Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2810. doi: 10.1107/S1600536811039456

7-Chloro-3-phenyl­benzo[4,5]thia­zolo[2,3-c][1,2,4]triazole

Hoong-Kun Fun a,*,, Safra Izuani Jama Asik a, M Himaja b, D Munirajasekhar b, B K Sarojini c
PMCID: PMC3201329  PMID: 22058831

Abstract

In the title compound, C14H8ClN3S, the dihedral angle between the approximately planar triple-fused ring system (r.m.s. deviation = 0.065 Å) and the pendant phenyl ring is 62.25 (5)°. In the crystal, mol­ecules are linked into infinite chains along the c-axis direction by C—H⋯N hydrogen bonds. Aromatic π–π stacking inter­actions [centroid–centroid distances = 3.7499 (8) and 3.5644 (8) Å] and weak C—H⋯π inter­actions are also observed.

Related literature

For the biological activity of benzothio­zole derivatives, see: Yaseen et al. (2006); Kini et al. (2007); Munirajasekhar et al. (2011); Gurupadayya et al. (2008); Bowyer et al. (2007); Mittal et al. (2007); Pozas et al. (2005); Rana et al. (2008).graphic file with name e-67-o2810-scheme1.jpg

Experimental

Crystal data

  • C14H8ClN3S

  • M r = 285.74

  • Monoclinic, Inline graphic

  • a = 16.9941 (13) Å

  • b = 5.8895 (5) Å

  • c = 12.0930 (9) Å

  • β = 91.770 (1)°

  • V = 1209.77 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 296 K

  • 0.41 × 0.31 × 0.18 mm

Data collection

  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.828, T max = 0.919

  • 14981 measured reflections

  • 4033 independent reflections

  • 3342 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.101

  • S = 1.02

  • 4033 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811039456/hb6414sup1.cif

e-67-o2810-sup1.cif (17.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039456/hb6414Isup2.hkl

e-67-o2810-Isup2.hkl (197.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039456/hb6414Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯N3i 0.93 2.57 3.3135 (16) 138
C4—H4ACg3ii 0.93 2.92 3.5851 (15) 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HKF and SIJA thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grants (Nos.1001/PFIZIK/811160 and 1001/PFIZIK/ 811151).

supplementary crystallographic information

Comment

Benzothiazole derivatives have emerged as significant components in various diversified therapeutic applications. Literature review reveals that benzothiazoles and their derivatives show considerable activity including potent inhibition of human immunodeficiency virus type 1 (HIV-1), replication by HIV-1 protease inhibition (Yaseen et al.,2006), antitumor (Kini et al., 2007), anthelmintic (Munirajasekhar et al., 2011), analgesic, anti-inflammatory (Gurupadayya et al.,2008), antimalarial (Bowyer et al.,2007), antifungal (Mittal et al., 2007), anticandidous (Pozas et al.,2005) and various CNS activities (Rana et al., 2008). The present work describes the synthesis and crystal structure of the title compound, 7-Chloro-3- phenylbenzo[4,5]thiazolo[2,3-c][1,2,4]triazole, which was prepared from the reaction of 2-benzylidene-1-(6-chlorobenzo[d]thiazol-2-yl)hydrazine treated with iodobenzene diacetate.

In the title compound of (I), (Fig. 1), the benzene (C9–C14) ring makes dihedral angles of 5.59 (7) and 2.45 (6)° with the thiazole ring (S1/N1/C8/C9/C14) and the mean plane of triazole (N1–N3/C7/C8) ring, respectively. The dihedral angle between the two benzene (C1–C6 and C9–C14) rings is 64.11 (6)°.

In the crystal structure of (Fig. 2), the molecules are linked into infinite chains along the c axis by C10—H10A···N3 hydrogen bonds. π–π stacking interactions are observed between the triazole (N1–N3/C7/C8) ; centroid Cg2) and benzene (C1–C6) ; centroid Cg3) rings with a distance of Cg2···Cg3 = 3.7499 (8) Å and between triazole (N1–N3/C7/C8) ; centroid Cg2) and benzene (C9–C14) ; centroid Cg4) rings with a separation of Cg2···Cg4 = 3.5644 (8) Å. Furthermore the crystal structure is stabilized by weak C—H···π interactions (Table 1) with distance of 3.5851 (15) Å.

Experimental

To a solution of the 2-benzylidene-1-(6-chlorobenzo[d]thiazol-2-yl)hydrazine (2 mmol) in dichloromethane (10 mL) at room temperature, iodobenzene diacetate (2 mmol) was added in 2–3 portions over 5 min. The resultant reaction mixture was stirred for 45 min. The solvent was evaporated under high vacuum and then purified by column chromatography (40% ethyl acetate in chloroform). The product was recrystalized from ethanol to give colourless blocks.

Refinement

All the H atoms were placed in calculated positions with C–H = 0.93 Å. The Uiso values were constrained to be 1.2Ueq of the carrier atom for the H atoms.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The crystal packing, viewed along the b-axis, showing the molecules linked into infinite chains along the c axis. Hydrogen atoms that not involved in hydrogen bonding (dashed lines) are omitted for clarity.

Crystal data

C14H8ClN3S F(000) = 584
Mr = 285.74 Dx = 1.569 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6868 reflections
a = 16.9941 (13) Å θ = 2.4–31.4°
b = 5.8895 (5) Å µ = 0.47 mm1
c = 12.0930 (9) Å T = 296 K
β = 91.770 (1)° Block, colourless
V = 1209.77 (16) Å3 0.41 × 0.31 × 0.18 mm
Z = 4

Data collection

Bruker APEX DUO CCD diffractometer 4033 independent reflections
Radiation source: fine-focus sealed tube 3342 reflections with I > 2σ(I)
graphite Rint = 0.021
φ and ω scans θmax = 31.7°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −23→25
Tmin = 0.828, Tmax = 0.919 k = −8→6
14981 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.051P)2 + 0.2986P] where P = (Fo2 + 2Fc2)/3
4033 reflections (Δ/σ)max < 0.001
172 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.14776 (2) 0.26324 (6) 0.56813 (2) 0.04078 (10)
Cl1 0.03783 (2) 1.00056 (7) 0.32558 (4) 0.05570 (12)
N1 0.24962 (6) 0.23101 (16) 0.41312 (8) 0.03099 (19)
N2 0.31988 (7) −0.07810 (19) 0.44194 (8) 0.0384 (2)
N3 0.26554 (7) −0.06213 (19) 0.52726 (9) 0.0401 (2)
C1 0.35771 (8) −0.0067 (2) 0.19026 (10) 0.0383 (3)
H1A 0.3299 −0.1423 0.1940 0.046*
C2 0.40171 (9) 0.0410 (3) 0.09818 (11) 0.0454 (3)
H2A 0.4029 −0.0621 0.0400 0.055*
C3 0.44371 (8) 0.2413 (3) 0.09278 (12) 0.0455 (3)
H3A 0.4736 0.2719 0.0314 0.055*
C4 0.44144 (8) 0.3969 (2) 0.17883 (11) 0.0430 (3)
H4A 0.4698 0.5316 0.1750 0.052*
C5 0.39691 (7) 0.3515 (2) 0.27057 (10) 0.0371 (2)
H5A 0.3948 0.4566 0.3278 0.045*
C6 0.35531 (6) 0.1482 (2) 0.27673 (9) 0.0309 (2)
C7 0.30952 (7) 0.0965 (2) 0.37544 (9) 0.0316 (2)
C8 0.22587 (7) 0.1233 (2) 0.50709 (9) 0.0344 (2)
C9 0.20460 (6) 0.42020 (19) 0.38183 (9) 0.0297 (2)
C10 0.21108 (7) 0.5535 (2) 0.28811 (9) 0.0340 (2)
H10A 0.2495 0.5239 0.2369 0.041*
C11 0.15893 (8) 0.7317 (2) 0.27264 (11) 0.0382 (3)
H11A 0.1620 0.8234 0.2103 0.046*
C12 0.10195 (7) 0.7744 (2) 0.34998 (11) 0.0383 (3)
C13 0.09432 (7) 0.6425 (2) 0.44419 (10) 0.0386 (3)
H13A 0.0559 0.6734 0.4952 0.046*
C14 0.14623 (7) 0.4629 (2) 0.45909 (9) 0.0334 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.04819 (18) 0.04410 (18) 0.03082 (15) −0.00110 (13) 0.01342 (12) 0.00439 (12)
Cl1 0.0502 (2) 0.0465 (2) 0.0703 (3) 0.01117 (15) −0.00102 (16) 0.00577 (17)
N1 0.0376 (5) 0.0308 (5) 0.0248 (4) −0.0036 (4) 0.0054 (3) 0.0017 (3)
N2 0.0467 (5) 0.0359 (5) 0.0328 (5) 0.0011 (4) 0.0035 (4) 0.0031 (4)
N3 0.0516 (6) 0.0377 (5) 0.0313 (5) −0.0006 (5) 0.0058 (4) 0.0061 (4)
C1 0.0435 (6) 0.0336 (6) 0.0379 (6) −0.0007 (5) 0.0065 (5) −0.0041 (5)
C2 0.0540 (7) 0.0473 (7) 0.0357 (6) 0.0068 (6) 0.0112 (5) −0.0061 (5)
C3 0.0442 (7) 0.0528 (8) 0.0403 (6) 0.0066 (6) 0.0146 (5) 0.0078 (6)
C4 0.0399 (6) 0.0421 (7) 0.0475 (7) −0.0046 (5) 0.0072 (5) 0.0075 (5)
C5 0.0394 (6) 0.0360 (6) 0.0362 (6) −0.0041 (5) 0.0037 (4) −0.0035 (5)
C6 0.0319 (5) 0.0317 (5) 0.0292 (5) 0.0004 (4) 0.0026 (4) 0.0001 (4)
C7 0.0361 (5) 0.0306 (5) 0.0283 (5) −0.0018 (4) 0.0027 (4) −0.0017 (4)
C8 0.0436 (6) 0.0353 (6) 0.0246 (5) −0.0056 (5) 0.0054 (4) 0.0032 (4)
C9 0.0342 (5) 0.0289 (5) 0.0261 (4) −0.0042 (4) 0.0022 (4) −0.0007 (4)
C10 0.0384 (5) 0.0351 (6) 0.0288 (5) −0.0050 (4) 0.0040 (4) 0.0021 (4)
C11 0.0412 (6) 0.0370 (6) 0.0361 (6) −0.0036 (5) −0.0017 (4) 0.0066 (5)
C12 0.0364 (5) 0.0334 (6) 0.0449 (6) −0.0014 (4) −0.0027 (5) 0.0004 (5)
C13 0.0367 (6) 0.0395 (6) 0.0398 (6) −0.0018 (5) 0.0061 (4) −0.0038 (5)
C14 0.0373 (5) 0.0343 (5) 0.0288 (5) −0.0049 (4) 0.0054 (4) −0.0003 (4)

Geometric parameters (Å, °)

S1—C8 1.7454 (13) C3—H3A 0.9300
S1—C14 1.7663 (12) C4—C5 1.3881 (17)
Cl1—C12 1.7405 (13) C4—H4A 0.9300
N1—C8 1.3729 (13) C5—C6 1.3935 (16)
N1—C7 1.3783 (15) C5—H5A 0.9300
N1—C9 1.3972 (14) C6—C7 1.4768 (15)
N2—C7 1.3140 (16) C9—C10 1.3860 (15)
N2—N3 1.4088 (15) C9—C14 1.4062 (15)
N3—C8 1.3026 (17) C10—C11 1.3826 (17)
C1—C6 1.3895 (16) C10—H10A 0.9300
C1—C2 1.3891 (18) C11—C12 1.3898 (19)
C1—H1A 0.9300 C11—H11A 0.9300
C2—C3 1.381 (2) C12—C13 1.3882 (18)
C2—H2A 0.9300 C13—C14 1.3856 (17)
C3—C4 1.388 (2) C13—H13A 0.9300
C8—S1—C14 89.57 (5) N2—C7—N1 109.50 (10)
C8—N1—C7 104.31 (10) N2—C7—C6 126.31 (11)
C8—N1—C9 114.84 (10) N1—C7—C6 124.17 (10)
C7—N1—C9 140.59 (9) N3—C8—N1 112.25 (10)
C7—N2—N3 108.51 (10) N3—C8—S1 135.45 (9)
C8—N3—N2 105.43 (10) N1—C8—S1 112.26 (9)
C6—C1—C2 119.94 (12) C10—C9—N1 128.07 (10)
C6—C1—H1A 120.0 C10—C9—C14 121.17 (11)
C2—C1—H1A 120.0 N1—C9—C14 110.75 (10)
C3—C2—C1 120.18 (13) C11—C10—C9 118.29 (11)
C3—C2—H2A 119.9 C11—C10—H10A 120.9
C1—C2—H2A 119.9 C9—C10—H10A 120.9
C2—C3—C4 120.13 (12) C10—C11—C12 120.20 (12)
C2—C3—H3A 119.9 C10—C11—H11A 119.9
C4—C3—H3A 119.9 C12—C11—H11A 119.9
C3—C4—C5 120.03 (13) C11—C12—C13 122.41 (12)
C3—C4—H4A 120.0 C11—C12—Cl1 118.02 (10)
C5—C4—H4A 120.0 C13—C12—Cl1 119.57 (10)
C4—C5—C6 119.88 (12) C14—C13—C12 117.30 (11)
C4—C5—H5A 120.1 C14—C13—H13A 121.3
C6—C5—H5A 120.1 C12—C13—H13A 121.3
C1—C6—C5 119.83 (10) C13—C14—C9 120.62 (11)
C1—C6—C7 120.08 (11) C13—C14—S1 126.87 (9)
C5—C6—C7 120.09 (10) C9—C14—S1 112.50 (9)
C7—N2—N3—C8 −0.41 (14) C7—N1—C8—S1 −178.75 (8)
C6—C1—C2—C3 0.6 (2) C9—N1—C8—S1 −3.47 (13)
C1—C2—C3—C4 −0.7 (2) C14—S1—C8—N3 −175.12 (14)
C2—C3—C4—C5 0.0 (2) C14—S1—C8—N1 2.37 (9)
C3—C4—C5—C6 0.8 (2) C8—N1—C9—C10 −175.66 (11)
C2—C1—C6—C5 0.19 (19) C7—N1—C9—C10 −2.9 (2)
C2—C1—C6—C7 −179.13 (12) C8—N1—C9—C14 2.82 (14)
C4—C5—C6—C1 −0.91 (18) C7—N1—C9—C14 175.61 (13)
C4—C5—C6—C7 178.41 (11) N1—C9—C10—C11 178.84 (11)
N3—N2—C7—N1 0.01 (13) C14—C9—C10—C11 0.51 (17)
N3—N2—C7—C6 178.56 (11) C9—C10—C11—C12 0.20 (18)
C8—N1—C7—N2 0.37 (13) C10—C11—C12—C13 −0.4 (2)
C9—N1—C7—N2 −172.89 (13) C10—C11—C12—Cl1 −179.79 (9)
C8—N1—C7—C6 −178.22 (10) C11—C12—C13—C14 −0.12 (19)
C9—N1—C7—C6 8.5 (2) Cl1—C12—C13—C14 179.26 (9)
C1—C6—C7—N2 59.23 (17) C12—C13—C14—C9 0.83 (17)
C5—C6—C7—N2 −120.09 (14) C12—C13—C14—S1 −177.69 (9)
C1—C6—C7—N1 −122.43 (13) C10—C9—C14—C13 −1.05 (17)
C5—C6—C7—N1 58.25 (16) N1—C9—C14—C13 −179.65 (10)
N2—N3—C8—N1 0.66 (14) C10—C9—C14—S1 177.67 (9)
N2—N3—C8—S1 178.15 (11) N1—C9—C14—S1 −0.93 (12)
C7—N1—C8—N3 −0.66 (13) C8—S1—C14—C13 177.83 (12)
C9—N1—C8—N3 174.63 (10) C8—S1—C14—C9 −0.79 (9)

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C1–C6 ring.
D—H···A D—H H···A D···A D—H···A
C10—H10A···N3i 0.93 2.57 3.3135 (16) 138
C4—H4A···Cg3ii 0.93 2.92 3.5851 (15) 130

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6414).

References

  1. Bowyer, P.W., Ruwani, S & Gunaratne. (2007). Biochem J. 2, 173–180. [DOI] [PMC free article] [PubMed]
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Gurupadayya, B. M., Gopal, M., Padmashali, B. & Manohara, Y. N. (2008). Indian J. Pharm. Sci. 70, 572–577. [DOI] [PMC free article] [PubMed]
  4. Kini, S., Swain, S. P. & Gandhi, A. M. (2007). Indian J. Pharm. Sci. 69, 46–50.
  5. Mittal, S., Samottra, M. K., Kaur, J. & Gita, S. (2007). Phosphorus, Sulfur Silicon Relat. Elem. 9, 2105–2113.
  6. Munirajasekhar, D., Himaja, M. & Sunil, V. M. (2011). Intl Res. J. Pharm. 2, 114–117.
  7. Pozas, R., Carballo, J., Castro, C. & Rubio, J. (2005). Bioorg. Med. Chem. Lett. 15, 1417–421. [DOI] [PubMed]
  8. Rana, A., Siddiqui, N. & Khan, S. (2008). Eur. J. Med. Chem. 43, 1114–1122. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Yaseen, A., Haitham, A. S., Houssain, A. S. & Najim, A. (2006). Z. Naturforsch. 62, 523–528.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811039456/hb6414sup1.cif

e-67-o2810-sup1.cif (17.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039456/hb6414Isup2.hkl

e-67-o2810-Isup2.hkl (197.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039456/hb6414Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES