Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2735. doi: 10.1107/S1600536811038062

4-Nitro-N-(3-nitro­phen­yl)benzamide

Dean H Johnston a,*, Colin R Taylor a
PMCID: PMC3201324  PMID: 22065512

Abstract

The title compound, C13H9N3O5, prepared as a solid derivative of 3-nitro­analine via reaction with 4-nitro­benzoyl chloride, crystallizes in a chiral space group. The mol­ecule is non-planar with a dihedral angle of 26.1 (1)° between the two benzene rings. Both nitro groups are twisted slightly out of the plane of their corresponding benzene rings, making dihedral angles of 10.7 (4) and 13.5 (4)°. The mol­ecules are stacked along the a axis with benzene ring centroid–centroid distances of 3.8878 (6) Å. In the crystal, inter­molecular benzene C—H⋯O inter­actions involving one nitro group and the carbonyl group link the mol­ecules, forming chains along [001]. An additional set of aromatic C—H⋯O inter­actions with the second nitro group form chains along [101], connecting adjacent chains to create layers perpendicular to the b axis.

Related literature

For the preparation, properties and applications of the title compound, see: Kichitaro (1954); Shchel’tsyn et al. (1972); Kang et al. (2008). For related structures, see: Hariharan & Srinivasan (1990); Adams et al. (2001); Novozhilova et al. (1986); Sun et al. (2009). The title compound represents a relatively unusual example of an achiral mol­ecule in a chiral (Sohncke) space group with the conformational flexibility to convert to its mirror image (Pidcock, 2005).graphic file with name e-67-o2735-scheme1.jpg

Experimental

Crystal data

  • C13H9N3O5

  • M r = 287.23

  • Monoclinic, Inline graphic

  • a = 3.8878 (6) Å

  • b = 21.686 (3) Å

  • c = 7.3919 (11) Å

  • β = 90.294 (11)°

  • V = 623.20 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 200 K

  • 0.45 × 0.20 × 0.12 mm

Data collection

  • Bruker SMART X2S benchtop diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.737, T max = 0.989

  • 3940 measured reflections

  • 1136 independent reflections

  • 1008 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.083

  • S = 1.07

  • 1136 reflections

  • 190 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 and GIS (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); molecular graphics: PLATON (Spek, 2009), Mercury (Macrae et al., 2008), and POV-RAY (Cason, 2004); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811038062/zl2389sup1.cif

e-67-o2735-sup1.cif (20.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038062/zl2389Isup2.hkl

e-67-o2735-Isup2.hkl (56.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811038062/zl2389Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536811038062/zl2389Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.50 3.375 (4) 153
C5—H5⋯O3ii 0.95 2.38 3.263 (4) 155
C13—H13⋯O5iii 0.95 2.51 3.421 (4) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported in part by the National Science Foundation through grant CHE-0532510.

supplementary crystallographic information

Comment

The title compound was prepared as a solid derivative of 3-nitroanaline for a qualitative organic analysis laboratory course. The starting material was 3-nitroaniline, and reaction with 4-nitrobenzoyl chloride produced a p-nitrobenzamide derivative.

The title compound crystallizes in the chiral spacegroup P21 and represents a relatively unusual example of an achiral molecule in a chiral (Sohncke) space group with the conformational flexibility to convert to its mirror image (Pidcock, 2005).

The molecule (Fig. 1) is non-planar with a dihedral angle of approximately 26.1 (1)° between the two aromatic rings. Both nitro groups are twisted slightly out of the plane of their corresponding aromatic rings, with dihedral angles of 10.7 (4) (N1, O1, O2) and 13.5 (4) (N3, O4, O5) degrees.

In the unit cell, the molecules are stacked along the a axis (Fig. 2) with aromatic ring centroid-centroid distances of 3.8878 (6) Å, corresponding precisely to the length of the a axis. The ring numbered C1–C6 stacks with a plane-centroid distance of 3.392 (2) Å and a ring shift of 1.899 (4) Å. The ring numbered C8–C13 stacks with a plane-centroid distance of 3.483 (2) Å and a ring shift of 1.728 (4) Å.

The title compound forms hydrogen bonding interactions with adjacent molecules along two different axes to create layers perpendicular to the b axis. The C2—H2···O1i and C5—H5···O3ii interactions (Fig. 3, Fig. 4, Table 1) form chains along [001] (all symmetry operators as in Table 1). Additional C13—H13···O5iii interactions also connect adjacent molecules, with the resulting chains running along [101] (Fig. 5). The position of the N—H in the molecule prevents it from forming a significant hydrogen bonding interaction (H2N···O4iii distance of 2.65 Å, greater than the sum of the van der Waals radii).

Experimental

Approximately 1.0 g (7.24 mmol) of 3-nitroaniline was dissolved in 3.0 ml of pyridine in a small test tube. To this was added 0.5 g (2.70 mmol) of 4-nitrobenzoyl chloride. This mixture was warmed slightly with a water bath until homogeneous, allowed to cool to room temperature, and then poured into 10.0 ml of water. The solution was allowed to separate and the top layer was decanted. The residue was stirred with 5.0 ml of a 5% Na2CO3 solution, and then cooled in an ice bath to induce crystallization. The crude crystals were filtered, and then recrystallized from absolute ethanol to produce 4-nitro-N-(3-nitrophenyl)benzamide, mp = 502–503 K (lit = 500–501 K, Kang et al. (2008).)

Refinement

All hydrogen atoms were located in difference maps and refined with the atom positions constrained to the external bisector of the appropriate X—C—Y or X—N—Y atom with C—H distances of 0.95 Å and an N—H distance of 0.88 Å. A riding model was used for all H atoms with Uiso(H) = 1.2 times Uiso(C) or Uiso(N). In the absence of significant anomalous scattering effects Friedel pairs were merged in the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom labeling scheme drawn with 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The packing of the title compound viewed down the a axis drawn with 50% probability displacement ellipsoids for non-H atoms.

Fig. 3.

Fig. 3.

Ball and stick diagram of the hydrogen bonding interactions of the title compound with participating atoms labeled. For operators for symmetry created atoms (omitted here) see Table 1.

Fig. 4.

Fig. 4.

Perspective view down the a axis of the packing of molecules with hydrogen bonding interactions represented by dashed lines.

Fig. 5.

Fig. 5.

Perspective view down the c axis of the packing of molecules with hydrogen bonding interactions represented by dashed lines. Hydrogen bonds connect molecules along [001] (the viewing axis) and [101].

Crystal data

C13H9N3O5 Dx = 1.531 Mg m3
Mr = 287.23 Melting point: 502 K
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 3.8878 (6) Å Cell parameters from 1373 reflections
b = 21.686 (3) Å θ = 2.8–24.6°
c = 7.3919 (11) Å µ = 0.12 mm1
β = 90.294 (11)° T = 200 K
V = 623.20 (16) Å3 Block, clear colourless
Z = 2 0.45 × 0.20 × 0.12 mm
F(000) = 296

Data collection

Bruker SMART X2S benchtop diffractometer 1136 independent reflections
Radiation source: fine-focus sealed tube 1008 reflections with I > 2σ(I)
doubly curved silicon crystal Rint = 0.032
Detector resolution: 8.3330 pixels mm-1 θmax = 25.1°, θmin = 2.8°
ω scans h = −4→3
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −25→25
Tmin = 0.737, Tmax = 0.989 l = −8→8
3940 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: difference Fourier map
wR(F2) = 0.083 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.046P)2 + 0.048P] where P = (Fo2 + 2Fc2)/3
1136 reflections (Δ/σ)max < 0.001
190 parameters Δρmax = 0.13 e Å3
1 restraint Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5757 (8) 0.50143 (14) 0.7761 (4) 0.0293 (7)
C2 0.4065 (8) 0.55485 (16) 0.8360 (4) 0.0342 (8)
H2 0.3754 0.5616 0.9618 0.041*
C3 0.2833 (8) 0.59829 (15) 0.7109 (4) 0.0335 (7)
H3 0.1647 0.6342 0.7499 0.040*
C4 0.3402 (8) 0.58731 (15) 0.5270 (4) 0.0305 (7)
C5 0.5099 (8) 0.53518 (14) 0.4631 (4) 0.0324 (7)
H5 0.5439 0.5292 0.3372 0.039*
C6 0.6291 (8) 0.49190 (14) 0.5889 (4) 0.0310 (7)
H6 0.7462 0.4560 0.5487 0.037*
N1 0.2079 (8) 0.63348 (12) 0.3938 (4) 0.0376 (7)
O1 0.3012 (8) 0.62833 (13) 0.2344 (3) 0.0634 (9)
O2 0.0141 (7) 0.67441 (11) 0.4478 (3) 0.0505 (7)
C7 0.7131 (8) 0.45847 (15) 0.9221 (4) 0.0331 (7)
O3 0.7597 (8) 0.47773 (12) 1.0776 (3) 0.0533 (7)
N2 0.7873 (7) 0.39887 (12) 0.8706 (3) 0.0333 (6)
H2N 0.7336 0.3889 0.7585 0.040*
C8 0.9407 (8) 0.35147 (14) 0.9776 (4) 0.0288 (7)
C9 1.0551 (8) 0.36141 (15) 1.1561 (4) 0.0300 (7)
H9 1.0295 0.4004 1.2133 0.036*
C10 1.2070 (8) 0.31193 (15) 1.2457 (4) 0.0293 (7)
C11 1.2552 (8) 0.25372 (14) 1.1709 (4) 0.0317 (7)
H11 1.3622 0.2214 1.2371 0.038*
C12 1.1382 (9) 0.24514 (16) 0.9931 (4) 0.0352 (8)
H12 1.1654 0.2061 0.9368 0.042*
C13 0.9830 (8) 0.29302 (14) 0.8981 (4) 0.0318 (7)
H13 0.9045 0.2862 0.7778 0.038*
N3 1.3347 (7) 0.32240 (13) 1.4340 (3) 0.0344 (6)
O4 1.2424 (7) 0.36973 (11) 1.5145 (3) 0.0508 (7)
O5 1.5281 (7) 0.28377 (13) 1.5016 (3) 0.0543 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0323 (17) 0.0299 (17) 0.0255 (14) −0.0032 (15) −0.0023 (13) 0.0021 (12)
C2 0.0383 (18) 0.0392 (19) 0.0253 (14) 0.0005 (16) 0.0027 (13) −0.0022 (13)
C3 0.0303 (17) 0.0330 (18) 0.0371 (17) 0.0016 (15) 0.0012 (13) −0.0011 (14)
C4 0.0320 (16) 0.0287 (17) 0.0308 (16) −0.0020 (14) −0.0026 (12) 0.0035 (13)
C5 0.0403 (18) 0.0312 (18) 0.0257 (15) −0.0023 (15) −0.0015 (13) −0.0001 (13)
C6 0.0346 (18) 0.0283 (17) 0.0301 (15) 0.0007 (14) 0.0000 (13) −0.0031 (12)
N1 0.0463 (18) 0.0298 (15) 0.0367 (15) 0.0001 (14) −0.0049 (13) 0.0033 (13)
O1 0.099 (2) 0.0583 (19) 0.0333 (14) 0.0236 (17) 0.0009 (14) 0.0090 (13)
O2 0.0610 (17) 0.0369 (15) 0.0537 (15) 0.0135 (14) 0.0044 (13) 0.0066 (12)
C7 0.0341 (18) 0.037 (2) 0.0277 (16) 0.0001 (15) 0.0005 (13) −0.0016 (13)
O3 0.085 (2) 0.0503 (15) 0.0244 (12) 0.0198 (15) −0.0099 (12) −0.0062 (11)
N2 0.0453 (16) 0.0324 (15) 0.0220 (12) −0.0026 (13) −0.0077 (11) 0.0010 (11)
C8 0.0286 (17) 0.0346 (18) 0.0233 (14) −0.0032 (14) 0.0019 (12) 0.0037 (12)
C9 0.0314 (17) 0.0344 (18) 0.0240 (15) −0.0012 (14) −0.0021 (12) 0.0000 (13)
C10 0.0269 (17) 0.0427 (18) 0.0182 (12) −0.0047 (14) −0.0033 (12) 0.0011 (13)
C11 0.0304 (17) 0.0335 (19) 0.0312 (16) 0.0005 (15) −0.0003 (13) 0.0033 (14)
C12 0.0384 (19) 0.0336 (18) 0.0337 (16) 0.0003 (15) 0.0013 (14) −0.0027 (14)
C13 0.0346 (18) 0.0376 (18) 0.0232 (14) −0.0045 (15) −0.0032 (13) −0.0017 (13)
N3 0.0336 (15) 0.0445 (18) 0.0251 (12) −0.0069 (14) −0.0066 (11) 0.0053 (13)
O4 0.0796 (19) 0.0431 (15) 0.0297 (12) −0.0025 (14) −0.0110 (12) −0.0067 (11)
O5 0.0541 (16) 0.0731 (19) 0.0356 (12) 0.0159 (15) −0.0163 (11) 0.0044 (13)

Geometric parameters (Å, °)

C1—C2 1.405 (5) N2—C8 1.426 (4)
C1—C6 1.415 (4) N2—H2N 0.8800
C1—C7 1.520 (4) C8—C13 1.407 (4)
C2—C3 1.403 (4) C8—C9 1.407 (4)
C2—H2 0.9500 C9—C10 1.391 (4)
C3—C4 1.399 (4) C9—H9 0.9500
C3—H3 0.9500 C10—C11 1.391 (4)
C4—C5 1.393 (4) C10—N3 1.493 (4)
C4—N1 1.494 (4) C11—C12 1.401 (4)
C5—C6 1.398 (4) C11—H11 0.9500
C5—H5 0.9500 C12—C13 1.390 (4)
C6—H6 0.9500 C12—H12 0.9500
N1—O2 1.232 (4) C13—H13 0.9500
N1—O1 1.240 (4) N3—O5 1.230 (3)
C7—O3 1.235 (4) N3—O4 1.240 (4)
C7—N2 1.378 (4)
C2—C1—C6 120.0 (3) C7—N2—C8 127.6 (3)
C2—C1—C7 116.4 (2) C7—N2—H2N 116.2
C6—C1—C7 123.5 (3) C8—N2—H2N 116.2
C3—C2—C1 120.3 (3) C13—C8—C9 119.5 (3)
C3—C2—H2 119.8 C13—C8—N2 117.9 (2)
C1—C2—H2 119.8 C9—C8—N2 122.6 (3)
C4—C3—C2 118.1 (3) C10—C9—C8 117.4 (3)
C4—C3—H3 120.9 C10—C9—H9 121.3
C2—C3—H3 120.9 C8—C9—H9 121.3
C5—C4—C3 123.0 (3) C9—C10—C11 124.7 (2)
C5—C4—N1 118.9 (2) C9—C10—N3 117.7 (3)
C3—C4—N1 118.1 (3) C11—C10—N3 117.6 (3)
C4—C5—C6 118.4 (3) C10—C11—C12 116.7 (3)
C4—C5—H5 120.8 C10—C11—H11 121.6
C6—C5—H5 120.8 C12—C11—H11 121.6
C5—C6—C1 120.2 (3) C13—C12—C11 120.9 (3)
C5—C6—H6 119.9 C13—C12—H12 119.6
C1—C6—H6 119.9 C11—C12—H12 119.6
O2—N1—O1 123.7 (3) C12—C13—C8 120.9 (3)
O2—N1—C4 118.6 (3) C12—C13—H13 119.6
O1—N1—C4 117.7 (3) C8—C13—H13 119.6
O3—C7—N2 123.0 (3) O5—N3—O4 123.1 (3)
O3—C7—C1 120.2 (3) O5—N3—C10 118.4 (3)
N2—C7—C1 116.8 (3) O4—N3—C10 118.5 (3)
C6—C1—C2—C3 1.4 (4) O3—C7—N2—C8 −3.5 (5)
C7—C1—C2—C3 177.5 (3) C1—C7—N2—C8 175.1 (3)
C1—C2—C3—C4 −1.2 (5) C7—N2—C8—C13 178.0 (3)
C2—C3—C4—C5 0.6 (5) C7—N2—C8—C9 −3.1 (5)
C2—C3—C4—N1 179.8 (3) C13—C8—C9—C10 0.1 (4)
C3—C4—C5—C6 −0.1 (5) N2—C8—C9—C10 −178.7 (3)
N1—C4—C5—C6 −179.3 (3) C8—C9—C10—C11 0.4 (4)
C4—C5—C6—C1 0.2 (5) C8—C9—C10—N3 178.9 (3)
C2—C1—C6—C5 −0.8 (5) C9—C10—C11—C12 −0.5 (4)
C7—C1—C6—C5 −176.7 (3) N3—C10—C11—C12 −179.0 (3)
C5—C4—N1—O2 169.1 (3) C10—C11—C12—C13 0.2 (5)
C3—C4—N1—O2 −10.1 (4) C11—C12—C13—C8 0.3 (5)
C5—C4—N1—O1 −11.0 (4) C9—C8—C13—C12 −0.4 (5)
C3—C4—N1—O1 169.8 (3) N2—C8—C13—C12 178.4 (3)
C2—C1—C7—O3 −19.7 (5) C9—C10—N3—O5 −165.8 (3)
C6—C1—C7—O3 156.3 (3) C11—C10—N3—O5 12.8 (4)
C2—C1—C7—N2 161.6 (3) C9—C10—N3—O4 13.9 (4)
C6—C1—C7—N2 −22.4 (4) C11—C10—N3—O4 −167.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···O1i 0.95 2.50 3.375 (4) 153.
C5—H5···O3ii 0.95 2.38 3.263 (4) 155.
C13—H13···O5iii 0.95 2.51 3.421 (4) 162.

Symmetry codes: (i) x, y, z+1; (ii) x, y, z−1; (iii) x−1, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2389).

References

  1. Adams, H., Bernad, P. L. Jr, Eggleston, D. S., Haltiwanger, R. C., Harris, K. D. M., Hembury, G. A., Hunter, C. A., Livingstone, D. J., Kariuki, B. M. & McCabe, J. F. (2001). Chem. Commun. pp. 1500–1501.
  2. Bruker (2009). APEX2, GIS, SAINT, and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cason, C. J. (2004). POV-RAY Persistence of Vision Raytracer Pty Ltd, Williamstown, Australia.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Hariharan, M. & Srinivasan, R. (1990). Acta Cryst. C46, 1056–1058.
  6. Kang, S.-B., Yim, H.-S., Won, J.-E., Kim, M.-J., Kim, J.-J., Kim, H.-K., Lee, S.-G. & Yoon, Y.-J. (2008). Bull. Korean Chem. Soc. 29, 1025–1032.
  7. Kichitaro, T. (1954). Yakugaku Zasshi, 73, 810–817.
  8. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  9. Novozhilova, N. V., Magomedova, N. S., Tudorovskaya, G. L. & Bel’skii, V. K. (1986). Zh. Strukt. Khim. 27, 169–175.
  10. Pidcock, E. (2005). Chem. Commun. pp. 3457–3459. [DOI] [PubMed]
  11. Shchel’tsyn, V. K., Vaisman, I. L., Gitis, S. S., Kozhevnikova, N. L. & Ovchinnikova, L. A. (1972). Sin. Anal. Strukt. Org. Soedin. 4, 46–50.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Sun, Y., Wang, G. & Guo, W. (2009). Tetrahedron, 65, 3480–3485.
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811038062/zl2389sup1.cif

e-67-o2735-sup1.cif (20.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038062/zl2389Isup2.hkl

e-67-o2735-Isup2.hkl (56.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811038062/zl2389Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536811038062/zl2389Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES