Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2698. doi: 10.1107/S1600536811037755

3,6-Dibromo­naphthalene-2,7-diyl bis­(trifluoro­methane­sulfonate)

Xiang-Xiang Wu a, Yan Wan a, Seik Weng Ng b,c,*
PMCID: PMC3201335  PMID: 22058792

Abstract

The naphthalene fused ring of the title compound, C12H4Br2F6O6S2, is slightly buckled (r.m.s. deviation = 0.036 Å) along the common C—C bond and the benzene rings are twisted by 3.2 (3)°. The two trifluoro­methyl­sulfonyl groups lie on opposite sides of the fused-ring system. The crystal structure features short inter­molecular F⋯F contacts [2.715 (4) and 2.832 (4) Å].

Related literature

For the synthesis and background chemistry, see: Shinamura et al. (2011).graphic file with name e-67-o2698-scheme1.jpg

Experimental

Crystal data

  • C12H4Br2F6O6S2

  • M r = 582.09

  • Monoclinic, Inline graphic

  • a = 5.2413 (11) Å

  • b = 26.450 (6) Å

  • c = 12.429 (3) Å

  • β = 90.169 (3)°

  • V = 1723.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.04 mm−1

  • T = 173 K

  • 0.32 × 0.30 × 0.20 mm

Data collection

  • Rigaku Saturn724+ CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) T min = 0.573, T max = 1.000

  • 17398 measured reflections

  • 3933 independent reflections

  • 3662 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.094

  • S = 1.16

  • 3933 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037755/nk2112sup1.cif

e-67-o2698-sup1.cif (17.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037755/nk2112Isup2.hkl

e-67-o2698-Isup2.hkl (192.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037755/nk2112Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Henan University of Traditional Chinese Medicine and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The title compound (Scheme I), which is synthesized from commercially available 3,6-dibromonaphthalene-2,7-diol, has trifluoromethysulfonyloxy (abbreviated OTf) substituents that can be replaced by an acetylenic –C≡C–R radical. The product is then converted to a naphthodithiophene by treatment with sodium sulfide. Such naphthodithiophenes can be used as an organic field-effect transistors (Shinamura et al., 2011). We intend to examine these compounds for such applications; the title compound is a precursor. The naphthalene fused-ring is slightly buckled along the common carbon-carbon bond as the benzene rings are offset by 3.2 (3) °. The two trifluoromethylsulfonyl groups lie on opposite sides of the fused-ring (Fig. 1). The crystal structure features short intermolecular F···F contacts (2.715 (4) Å between F3 and inversion-related F4, and 2.832 (4) Å between F3 and inversion symmetry-related F5) that give rise to the formation of a ribbon motif.

Experimental

3,6-Dibromonaphthalene-2,7-diol (3.15 g,10 mmol) was dissolved in the mixture of dichloromethane (100 ml) and triethylamine (3.04 g,30 mmol). The solution was cooled to 273 K. Trifluoromethanesulfonic acid anhydride (3.21 g, 22 mmol) dissolved in dichloromethane (20 ml) was added dropwise. The mxiture was kept cold for 12 h. The solvent was evaporated and the residue purified by column chromatography on silica gel (petroleum ether:ethyl acetate =10:1) to provide the desired product as a white solid (3.78 g, yield 65%). The procedure was that reported by Shinamura et al. (2011).

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation. Omitted from the refinement because of bad disagreement between observed and calculated structure factors were reflections (0 1 1), (0 2 0) and (0 2 1).

Figures

Fig. 1.

Fig. 1.

Displacement ellipsoid plot (Barbour, 2001) of C12H4Br2F6O6S2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C12H4Br2F6O6S2 F(000) = 1120
Mr = 582.09 Dx = 2.244 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 5210 reflections
a = 5.2413 (11) Å θ = 0.8–27.5°
b = 26.450 (6) Å µ = 5.04 mm1
c = 12.429 (3) Å T = 173 K
β = 90.169 (3)° Prism, colourless
V = 1723.1 (7) Å3 0.32 × 0.30 × 0.20 mm
Z = 4

Data collection

Rigaku Saturn724+ CCD diffractometer 3933 independent reflections
Radiation source: fine-focus sealed tube 3662 reflections with I > 2σ(I)
graphite Rint = 0.048
ω scans at fixed χ = 45° θmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) h = −6→6
Tmin = 0.573, Tmax = 1.000 k = −34→34
17398 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094 H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0349P)2 + 2.4738P] where P = (Fo2 + 2Fc2)/3
3933 reflections (Δ/σ)max = 0.001
253 parameters Δρmax = 0.79 e Å3
0 restraints Δρmin = −0.45 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 −0.38667 (8) 0.159089 (15) 0.15955 (3) 0.03395 (12)
Br2 0.69892 (7) 0.232466 (15) 0.59710 (3) 0.03228 (12)
S1 −0.51801 (18) 0.01955 (4) 0.30367 (8) 0.0297 (2)
S2 0.36288 (18) 0.17543 (4) 0.81831 (7) 0.0286 (2)
F1 −0.4753 (6) 0.03529 (11) 0.0989 (2) 0.0519 (7)
F2 −0.8431 (5) 0.05488 (10) 0.1624 (2) 0.0486 (7)
F3 −0.7393 (6) −0.02313 (10) 0.1425 (2) 0.0576 (8)
F4 −0.0166 (5) 0.11242 (10) 0.8258 (2) 0.0501 (7)
F5 0.3216 (6) 0.08682 (11) 0.9073 (2) 0.0634 (8)
F6 0.0909 (5) 0.14491 (11) 0.9781 (2) 0.0506 (7)
O1 −0.5105 (5) 0.07808 (10) 0.3257 (2) 0.0295 (6)
O2 −0.2705 (6) −0.00101 (11) 0.2966 (3) 0.0435 (7)
O3 −0.7065 (6) −0.00149 (13) 0.3702 (3) 0.0523 (9)
O4 0.4608 (5) 0.14368 (10) 0.71859 (19) 0.0296 (6)
O5 0.1917 (5) 0.21376 (10) 0.7854 (2) 0.0339 (6)
O6 0.5748 (6) 0.18540 (13) 0.8852 (2) 0.0453 (8)
C1 −0.2103 (7) 0.14519 (14) 0.2887 (3) 0.0246 (7)
C2 −0.2856 (7) 0.10442 (14) 0.3545 (3) 0.0243 (7)
C3 −0.1645 (7) 0.09387 (13) 0.4487 (3) 0.0260 (7)
H3 −0.2168 0.0658 0.4910 0.031*
C4 0.0403 (7) 0.12493 (13) 0.4835 (3) 0.0247 (7)
C5 0.1600 (7) 0.11762 (14) 0.5845 (3) 0.0264 (8)
H5 0.1130 0.0900 0.6292 0.032*
C6 0.3434 (7) 0.15073 (14) 0.6165 (3) 0.0260 (8)
C7 0.4289 (7) 0.19063 (13) 0.5502 (3) 0.0247 (7)
C8 0.3173 (7) 0.19787 (14) 0.4520 (3) 0.0263 (7)
H8 0.3742 0.2245 0.4068 0.032*
C9 0.1171 (7) 0.16576 (13) 0.4172 (3) 0.0239 (7)
C10 −0.0091 (7) 0.17479 (14) 0.3192 (3) 0.0249 (7)
H10 0.0457 0.2016 0.2740 0.030*
C11 −0.6552 (9) 0.02223 (16) 0.1672 (3) 0.0374 (9)
C12 0.1767 (9) 0.12624 (16) 0.8865 (3) 0.0376 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0434 (2) 0.0326 (2) 0.0258 (2) 0.00171 (17) −0.00934 (16) 0.00457 (15)
Br2 0.0305 (2) 0.0321 (2) 0.0343 (2) −0.00321 (15) 0.00105 (15) −0.00809 (15)
S1 0.0307 (5) 0.0236 (5) 0.0348 (5) −0.0030 (4) −0.0049 (4) 0.0053 (4)
S2 0.0322 (5) 0.0296 (5) 0.0239 (4) 0.0006 (4) −0.0044 (4) −0.0032 (4)
F1 0.0710 (19) 0.0505 (17) 0.0342 (14) −0.0086 (14) 0.0094 (13) −0.0054 (12)
F2 0.0517 (16) 0.0439 (15) 0.0501 (15) 0.0067 (12) −0.0195 (12) 0.0014 (12)
F3 0.072 (2) 0.0351 (15) 0.0652 (18) −0.0132 (14) −0.0185 (15) −0.0114 (13)
F4 0.0533 (16) 0.0500 (17) 0.0472 (15) −0.0194 (13) 0.0033 (12) −0.0053 (12)
F5 0.083 (2) 0.0451 (17) 0.0623 (18) 0.0213 (15) 0.0097 (16) 0.0221 (14)
F6 0.0611 (17) 0.0595 (18) 0.0313 (13) −0.0012 (14) 0.0112 (12) −0.0017 (12)
O1 0.0299 (13) 0.0263 (14) 0.0321 (14) 0.0015 (11) −0.0038 (11) −0.0013 (11)
O2 0.0354 (16) 0.0268 (15) 0.068 (2) 0.0047 (12) −0.0101 (14) −0.0043 (14)
O3 0.0495 (19) 0.056 (2) 0.0515 (19) −0.0178 (16) −0.0005 (15) 0.0233 (16)
O4 0.0347 (14) 0.0324 (15) 0.0218 (12) 0.0063 (11) −0.0046 (10) −0.0033 (10)
O5 0.0431 (16) 0.0275 (14) 0.0312 (14) 0.0057 (12) −0.0002 (12) −0.0021 (11)
O6 0.0403 (16) 0.059 (2) 0.0362 (16) 0.0000 (15) −0.0135 (13) −0.0151 (14)
C1 0.0309 (19) 0.0239 (18) 0.0191 (16) 0.0057 (15) 0.0018 (14) −0.0001 (13)
C2 0.0241 (17) 0.0225 (18) 0.0263 (18) 0.0016 (14) 0.0020 (14) −0.0025 (14)
C3 0.036 (2) 0.0194 (17) 0.0228 (17) 0.0014 (15) 0.0035 (14) 0.0012 (13)
C4 0.0329 (19) 0.0198 (17) 0.0213 (17) 0.0040 (15) 0.0016 (14) −0.0008 (13)
C5 0.036 (2) 0.0210 (18) 0.0219 (17) 0.0040 (15) −0.0018 (14) 0.0002 (14)
C6 0.0307 (19) 0.030 (2) 0.0176 (16) 0.0070 (15) −0.0020 (14) −0.0015 (14)
C7 0.0259 (17) 0.0194 (17) 0.0289 (18) 0.0007 (14) −0.0002 (14) −0.0055 (14)
C8 0.0316 (19) 0.0209 (18) 0.0265 (18) 0.0026 (15) 0.0050 (14) −0.0013 (14)
C9 0.0311 (19) 0.0171 (17) 0.0237 (17) 0.0053 (14) 0.0026 (14) −0.0026 (13)
C10 0.0321 (19) 0.0227 (18) 0.0200 (16) 0.0053 (15) 0.0042 (14) 0.0018 (13)
C11 0.044 (2) 0.028 (2) 0.040 (2) −0.0033 (18) −0.0039 (19) −0.0027 (17)
C12 0.048 (2) 0.034 (2) 0.031 (2) 0.0055 (19) 0.0030 (18) 0.0018 (17)

Geometric parameters (Å, °)

Br1—C1 1.886 (3) O4—C6 1.421 (4)
Br2—C7 1.887 (3) C1—C10 1.367 (5)
S1—O3 1.405 (3) C1—C2 1.410 (5)
S1—O2 1.409 (3) C2—C3 1.359 (5)
S1—O1 1.573 (3) C3—C4 1.418 (5)
S1—C11 1.841 (4) C3—H3 0.9500
S2—O6 1.410 (3) C4—C5 1.415 (5)
S2—O5 1.414 (3) C4—C9 1.417 (5)
S2—O4 1.584 (3) C5—C6 1.359 (5)
S2—C12 1.835 (5) C5—H5 0.9500
F1—C11 1.317 (5) C6—C7 1.412 (5)
F2—C11 1.311 (5) C7—C8 1.366 (5)
F3—C11 1.314 (5) C8—C9 1.417 (5)
F4—C12 1.313 (5) C8—H8 0.9500
F5—C12 1.315 (5) C9—C10 1.405 (5)
F6—C12 1.321 (5) C10—H10 0.9500
O1—C2 1.414 (4)
O3—S1—O2 122.2 (2) C4—C5—H5 120.6
O3—S1—O1 107.7 (2) C5—C6—C7 122.4 (3)
O2—S1—O1 111.60 (16) C5—C6—O4 118.7 (3)
O3—S1—C11 106.5 (2) C7—C6—O4 118.8 (3)
O2—S1—C11 108.3 (2) C8—C7—C6 119.3 (3)
O1—S1—C11 97.59 (16) C8—C7—Br2 120.8 (3)
O6—S2—O5 122.32 (19) C6—C7—Br2 119.8 (3)
O6—S2—O4 107.69 (17) C7—C8—C9 120.2 (3)
O5—S2—O4 111.13 (15) C7—C8—H8 119.9
O6—S2—C12 106.2 (2) C9—C8—H8 119.9
O5—S2—C12 107.73 (19) C10—C9—C8 120.6 (3)
O4—S2—C12 99.18 (17) C10—C9—C4 120.0 (3)
C2—O1—S1 123.3 (2) C8—C9—C4 119.4 (3)
C6—O4—S2 119.3 (2) C1—C10—C9 120.3 (3)
C10—C1—C2 119.6 (3) C1—C10—H10 119.8
C10—C1—Br1 120.1 (3) C9—C10—H10 119.8
C2—C1—Br1 120.4 (3) F3—C11—F2 109.8 (4)
C3—C2—C1 121.7 (3) F3—C11—F1 109.2 (4)
C3—C2—O1 120.2 (3) F2—C11—F1 109.7 (4)
C1—C2—O1 117.7 (3) F3—C11—S1 108.1 (3)
C2—C3—C4 119.6 (3) F2—C11—S1 111.0 (3)
C2—C3—H3 120.2 F1—C11—S1 109.0 (3)
C4—C3—H3 120.2 F4—C12—F5 109.7 (4)
C5—C4—C9 119.6 (3) F4—C12—F6 109.5 (4)
C5—C4—C3 121.6 (3) F5—C12—F6 108.9 (3)
C9—C4—C3 118.7 (3) F4—C12—S2 110.0 (3)
C6—C5—C4 118.9 (3) F5—C12—S2 110.2 (3)
C6—C5—H5 120.6 F6—C12—S2 108.4 (3)
O3—S1—O1—C2 125.8 (3) C7—C8—C9—C10 176.1 (3)
O2—S1—O1—C2 −10.9 (3) C7—C8—C9—C4 −2.4 (5)
C11—S1—O1—C2 −124.1 (3) C5—C4—C9—C10 −176.9 (3)
O6—S2—O4—C6 −146.3 (3) C3—C4—C9—C10 0.0 (5)
O5—S2—O4—C6 −9.9 (3) C5—C4—C9—C8 1.7 (5)
C12—S2—O4—C6 103.3 (3) C3—C4—C9—C8 178.5 (3)
C10—C1—C2—C3 0.6 (6) C2—C1—C10—C9 −2.1 (5)
Br1—C1—C2—C3 −179.1 (3) Br1—C1—C10—C9 177.7 (3)
C10—C1—C2—O1 173.5 (3) C8—C9—C10—C1 −176.8 (3)
Br1—C1—C2—O1 −6.2 (4) C4—C9—C10—C1 1.8 (5)
S1—O1—C2—C3 −63.9 (4) O3—S1—C11—F3 −53.1 (4)
S1—O1—C2—C1 123.0 (3) O2—S1—C11—F3 80.0 (3)
C1—C2—C3—C4 1.1 (5) O1—S1—C11—F3 −164.2 (3)
O1—C2—C3—C4 −171.6 (3) O3—S1—C11—F2 67.4 (4)
C2—C3—C4—C5 175.4 (3) O2—S1—C11—F2 −159.5 (3)
C2—C3—C4—C9 −1.4 (5) O1—S1—C11—F2 −43.7 (3)
C9—C4—C5—C6 1.2 (5) O3—S1—C11—F1 −171.6 (3)
C3—C4—C5—C6 −175.5 (3) O2—S1—C11—F1 −38.5 (3)
C4—C5—C6—C7 −3.5 (5) O1—S1—C11—F1 77.3 (3)
C4—C5—C6—O4 179.2 (3) O6—S2—C12—F4 −176.0 (3)
S2—O4—C6—C5 −97.9 (4) O5—S2—C12—F4 51.3 (3)
S2—O4—C6—C7 84.7 (4) O4—S2—C12—F4 −64.5 (3)
C5—C6—C7—C8 2.8 (6) O6—S2—C12—F5 −55.0 (3)
O4—C6—C7—C8 −179.9 (3) O5—S2—C12—F5 172.4 (3)
C5—C6—C7—Br2 −176.1 (3) O4—S2—C12—F5 56.6 (3)
O4—C6—C7—Br2 1.2 (4) O6—S2—C12—F6 64.2 (3)
C6—C7—C8—C9 0.3 (5) O5—S2—C12—F6 −68.5 (3)
Br2—C7—C8—C9 179.2 (3) O4—S2—C12—F6 175.8 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2112).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  2. Rigaku (2007). CrystalClear Rigaku Corporation, Tokyo, Japan.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Shinamura, S., Osaka, I., Miyazaki, E., Nakao, A., Yamagishi, M., Takeya, J. & Takimiya, K. (2011). J. Am. Chem. Soc. 133, 5024–5033. [DOI] [PubMed]
  5. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037755/nk2112sup1.cif

e-67-o2698-sup1.cif (17.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037755/nk2112Isup2.hkl

e-67-o2698-Isup2.hkl (192.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037755/nk2112Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES