Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2777. doi: 10.1107/S1600536811036658

5-Hy­droxy-3-methyl-5-phenyl-4,5-di­hydro-1H-pyrazole-1-carbothio­amide

Biplab Ganguly a, Ana Foi b, Fabio Doctorovich b, Benu K Dey a, Tapashi G Roy a,*
PMCID: PMC3201317  PMID: 22065480

Abstract

In the title compound C11H13N3OS, the aromatic ring and the dihydro­pyrazole ring are oriented orthogonally with respect to each other, making a dihedral angle of 89.92 (9)°. An intra­molecular O—H⋯S hydrogen bond occurs. In the crystal, weak N—H⋯N and N—H⋯S hydrogen bonds link the mol­ecules into a columnar stack propagating along the b axis.

Related literature

For the biological activity of sulfur–nitro­gen ligand compounds, see: Wilder Smith (1964); Grii & Khare (1976); French & Blang (1966); Davis Parke & Co (1957); Vattum & Rao (1959); Brockaman et al. (1959). For the carcinostatics thio­semicarbazone-containing nitro­gen heterocycles, see: Freedlander & French (1958); French & Blang (1965).graphic file with name e-67-o2777-scheme1.jpg

Experimental

Crystal data

  • C11H13N3OS

  • M r = 235.31

  • Monoclinic, Inline graphic

  • a = 11.6955 (6) Å

  • b = 7.6889 (4) Å

  • c = 13.7588 (10) Å

  • β = 111.978 (7)°

  • V = 1147.35 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 298 K

  • 0.39 × 0.41 × 0.43 mm

Data collection

  • Oxford Diffraction Gemini E CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.541, T max = 1.000

  • 19392 measured reflections

  • 2326 independent reflections

  • 2161 reflections with I > 2σ(I)

  • R int = 0.069

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.130

  • S = 1.07

  • 2326 reflections

  • 157 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811036658/ds2131sup1.cif

e-67-o2777-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036658/ds2131Isup2.hkl

e-67-o2777-Isup2.hkl (112KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036658/ds2131Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯S1 0.93 (3) 2.35 (3) 3.1256 (15) 141 (2)
N3—H3A⋯S1i 0.89 (2) 2.81 (2) 3.5827 (17) 145.9 (19)
N3—H3B⋯N1ii 0.87 (2) 2.30 (2) 3.158 (2) 168 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge the UGC, Bangladesh, for the award of a fellowship to BG and thank the TWAS, Trieste, Italy, for awarding a TWAS–UNESCO Associateship to TGR. They are also grateful to ANPCyT for a grant (PME–2006–01113) and to R. Baggio for his helpful suggestions.

supplementary crystallographic information

Comment

Sulfur-Nitrogen ligand and their metal complexes have been reported as biologically important compounds possessing antiviral (Davis et al., 1957), antibacterial (Vattum & Rao, 1959), antipyretic (Wilder Smith, 1964), fungicidal (Grii & Khare, 1976) and analgesic (Wilder Smith, 1964) activities. It was reported that pyridine-2carboxaldehyde dithiosemicarbazone displays anticancer activity. However, no mechanism of action was proposed (Brockaman et al., 1959). French and co-workers (French & Blang, 1965; Freedlander & French, 1958; French & Blang, 1966) studied the carcinostatics thiosemicarbazones containing nitrogen heterocycles. The present investigation is an attempt to prepare a Schiff base ligand (HL) by the condensation of benzoyl acetone and thiosemicarbazide. During crystallization from ethanol-petroleum ether, the crystals of the title compound appropriate for single crystal X-ray diffraction were obtained.

In the crystal structure, the aromatic ring and the dihydropyrazole ring are oriented orthogonally with respect to each other [angle between these two rings is 89.92 (9) °]. Weak N–H···N (3.158 (2) Å) and N–H···S (3.5827 (17) Å) make the moloecules pack into a columnar stack propagating along b axis (see Figure 3).

Experimental

Thiosemicarbazide purchased from the local market was crystallized from ethanol and dried under vacuum desiccator over silica gel (m.p. 441- 443 K) before use. A hot solution of benzoyl acetone (1.62 g, 10 mmol) in absolute ethanol was mixed with the hot solution of thiosemicarbazide (1.22 g, 10 mmol) in the same solvent. The mixture was refluxed for 6 h on a water bath. After reducing the volume, a white product was filtered off. This product was washed with ethanol for several times and dried in a vacuum desiccator over silica gel (m.p. 449–451 K. Yield 1.95 g (82.9%). Anal. Calc. for C11H13N3OS: C, 56.15; H, 5.57; N, 17.86; S, 13.62%. Found: C, 56.03; H, 5.61; N, 17.82; S, 13.57%. FT—IR (KBr, cm-1) νmax: 3360 (m, OH), 3260 (s, NH), 1642 (m, C=N), 999 (m, N—N). Then the crystals suitable for the crystallographic study were prepared by slow evaporation from a ethanol-petroleum ether (2:1 v/v) solution of the ligand.

Refinement

Methyl groups were idealized (C—H = 0.96 A °) and allowed to ride. In all cases, H-atom displacement parameters were taken as Uiso(H) = 1.5Ueq(C) for methyl groups or 1.2Ueq(C,O,N) otherwise.

Figures

Fig. 1.

Fig. 1.

: ORTEP (50% probablity) diagram of the title compound.

Fig. 2.

Fig. 2.

: Packing along a, showing the chain-like subunit formed. Intramolecular hydrogen bonds are displayed in green, and intermolecular hydrogen bonds in purple.

Fig. 3.

Fig. 3.

: Packing along b, showing the columnar arrangement of subunits. Intramolecular hydrogen bonds are displayed in green, and intermolecular hydrogen bonds in purple.

Crystal data

C11H13N3OS F(000) = 496
Mr = 235.31 Dx = 1.362 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 10287 reflections
a = 11.6955 (6) Å θ = 3.5–73.8°
b = 7.6889 (4) Å µ = 0.26 mm1
c = 13.7588 (10) Å T = 298 K
β = 111.978 (7)° Prism, white
V = 1147.35 (12) Å3 0.43 × 0.41 × 0.39 mm
Z = 4

Data collection

Oxford Diffraction Gemini E CCD diffractometer 2161 reflections with I > 2σ(I)
graphite Rint = 0.069
ω scans, thick slices θmax = 26.3°, θmin = 1.9°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) h = −14→14
Tmin = 0.541, Tmax = 1.000 k = −9→9
19392 measured reflections l = −17→16
2326 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0808P)2 + 0.2816P] where P = (Fo2 + 2Fc2)/3
2326 reflections (Δ/σ)max < 0.001
157 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.38340 (12) 0.44242 (18) 0.08551 (10) 0.0382 (3)
O1 0.09679 (11) 0.29274 (18) 0.04417 (11) 0.0503 (3)
N3 0.47610 (13) 0.1959 (2) 0.22717 (13) 0.0479 (4)
C11 0.36034 (14) 0.1729 (2) 0.16030 (12) 0.0370 (3)
C10 0.36242 (19) 0.7124 (2) −0.00962 (16) 0.0541 (5)
H10C 0.4469 0.7273 0.0363 0.081*
H10A 0.3138 0.8058 0.0008 0.081*
H10B 0.3568 0.7128 −0.081 0.081*
N2 0.31423 (12) 0.29247 (17) 0.08476 (10) 0.0392 (3)
H3B 0.504 (2) 0.124 (3) 0.2795 (18) 0.054 (6)*
H3A 0.521 (2) 0.286 (3) 0.2218 (18) 0.060 (6)*
H1O 0.114 (2) 0.194 (4) 0.086 (2) 0.068 (7)*
S1 0.27587 (4) 0.00137 (5) 0.17302 (3) 0.04557 (19)
C6 0.17249 (13) 0.1559 (2) −0.08034 (12) 0.0379 (3)
C9 0.31586 (15) 0.5446 (2) 0.01356 (12) 0.0396 (4)
C7 0.18692 (14) 0.2977 (2) 0.00036 (13) 0.0399 (4)
C8 0.18774 (17) 0.4804 (2) −0.04428 (16) 0.0489 (4)
H8A 0.1694 0.4756 −0.1191 0.059*
H8B 0.1278 0.5551 −0.0317 0.059*
C1 0.07051 (15) 0.0470 (2) −0.11386 (13) 0.0444 (4)
H2 0.0119 0.0557 −0.0835 0.053*
C3 0.1390 (2) −0.0863 (3) −0.23965 (14) 0.0559 (5)
H4 0.1277 −0.1666 −0.293 0.067*
C5 0.25740 (16) 0.1420 (2) −0.12829 (14) 0.0476 (4)
H6 0.3263 0.214 −0.107 0.057*
C2 0.05503 (17) −0.0744 (3) −0.19207 (14) 0.0527 (5)
H3 −0.0128 −0.1484 −0.2125 0.063*
C4 0.2406 (2) 0.0223 (3) −0.20755 (17) 0.0557 (5)
H5 0.298 0.0149 −0.2394 0.067*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0370 (7) 0.0349 (7) 0.0363 (7) −0.0034 (5) 0.0064 (5) 0.0002 (5)
O1 0.0396 (6) 0.0545 (8) 0.0526 (7) 0.0057 (5) 0.0122 (5) −0.0049 (6)
N3 0.0386 (7) 0.0435 (8) 0.0461 (8) 0.0001 (6) −0.0018 (6) 0.0117 (6)
C11 0.0363 (7) 0.0343 (7) 0.0348 (7) 0.0028 (6) 0.0068 (6) −0.0003 (6)
C10 0.0601 (11) 0.0424 (9) 0.0524 (10) −0.0035 (8) 0.0127 (9) 0.0093 (8)
N2 0.0341 (6) 0.0336 (7) 0.0376 (7) −0.0028 (5) −0.0007 (5) 0.0029 (5)
S1 0.0429 (3) 0.0374 (3) 0.0500 (3) −0.00315 (15) 0.0100 (2) 0.00632 (16)
C6 0.0337 (7) 0.0356 (7) 0.0349 (8) 0.0001 (6) 0.0021 (6) 0.0054 (6)
C9 0.0431 (8) 0.0352 (7) 0.0344 (8) 0.0013 (6) 0.0077 (6) −0.0005 (6)
C7 0.0318 (7) 0.0365 (8) 0.0398 (8) 0.0019 (6) 0.0002 (6) 0.0022 (6)
C8 0.0436 (9) 0.0357 (8) 0.0491 (10) 0.0028 (6) −0.0036 (8) 0.0045 (7)
C1 0.0366 (8) 0.0482 (9) 0.0399 (9) −0.0050 (7) 0.0046 (6) 0.0004 (7)
C3 0.0708 (12) 0.0495 (10) 0.0395 (9) 0.0022 (9) 0.0116 (8) −0.0033 (8)
C5 0.0452 (8) 0.0446 (9) 0.0511 (10) −0.0049 (7) 0.0161 (7) 0.0040 (8)
C2 0.0511 (9) 0.0516 (10) 0.0428 (9) −0.0108 (8) 0.0031 (7) −0.0042 (8)
C4 0.0659 (12) 0.0559 (11) 0.0502 (10) 0.0065 (9) 0.0273 (10) 0.0070 (8)

Geometric parameters (Å, °)

N1—C9 1.279 (2) C6—C5 1.387 (2)
N1—N2 1.4062 (18) C6—C7 1.520 (2)
O1—C7 1.397 (2) C9—C8 1.493 (2)
O1—H1O 0.93 (3) C7—C8 1.535 (2)
N3—C11 1.334 (2) C8—H8A 0.97
N3—H3B 0.87 (2) C8—H8B 0.97
N3—H3A 0.89 (3) C1—C2 1.384 (3)
C11—N2 1.340 (2) C1—H2 0.93
C11—S1 1.6958 (16) C3—C2 1.373 (3)
C10—C9 1.481 (2) C3—C4 1.382 (3)
C10—H10C 0.96 C3—H4 0.93
C10—H10A 0.96 C5—C4 1.384 (3)
C10—H10B 0.96 C5—H6 0.93
N2—C7 1.5077 (18) C2—H3 0.93
C6—C1 1.387 (2) C4—H5 0.93
C9—N1—N2 108.12 (12) N2—C7—C6 110.55 (12)
C7—O1—H1O 105.7 (15) O1—C7—C8 108.45 (14)
C11—N3—H3B 117.4 (14) N2—C7—C8 100.40 (12)
C11—N3—H3A 121.5 (15) C6—C7—C8 112.34 (14)
H3B—N3—H3A 121 (2) C9—C8—C7 104.14 (13)
N3—C11—N2 116.99 (15) C9—C8—H8A 110.9
N3—C11—S1 120.81 (13) C7—C8—H8A 110.9
N2—C11—S1 122.18 (11) C9—C8—H8B 110.9
C9—C10—H10C 109.5 C7—C8—H8B 110.9
C9—C10—H10A 109.5 H8A—C8—H8B 108.9
H10C—C10—H10A 109.5 C2—C1—C6 120.76 (17)
C9—C10—H10B 109.5 C2—C1—H2 119.6
H10C—C10—H10B 109.5 C6—C1—H2 119.6
H10A—C10—H10B 109.5 C2—C3—C4 119.37 (18)
C11—N2—N1 119.56 (12) C2—C3—H4 120.3
C11—N2—C7 127.61 (13) C4—C3—H4 120.3
N1—N2—C7 112.54 (12) C4—C5—C6 120.67 (17)
C1—C6—C5 118.38 (16) C4—C5—H6 119.7
C1—C6—C7 121.50 (15) C6—C5—H6 119.7
C5—C6—C7 119.93 (14) C3—C2—C1 120.45 (17)
N1—C9—C10 122.10 (15) C3—C2—H3 119.8
N1—C9—C8 114.56 (15) C1—C2—H3 119.8
C10—C9—C8 123.34 (15) C3—C4—C5 120.35 (19)
O1—C7—N2 110.74 (13) C3—C4—H5 119.8
O1—C7—C6 113.58 (13) C5—C4—H5 119.8
N3—C11—N2—N1 −6.3 (2) C5—C6—C7—N2 −53.08 (19)
S1—C11—N2—N1 172.51 (12) C1—C6—C7—C8 −116.66 (17)
N3—C11—N2—C7 −179.61 (16) C5—C6—C7—C8 58.17 (19)
S1—C11—N2—C7 −0.8 (2) N1—C9—C8—C7 −4.7 (2)
C9—N1—N2—C11 −173.10 (14) C10—C9—C8—C7 175.24 (16)
C9—N1—N2—C7 1.16 (18) O1—C7—C8—C9 120.77 (15)
N2—N1—C9—C10 −177.61 (15) N2—C7—C8—C9 4.61 (18)
N2—N1—C9—C8 2.3 (2) C6—C7—C8—C9 −112.86 (15)
C11—N2—C7—O1 55.5 (2) C5—C6—C1—C2 1.1 (2)
N1—N2—C7—O1 −118.22 (15) C7—C6—C1—C2 175.99 (15)
C11—N2—C7—C6 −71.3 (2) C1—C6—C5—C4 −0.1 (3)
N1—N2—C7—C6 115.00 (14) C7—C6—C5—C4 −175.07 (16)
C11—N2—C7—C8 169.90 (16) C4—C3—C2—C1 1.1 (3)
N1—N2—C7—C8 −3.79 (18) C6—C1—C2—C3 −1.6 (3)
C1—C6—C7—O1 6.9 (2) C2—C3—C4—C5 −0.1 (3)
C5—C6—C7—O1 −178.28 (14) C6—C5—C4—C3 −0.4 (3)
C1—C6—C7—N2 132.09 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1O···S1 0.93 (3) 2.35 (3) 3.1256 (15) 141 (2)
N3—H3A···S1i 0.89 (2) 2.81 (2) 3.5827 (17) 145.9 (19)
N3—H3B···N1ii 0.87 (2) 2.30 (2) 3.158 (2) 168 (2)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2131).

References

  1. Brockaman, R. W., Thomas, J. R., Bell, M. J. & Skipper, H. E. (1959). Cancer Res. 16, 167–170. [PubMed]
  2. Davis, Parke & Co. (1957). Chem. Abstr. 66, 18720g.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Freedlander, B. L. & French, F. A. (1958). Cancer Res. 16, 1286–89. [PubMed]
  5. French, F. A. & Blang, E. J. (1965). Cancer Res. 25, 1454–58. [PubMed]
  6. French, F. A. & Blang, E. J. (1966). J. Med. Chem. 9, 585–589. [DOI] [PubMed]
  7. Grii, S. & Khare, R. K. (1976). J. Antibact. Antifung. Agents Jpn, 4, 11–15.
  8. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Abingdon, England.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Vattum, S. & Rao, S. (1959). Proc. Indian Acad. Sci. 40, 56–64.
  11. Wilder Smith, A. E. (1964). Chem. Abstr. 61, 3118g–?.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811036658/ds2131sup1.cif

e-67-o2777-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036658/ds2131Isup2.hkl

e-67-o2777-Isup2.hkl (112KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036658/ds2131Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES