Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2751. doi: 10.1107/S1600536811038335

4a-Hydroxy-9-(4-hydroxyphenyl)-4,4a,5,6,9,9a-hexahydro-3H-xanthene-1,8(2H,7H)-dione

Liying Wang a, Weicheng Lu a, Yan Yang a, Yulin Zhu a,*
PMCID: PMC3201323  PMID: 22058809

Abstract

The title compound, C19H20O5, was synthesized by the reaction of 1,3-cyclo­hexa­nedione and 4-hy­droxy­benzaldehyde in the presence of PdCl2 and thio­urea. The tetra­hydro­pyran ring and the six-membered cyclo­hexene ring adopt envelope conformations, and the six-membered cyclo­hexane ring is in a chair conformation. The crystal packing is stabilized by classical inter­molecular O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions.

Related literature

For applications of related compounds, see: Menchen et al. (2003); Saint-Ruf et al. (1972); Reddy et al. (2009); Mehdi et al. (2011). For the synthesis of related compounds, see: Karade et al. (2007); Luna et al. (2009). For related structures, see: Loh et al. (2011); Yang et al. (2011).graphic file with name e-67-o2751-scheme1.jpg

Experimental

Crystal data

  • C19H20O5

  • M r = 328.35

  • Monoclinic, Inline graphic

  • a = 9.014 (4) Å

  • b = 10.242 (4) Å

  • c = 9.289 (4) Å

  • β = 108.194 (4)°

  • V = 814.7 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.35 × 0.30 × 0.20 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.967, T max = 0.981

  • 4840 measured reflections

  • 1876 independent reflections

  • 1652 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.113

  • S = 1.04

  • 1863 reflections

  • 219 parameters

  • 14 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811038335/rk2296sup1.cif

e-67-o2751-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038335/rk2296Isup2.hkl

e-67-o2751-Isup2.hkl (91.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811038335/rk2296Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O5i 0.82 2.07 2.852 (3) 160
O5—H5⋯O2ii 0.82 1.94 2.758 (4) 175
C4—H4B⋯O4iii 0.97 2.50 3.274 (5) 137
C8A—H13⋯O3iv 0.98 2.59 3.535 (4) 161
C12—H18⋯O2ii 0.93 2.55 3.251 (4) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank South China Normal University for financial support (grants SCNU G21096).

supplementary crystallographic information

Comment

Xanthenes are an important class of heterocyclic compounds which attract researchers by their spectroscopic and biological properties. Their derivatives had been widely used as dyes, fluorescent materials for visualization and in laser technologies (Menchen et al., 2003; Saint-Ruf et al., 1972; Reddy et al., 2009; Mehdi et al., 2011). Due to their wide range of applications, a well established method used for the construction of xanthene unit was set up, which was a Tandem Michael reaction between 1,3-cyclohexanedione and benzaldehyde (Luna et al., 2009; Karade et al., 2007). The reaction between 1,3-cyclohexanedione and 4-hydroxybenzaldehyde in the presence of thiourea and PdCl2 proceeded to give the title compound in isolated yield 86% (Fig. 1).

The molecular structure of the title compound is illustrated in Fig. 2. There are no unusual bond lengths and angles in the molecule. The tricyclo system is connected with a phenly ring at the C9 position. The tetrahydropyran ring (O1/C4B/C8A/C9/C9A/C4A) and the six-membered cyclohexene ring (C1–C4/C4A/C9A) adopt envelope conformations, the other six-membered cyclohexane ring (C4B/C5–C8/C8A) is in a chair conformation. Other than the published structure 4a-hydroxy-9-(2-methoxyphenyl)-4,4a,5,6,7,8,9,9a-octahydro-3H-xanthene-1,8(2H)-dione or 3,4,4a,5,6,7,9,9a-octahydro-4a-hydroxyl-9-(4-chlorophenyl)-1H-xanthene-1,8(2H)-dione (Loh et al., 2011; Yang et al., 2011), the main structure of this compound is a derivated xanthene–dione fused tricyclo system with a hydroxyl group at its C4b position. The hydroxy group in phenly ring, tetrahydropyran ring with a hydroxyl group and carbonyl O atom allow the formation of two intermolecular O4—H4···O5i and O5—H5···O2ii hydrogen bonds. There are weak intermolecular C4—H4B···O4iii, C8A—H13···O3iv and C12—H18···O2ii interactions which link molecules into chains. Symmetyry codes: (i) x+1, y, z+1; (ii) -x, y+1/2, -z+1; (iii) -x+1, y+1/2, -z+2; (iv) -x, y+1/2, -z+2.

Experimental

A mixture of 1,3-cyclohexanedione (1.12 g, 10 mmol), 4-hydroxybenzaldehyde (0.61 g, 5 mmol), thiourea (0.76 g,10 mmol) and PdCl2 (0.0020 mg) was refluxed in anhydrous acetonitrile (12 ml) at 373 K for 4 h. After being cooled to room temperature, the reaction mixture was poured into water. The white precipitate was filtered off with a silica pad, washed twice with anhydrous ethanol, and the filtrate was then dried under vacuum to yield the product in yield of 86%. Single crystals of the title compound were obtained by slow evaporation from anhydrous ethanol at room temperature to yield colourless, block-shaped crystal.

Refinement

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.98Å and O—H = 0.82Å, respectively. The Uiso = 1.2Ueq(C) and Uiso = 1.5Ueq(O). 3350 Friedel pairs were merged during the refinement.

Figures

Fig. 1.

Fig. 1.

Palladium(II) chloride catalyzed synthesis of the title compound.

Fig. 2.

Fig. 2.

The molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Crystal data

C19H20O5 F(000) = 348.0
Mr = 328.35 Dx = 1.339 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 1885 reflections
a = 9.014 (4) Å θ = 2.4–26.8°
b = 10.242 (4) Å µ = 0.10 mm1
c = 9.289 (4) Å T = 295 K
β = 108.194 (4)° Block, colourless
V = 814.7 (6) Å3 0.35 × 0.30 × 0.20 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer 1876 independent reflections
Radiation source: fine-focus sealed tube 1652 reflections with I > 2σ(I)
graphite Rint = 0.027
φ– and ω–scans θmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −11→11
Tmin = 0.967, Tmax = 0.981 k = −13→12
4840 measured reflections l = −10→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0658P)2 + 0.1291P] where P = (Fo2 + 2Fc2)/3
1863 reflections (Δ/σ)max = 0.001
219 parameters Δρmax = 0.41 e Å3
14 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C9 0.1903 (3) 0.1561 (2) 0.8768 (3) 0.0289 (5)
H9 0.1954 0.0612 0.8912 0.035*
C9A 0.3440 (3) 0.2024 (3) 0.8614 (3) 0.0307 (5)
C4A 0.4337 (3) 0.2922 (3) 0.9542 (3) 0.0354 (6)
C8A 0.1606 (3) 0.2192 (3) 1.0149 (3) 0.0307 (6)
H13 0.1037 0.3003 0.9782 0.037*
C5 0.2735 (3) 0.3317 (3) 1.2653 (3) 0.0407 (7)
H5A 0.2174 0.4116 1.2264 0.049*
H5B 0.3707 0.3551 1.3417 0.049*
C8 0.0566 (3) 0.1394 (3) 1.0823 (3) 0.0432 (7)
C6 0.1760 (4) 0.2471 (4) 1.3358 (4) 0.0483 (8)
H6A 0.1504 0.2962 1.4142 0.058*
H6B 0.2362 0.1712 1.3826 0.058*
C1 0.4046 (3) 0.1347 (3) 0.7535 (3) 0.0375 (6)
C4B 0.3076 (3) 0.2586 (3) 1.1383 (3) 0.0338 (6)
C4 0.5792 (4) 0.3490 (4) 0.9360 (4) 0.0492 (8)
H4A 0.6694 0.3118 1.0114 0.059*
H4B 0.5803 0.4426 0.9525 0.059*
C7 0.0251 (4) 0.2026 (4) 1.2164 (4) 0.0540 (9)
H7A −0.0287 0.1409 1.2619 0.065*
H7B −0.0428 0.2774 1.1820 0.065*
C2 0.5553 (4) 0.1824 (4) 0.7353 (5) 0.0656 (11)
H2A 0.6403 0.1290 0.7971 0.079*
H2B 0.5513 0.1715 0.6304 0.079*
C3 0.5892 (6) 0.3217 (5) 0.7787 (6) 0.0818 (15)
H3A 0.5151 0.3768 0.7058 0.098*
H3B 0.6930 0.3433 0.7760 0.098*
O1 0.4005 (2) 0.34289 (19) 1.0760 (2) 0.0357 (4)
O2 0.3391 (3) 0.0380 (2) 0.6848 (3) 0.0487 (6)
O4 0.3938 (2) 0.1433 (2) 1.1914 (2) 0.0435 (5)
H4 0.4795 0.1624 1.2506 0.065*
O5 −0.3220 (3) 0.2708 (3) 0.3538 (3) 0.0548 (6)
H5 −0.3326 0.3497 0.3398 0.082*
O3 0.0004 (4) 0.0370 (3) 1.0282 (3) 0.0698 (8)
C13 −0.1962 (3) 0.2473 (3) 0.4795 (3) 0.0340 (6)
C11 0.0184 (3) 0.3158 (3) 0.6905 (3) 0.0350 (6)
H19 0.0782 0.3830 0.7472 0.042*
C10 0.0564 (3) 0.1873 (3) 0.7339 (3) 0.0275 (5)
C14 −0.1588 (3) 0.1177 (3) 0.5195 (3) 0.0376 (6)
H16 −0.2179 0.0507 0.4616 0.045*
C15 −0.0334 (3) 0.0891 (3) 0.6455 (3) 0.0323 (6)
H15 −0.0086 0.0024 0.6717 0.039*
C12 −0.1073 (3) 0.3459 (3) 0.5641 (3) 0.0365 (6)
H18 −0.1312 0.4325 0.5367 0.044*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C9 0.0264 (11) 0.0269 (13) 0.0275 (13) −0.0013 (10) 0.0000 (10) 0.0017 (10)
C9A 0.0270 (11) 0.0307 (13) 0.0306 (13) 0.0014 (10) 0.0034 (10) 0.0007 (11)
C4A 0.0330 (12) 0.0342 (14) 0.0358 (14) −0.0032 (11) 0.0062 (11) −0.0044 (12)
C8A 0.0306 (12) 0.0304 (14) 0.0278 (13) −0.0016 (10) 0.0045 (10) 0.0013 (11)
C5 0.0407 (14) 0.0428 (17) 0.0348 (14) 0.0025 (13) 0.0064 (11) −0.0078 (13)
C8 0.0421 (14) 0.0477 (17) 0.0379 (15) −0.0097 (14) 0.0099 (12) 0.0021 (14)
C6 0.0621 (19) 0.0514 (19) 0.0340 (15) 0.0075 (16) 0.0186 (14) 0.0012 (14)
C1 0.0362 (13) 0.0389 (15) 0.0330 (14) 0.0042 (12) 0.0044 (11) −0.0019 (12)
C4B 0.0330 (13) 0.0341 (14) 0.0301 (14) −0.0014 (11) 0.0038 (11) −0.0037 (11)
C4 0.0409 (15) 0.0504 (18) 0.0570 (19) −0.0156 (14) 0.0165 (14) −0.0104 (16)
C7 0.0548 (19) 0.061 (2) 0.053 (2) −0.0116 (17) 0.0268 (16) −0.0054 (18)
C2 0.0526 (19) 0.079 (3) 0.075 (3) −0.0129 (19) 0.0353 (19) −0.029 (2)
C3 0.089 (3) 0.077 (3) 0.105 (3) −0.036 (3) 0.066 (3) −0.027 (3)
O1 0.0346 (9) 0.0329 (10) 0.0368 (10) −0.0065 (8) 0.0074 (8) −0.0081 (8)
O2 0.0484 (12) 0.0473 (13) 0.0444 (13) 0.0007 (10) 0.0059 (10) −0.0167 (10)
O4 0.0444 (11) 0.0390 (11) 0.0378 (11) 0.0083 (9) −0.0005 (8) 0.0008 (9)
O5 0.0443 (11) 0.0498 (14) 0.0473 (13) 0.0012 (10) −0.0190 (9) 0.0032 (11)
O3 0.0865 (18) 0.0670 (18) 0.0645 (18) −0.0429 (15) 0.0359 (15) −0.0146 (14)
C13 0.0264 (12) 0.0407 (15) 0.0285 (13) 0.0015 (11) −0.0008 (10) 0.0030 (11)
C11 0.0354 (13) 0.0309 (14) 0.0306 (13) −0.0029 (11) −0.0014 (10) 0.0005 (11)
C10 0.0235 (11) 0.0307 (13) 0.0250 (12) −0.0002 (10) 0.0031 (9) 0.0025 (10)
C14 0.0300 (12) 0.0396 (16) 0.0351 (14) −0.0079 (11) −0.0017 (11) −0.0065 (12)
C15 0.0319 (12) 0.0268 (13) 0.0345 (14) −0.0013 (10) 0.0050 (11) 0.0004 (11)
C12 0.0384 (13) 0.0300 (14) 0.0344 (14) 0.0038 (11) 0.0017 (11) 0.0051 (11)

Geometric parameters (Å, °)

C9—C9A 1.513 (3) C4—C3 1.518 (6)
C9—C10 1.523 (3) C4—H4A 0.9700
C9—C8A 1.533 (4) C4—H4B 0.9700
C9—H9 0.9800 C7—H7A 0.9700
C9A—C4A 1.345 (4) C7—H7B 0.9700
C9A—C1 1.458 (4) C2—C3 1.487 (6)
C4A—O1 1.360 (3) C2—H2A 0.9700
C4A—C4 1.492 (4) C2—H2B 0.9700
C8A—C4B 1.512 (3) C3—H3A 0.9700
C8A—C8 1.518 (4) C3—H3B 0.9700
C8A—H13 0.9800 O4—H4 0.8200
C5—C4B 1.508 (4) O5—C13 1.371 (3)
C5—C6 1.521 (5) O5—H5 0.8200
C5—H5A 0.9700 C13—C12 1.373 (4)
C5—H5B 0.9700 C13—C14 1.391 (4)
C8—O3 1.204 (4) C11—C12 1.388 (4)
C8—C7 1.507 (5) C11—C10 1.388 (4)
C6—C7 1.532 (5) C11—H19 0.9300
C6—H6A 0.9700 C10—C15 1.387 (4)
C6—H6B 0.9700 C14—C15 1.381 (4)
C1—O2 1.225 (4) C14—H16 0.9300
C1—C2 1.502 (5) C15—H15 0.9300
C4B—O4 1.416 (4) C12—H18 0.9300
C4B—O1 1.443 (3)
C9A—C9—C10 110.6 (2) C3—C4—H4A 109.5
C9A—C9—C8A 110.6 (2) C4A—C4—H4B 109.5
C10—C9—C8A 110.0 (2) C3—C4—H4B 109.5
C9A—C9—H9 108.5 H4A—C4—H4B 108.1
C10—C9—H9 108.5 C8—C7—C6 111.9 (3)
C8A—C9—H9 108.5 C8—C7—H7A 109.2
C4A—C9A—C1 119.1 (2) C6—C7—H7A 109.2
C4A—C9A—C9 122.6 (2) C8—C7—H7B 109.2
C1—C9A—C9 117.8 (2) C6—C7—H7B 109.2
C9A—C4A—O1 123.3 (2) H7A—C7—H7B 107.9
C9A—C4A—C4 124.6 (3) C3—C2—C1 113.4 (3)
O1—C4A—C4 112.0 (2) C3—C2—H2A 108.9
C4B—C8A—C8 109.8 (2) C1—C2—H2A 108.9
C4B—C8A—C9 114.0 (2) C3—C2—H2B 108.9
C8—C8A—C9 114.2 (2) C1—C2—H2B 108.9
C4B—C8A—H13 106.0 H2A—C2—H2B 107.7
C8—C8A—H13 106.0 C2—C3—C4 111.7 (4)
C9—C8A—H13 106.0 C2—C3—H3A 109.3
C4B—C5—C6 109.9 (3) C4—C3—H3A 109.3
C4B—C5—H5A 109.7 C2—C3—H3B 109.3
C6—C5—H5A 109.7 C4—C3—H3B 109.3
C4B—C5—H5B 109.7 H3A—C3—H3B 107.9
C6—C5—H5B 109.7 C4A—O1—C4B 114.3 (2)
H5A—C5—H5B 108.2 C4B—O4—H4 109.5
O3—C8—C7 123.7 (3) C13—O5—H5 109.5
O3—C8—C8A 122.0 (3) O5—C13—C12 122.5 (3)
C7—C8—C8A 114.2 (3) O5—C13—C14 117.5 (2)
C5—C6—C7 111.1 (3) C12—C13—C14 120.0 (2)
C5—C6—H6A 109.4 C12—C11—C10 121.2 (3)
C7—C6—H6A 109.4 C12—C11—H19 119.4
C5—C6—H6B 109.4 C10—C11—H19 119.4
C7—C6—H6B 109.4 C15—C10—C11 118.0 (2)
H6A—C6—H6B 108.0 C15—C10—C9 121.4 (2)
O2—C1—C9A 121.3 (3) C11—C10—C9 120.6 (2)
O2—C1—C2 120.7 (3) C15—C14—C13 119.6 (3)
C9A—C1—C2 117.9 (3) C15—C14—H16 120.2
O4—C4B—O1 108.4 (2) C13—C14—H16 120.2
O4—C4B—C5 111.4 (2) C14—C15—C10 121.3 (3)
O1—C4B—C5 107.6 (2) C14—C15—H15 119.3
O4—C4B—C8A 107.3 (2) C10—C15—H15 119.3
O1—C4B—C8A 109.7 (2) C13—C12—C11 119.8 (3)
C5—C4B—C8A 112.4 (2) C13—C12—H18 120.1
C4A—C4—C3 110.8 (3) C11—C12—H18 120.1
C4A—C4—H4A 109.5
C10—C9—C9A—C4A 118.8 (3) C9—C8A—C4B—C5 174.6 (2)
C8A—C9—C9A—C4A −3.4 (3) C9A—C4A—C4—C3 15.5 (5)
C10—C9—C9A—C1 −68.9 (3) O1—C4A—C4—C3 −163.9 (3)
C8A—C9—C9A—C1 169.0 (2) O3—C8—C7—C6 132.1 (4)
C1—C9A—C4A—O1 −167.6 (3) C8A—C8—C7—C6 −50.7 (4)
C9—C9A—C4A—O1 4.7 (4) C5—C6—C7—C8 52.4 (4)
C1—C9A—C4A—C4 13.1 (4) O2—C1—C2—C3 159.2 (4)
C9—C9A—C4A—C4 −174.7 (3) C9A—C1—C2—C3 −24.1 (5)
C9A—C9—C8A—C4B −26.3 (3) C1—C2—C3—C4 52.2 (6)
C10—C9—C8A—C4B −148.8 (2) C4A—C4—C3—C2 −47.4 (5)
C9A—C9—C8A—C8 −153.6 (2) C9A—C4A—O1—C4B 25.7 (4)
C10—C9—C8A—C8 83.9 (3) C4—C4A—O1—C4B −154.9 (2)
C4B—C8A—C8—O3 −131.1 (3) O4—C4B—O1—C4A 62.6 (3)
C9—C8A—C8—O3 −1.7 (4) C5—C4B—O1—C4A −176.7 (2)
C4B—C8A—C8—C7 51.6 (3) C8A—C4B—O1—C4A −54.2 (3)
C9—C8A—C8—C7 −179.0 (3) C12—C11—C10—C15 1.1 (4)
C4B—C5—C6—C7 −56.4 (4) C12—C11—C10—C9 −177.3 (2)
C4A—C9A—C1—O2 167.8 (3) C9A—C9—C10—C15 117.6 (3)
C9—C9A—C1—O2 −4.8 (4) C8A—C9—C10—C15 −120.0 (2)
C4A—C9A—C1—C2 −8.8 (4) C9A—C9—C10—C11 −64.0 (3)
C9—C9A—C1—C2 178.6 (3) C8A—C9—C10—C11 58.4 (3)
C6—C5—C4B—O4 −61.1 (3) O5—C13—C14—C15 −179.8 (3)
C6—C5—C4B—O1 −179.8 (2) C12—C13—C14—C15 0.9 (4)
C6—C5—C4B—C8A 59.3 (3) C13—C14—C15—C10 0.2 (4)
C8—C8A—C4B—O4 67.0 (3) C11—C10—C15—C14 −1.1 (4)
C9—C8A—C4B—O4 −62.6 (3) C9—C10—C15—C14 177.3 (2)
C8—C8A—C4B—O1 −175.5 (2) O5—C13—C12—C11 179.8 (3)
C9—C8A—C4B—O1 54.9 (3) C14—C13—C12—C11 −0.9 (4)
C8—C8A—C4B—C5 −55.9 (3) C10—C11—C12—C13 −0.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4···O5i 0.82 2.07 2.852 (3) 160.
O5—H5···O2ii 0.82 1.94 2.758 (4) 175.
C4—H4B···O4iii 0.97 2.50 3.274 (5) 137.
C8A—H13···O3iv 0.98 2.59 3.535 (4) 161.
C12—H18···O2ii 0.93 2.55 3.251 (4) 132.

Symmetry codes: (i) x+1, y, z+1; (ii) −x, y+1/2, −z+1; (iii) −x+1, y+1/2, −z+2; (iv) −x, y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2296).

References

  1. Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Karade, H. N., Sathe, M. & Kaushik, M. P. (2007). ARKIVOC, xiii, 252–258.
  3. Loh, W.-S., Fun, H.-K., Reddy, B. P., Vijayakumar, V. & Sarveswari, S. (2011). Acta Cryst. E67, o35–o36. [DOI] [PMC free article] [PubMed]
  4. Luna, L. E., Cravero, R. M., Faccio, R., Pardo, H., Mombru, A. W. & Seoane, G. (2009). Eur. J. Org. Chem. pp. 3052–3057.
  5. Mehdi, S. H., Sulaiman, O., Ghalib, R. M., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o1719–o1720. [DOI] [PMC free article] [PubMed]
  6. Menchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, W., Sun, D., Rosenblum, B. B., Khan, S. H. & Taing, M. (2003). US Patent 6 583 168.
  7. Reddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o916. [DOI] [PMC free article] [PubMed]
  8. Saint-Ruf, G., De, A. & Hieu, H. T. (1972). Bull. Chim. Ther. 7, 83–86.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Yang, Y., Lu, W., Lian, C. & Zhu, Y. (2011). Acta Cryst. E67, o2386. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811038335/rk2296sup1.cif

e-67-o2751-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038335/rk2296Isup2.hkl

e-67-o2751-Isup2.hkl (91.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811038335/rk2296Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES