vii 75.15 (5)
C1—C2—H2 118.8 O8vi—Pr1—O9viii 77.32 (5)
C2—C3—C4 124.9 (2) O7vii—Pr1—O9viii 96.08 (5)
C2—C3—H3 117.6 O6—Pr1—O9viii 153.38 (5)
C4—C3—H3 117.6 O4vii—Pr1—O9viii 78.65 (5)
O8—C4—O9 124.4 (2) O8vi—Pr1—O5 124.67 (5)
O8—C4—C3 120.0 (2) O7vii—Pr1—O5 85.60 (5)
O9—C4—C3 115.6 (2) O6—Pr1—O5 77.38 (6)
O5—C5—O4 120.73 (19) O4vii—Pr1—O5 146.29 (5)
O5—C5—C6 120.43 (19) O9viii—Pr1—O5 128.82 (5)
O4—C5—C6 118.78 (19) O8vi—Pr1—O1 72.35 (5)
C6i—C6—C5 121.8 (3) O7vii—Pr1—O1 137.28 (5)
C6i—C6—H6 119.1 O6—Pr1—O1 129.43 (5)
C5—C6—H6 119.1 O4vii—Pr1—O1 139.16 (5)
O1—C8—O2 123.4 (2) O9viii—Pr1—O1 70.41 (5)
O1—C8—C7 121.8 (2) O5—Pr1—O1 74.27 (5)
O2—C8—C7 114.8 (2) O8vi—Pr1—O1W 132.29 (5)
C8—O1—Pr1 139.18 (16) O7vii—Pr1—O1W 69.87 (5)
C8—O2—H2A 109.5 O6—Pr1—O1W 134.22 (5)
C7ii—C7—C8 120.5 (3) O4vii—Pr1—O1W 122.25 (5)
C7ii—C7—H7 119.7 O9viii—Pr1—O1W 65.70 (5)
C8—C7—H7 119.7 O5—Pr1—O1W 67.18 (5)
C5—O4—Pr1iii 142.77 (14) O1—Pr1—O1W 67.64 (5)
C5—O4—Pr1 88.35 (12) O8vi—Pr1—O4 76.79 (5)
Pr1iii—O4—Pr1 127.68 (5) O7vii—Pr1—O4 127.21 (5)
C5—O5—Pr1 100.28 (12) O6—Pr1—O4 67.16 (5)
C1—O6—Pr1 139.76 (15) O4vii—Pr1—O4 131.91 (3)
C1—O7—Pr1iii 136.47 (13) O9viii—Pr1—O4 131.20 (5)
C4—O8—Pr1iv 139.42 (14) O5—Pr1—O4 48.73 (4)
C4—O9—Pr1v 137.70 (14) O1—Pr1—O4 62.59 (5)
Pr1—O1W—H2W 118.5 (18) O1W—Pr1—O4 105.50 (5)
Pr1—O1W—H1W 119.2 (19)
O6—C1—C2—C3 162.7 (2) C1—O6—Pr1—O1 16.7 (3)
O7—C1—C2—C3 −17.5 (3) C1—O6—Pr1—O1W 113.2 (2)
O7—C1—C2—C3 −17.5 (3) C1—O6—Pr1—O4 23.5 (2)
C1—C2—C3—C4 −176.7 (2) C5—O5—Pr1—O8vi 4.60 (16)
C2—C3—C4—O8 −7.0 (3) C5—O5—Pr1—O7vii −158.77 (14)
C2—C3—C4—O9 172.2 (2) C5—O5—Pr1—O6 −78.37 (13)
O5—C5—C6—C6i 3.3 (4) C5—O5—Pr1—O4vii −114.41 (14)
O4—C5—C6—C6i −173.9 (3) C5—O5—Pr1—O9viii 106.95 (14)
O2—C8—O1—Pr1 29.0 (4) C5—O5—Pr1—O1 59.30 (13)
C7—C8—O1—Pr1 −150.46 (18) C5—O5—Pr1—O1W 131.23 (14)
O1—C8—C7—C7ii −2.2 (5) C5—O5—Pr1—O4 −7.80 (12)
O2—C8—C7—C7ii 178.3 (3) C8—O1—Pr1—O8vi −115.0 (3)
O5—C5—O4—Pr1iii 153.25 (17) C8—O1—Pr1—O7vii 44.8 (3)
C6—C5—O4—Pr1iii −29.5 (3) C8—O1—Pr1—O6 168.1 (2)
O5—C5—O4—Pr1 −13.4 (2) C8—O1—Pr1—O4vii −75.5 (3)
C6—C5—O4—Pr1 163.80 (18) C8—O1—Pr1—O9viii −32.5 (2)
O4—C5—O5—Pr1 15.0 (2) C8—O1—Pr1—O5 109.8 (3)
C6—C5—O5—Pr1 −162.19 (17) C8—O1—Pr1—O1W 38.5 (2)
O7—C1—O6—Pr1 33.2 (3) C8—O1—Pr1—O4 161.1 (3)
O7—C1—O6—Pr1 33.2 (3) C5—O4—Pr1—O8vi −161.98 (13)
C2—C1—O6—Pr1 −147.04 (17) Pr1iii—O4—Pr1—O8vi 28.18 (8)
O6—C1—O7—O7 0.00 (13) C5—O4—Pr1—O7vii 44.97 (14)
C2—C1—O7—O7 0.00 (7) Pr1iii—O4—Pr1—O7vii −124.87 (8)
O6—C1—O7—Pr1iii −70.6 (3) C5—O4—Pr1—O6 100.68 (13)
O7—C1—O7—Pr1iii 0(100) Pr1iii—O4—Pr1—O6 −69.17 (8)
C2—C1—O7—Pr1iii 109.6 (2) C5—O4—Pr1—O4vii 141.96 (10)
O9—C4—O8—Pr1iv −69.1 (3) Pr1iii—O4—Pr1—O4vii −27.89 (15)
C3—C4—O8—Pr1iv 110.1 (2) C5—O4—Pr1—O9viii −102.32 (13)
O8—C4—O9—Pr1v 9.8 (3) Pr1iii—O4—Pr1—O9viii 87.84 (9)
C3—C4—O9—Pr1v −169.47 (15) C5—O4—Pr1—O5 7.57 (12)
C1—O6—Pr1—O8vi −51.5 (2) Pr1iii—O4—Pr1—O5 −162.27 (11)
C1—O6—Pr1—O7vii 161.5 (2) C5—O4—Pr1—O1 −85.22 (13)
C1—O6—Pr1—O4vii −126.0 (2) Pr1iii—O4—Pr1—O1 104.93 (9)
C1—O6—Pr1—O9viii −115.5 (2) C5—O4—Pr1—O1W −31.27 (13)
C1—O6—Pr1—O5 73.8 (2) Pr1iii—O4—Pr1—O1W 158.88 (7)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y, −z+1; (iii) x, −y+1/2, z+1/2; (iv) x−1, y, z; (v) x−1, −y+1/2, z+1/2; (vi) x+1, y, z; (vii) x, −y+1/2, z−1/2; (viii) x+1, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···O7 0.93 2.50 2.815 (3) 100.
O1W—H2W···O7ix 0.83 (1) 2.11 (1) 2.911 (2) 165 (2)
O2—H2A···O9viii 0.82 1.86 2.661 (2) 167.
O1W—H1W···O5x 0.82 (1) 2.09 (2) 2.816 (2) 147 (2)

Symmetry codes: (ix) −x+1, y−1/2, −z+1/2; (viii) x+1, −y+1/2, z−1/2; (x) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5089).

References

  1. Baggio, R. & Perec, M. (2004). Inorg. Chem. 43, 6965–6968. [DOI] [PubMed]
  2. Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Kim, Y. J., Suh, M. & Jung, D. Y. (2004). Inorg. Chem. 43, 245–250. [DOI] [PubMed]
  4. Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J. & Kim, K. (2000). Nature (London), 404, 982–986. [DOI] [PubMed]
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Ye, B.-H., Tong, M. L. & Chen, X. M. (2005). Coord. Chem. Rev. 249, 545–565.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811038347/hg5089sup1.cif

e-67-m1433-sup1.cif (19.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038347/hg5089Isup2.hkl

e-67-m1433-Isup2.hkl (114.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES