Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2770. doi: 10.1107/S1600536811038736

2-(2-p-Tolyl­benzo[g]quinolin-3-yl)ethanol

Nan Wu a, Rongli Zhang b, Yumei Wang a, Xin Xu a, Zhou Xu b,*
PMCID: PMC3201341  PMID: 22064791

Abstract

In the title compound, C22H19NO, the pyridine ring and the adjacent naphthalene ring system are nearly coplanar, making a dihedral angle of 3.3 (1)°, while the pyridine and benzene rings are perpendicular to each other, with a dihedral angle of 89.9 (1)°. The crystal packing is stabilized by inter­molecular O—H⋯N hydrogen bonds and C—H⋯π inter­actions.

Related literature

For the biological activity of quinoline derivatives, see: Faber et al. (1984); Johnson et al. (1989); Nesterova et al. (1995); Yamada et al. (1992).graphic file with name e-67-o2770-scheme1.jpg

Experimental

Crystal data

  • C22H19NO

  • M r = 313.38

  • Triclinic, Inline graphic

  • a = 7.2044 (4) Å

  • b = 10.1704 (4) Å

  • c = 12.1194 (3) Å

  • α = 108.125 (3)°

  • β = 98.115 (4)°

  • γ = 99.370 (5)°

  • V = 815.08 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.49 × 0.21 × 0.07 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • 10164 measured reflections

  • 2879 independent reflections

  • 2232 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.127

  • S = 1.03

  • 2879 reflections

  • 222 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811038736/hg5076sup1.cif

e-67-o2770-sup1.cif (20KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038736/hg5076Isup2.hkl

e-67-o2770-Isup2.hkl (141.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811038736/hg5076Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the N1,C1–C5 pyridine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.93 (3) 1.98 (3) 2.9110 (18) 174 (2)
C21—H21ACgii 0.93 2.97 3.7358 (19) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We are grateful to the Special Presidential Foundation of Xuzhou Medical College (2010KJZ15) for financial support. We thank Su Hong of Zhejiang Normal University for the data collection.

supplementary crystallographic information

Comment

Quinoline derivatives possess varies of biological properties, such as psychotropic activity (Nesterova, et al., 1995), anti-allergic (Yamada et al., 1992) and anti-inflammatory activity (Faber et al., 1984 and Johnson et al., 1989). Therefore, the title compound (Fig. 1), may be used as a new precursor for obtaining bioactive molecules. Herein, we report the crystal structure of the title compound, (I).

In the crystal structure of (I), there are four aromatic rings and the pyridine ring is the new formed ring. The pyridine ring is a coplanar conformation. The pyridine ring and the adjacent naphthalene ring are nearly coplanar, with a dihedral angle of 3.3 (1)°. While the pyridine ring and the benzene ring are vertical with each other, with a dihedral angle of 89.9 (1)°. The molecules are connected by the O1—H1···N1 intermolecular hydrogen bond and C—H···π interactions (Figure 2). Besides, there is intermolecular π-π interaction between the two neighboring benzene rings (C4C5C6C7C8C13), symmetry code: (1-X, 2-Y, –Z). The two rings are parallel to each other. The centroid distance, plane-plane distance and displacement distance are 3.642, 3.499 and 1.010 Å, respectively, which strongly indicate the existence of intermolecular π-π interactions.

Experimental

The title compound, (I), was prepared by the reaction of 4-methylbenzaldehyde (0.240 g, 2.0 mmol), naphthalen-2-amine (0.286 g, 2.0 mmol) and I2 (0.051 g, 0.2 mmol) in THF (10 ml) at reflux for 40 h (yield 86%, mp. 486–487 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a THF solution.

Refinement

The hydrogen atom of hydroxy group, was positioned from a Fourier difference map and was refined freely. Other H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(parent atom).

Figures

Fig. 1.

Fig. 1.

The molecular structure drawing shows 30% probability of displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The packing diagram of title compound viewed along the b axis. Dashed lines indicate hydrogen bonds of type O1—H1···N1 and C—H···π interactions.

Crystal data

C22H19NO Z = 2
Mr = 313.38 F(000) = 332
Triclinic, P1 Dx = 1.277 Mg m3
Hall symbol: -P 1 Melting point = 486–487 K
a = 7.2044 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.1704 (4) Å Cell parameters from 3017 reflections
c = 12.1194 (3) Å θ = 2.9–26.5°
α = 108.125 (3)° µ = 0.08 mm1
β = 98.115 (4)° T = 296 K
γ = 99.370 (5)° Sheet, yellow
V = 815.08 (6) Å3 0.49 × 0.21 × 0.07 mm

Data collection

Bruker APEXII area-detector diffractometer 2232 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.020
graphite θmax = 25.0°, θmin = 1.8°
phi and ω scans h = −8→8
10164 measured reflections k = −12→12
2879 independent reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0628P)2 + 0.1533P] where P = (Fo2 + 2Fc2)/3
2879 reflections (Δ/σ)max < 0.001
222 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.94638 (19) 0.74485 (14) 0.16847 (12) 0.0671 (4)
N1 0.34813 (18) 0.89390 (13) 0.23730 (12) 0.0473 (3)
C4 0.5880 (2) 1.05942 (15) 0.19621 (13) 0.0428 (4)
C5 0.3959 (2) 0.99592 (15) 0.18921 (13) 0.0442 (4)
C1 0.4871 (2) 0.84951 (15) 0.29047 (13) 0.0445 (4)
C3 0.7299 (2) 1.00948 (15) 0.25305 (14) 0.0462 (4)
H3A 0.8585 1.0487 0.2594 0.055*
C13 0.6286 (2) 1.16905 (15) 0.14470 (13) 0.0442 (4)
C6 0.2436 (2) 1.03711 (17) 0.12868 (15) 0.0532 (4)
H6A 0.1167 0.9958 0.1250 0.064*
C2 0.6844 (2) 0.90436 (15) 0.29965 (13) 0.0452 (4)
C8 0.4736 (2) 1.20451 (15) 0.08298 (13) 0.0478 (4)
C16 0.4202 (2) 0.73826 (16) 0.34132 (14) 0.0454 (4)
C9 0.5119 (3) 1.30789 (17) 0.03012 (15) 0.0580 (5)
H9A 0.4103 1.3303 −0.0115 0.070*
C7 0.2812 (2) 1.13509 (17) 0.07688 (15) 0.0552 (4)
H7A 0.1795 1.1583 0.0360 0.066*
C19 0.2814 (2) 0.52892 (18) 0.43403 (17) 0.0545 (4)
C14 0.8416 (2) 0.84739 (17) 0.35334 (15) 0.0537 (4)
H14A 0.9579 0.9215 0.3842 0.064*
H14B 0.8043 0.8229 0.4195 0.064*
C18 0.3153 (2) 0.49386 (18) 0.32095 (16) 0.0594 (5)
H18A 0.2917 0.3987 0.2741 0.071*
C17 0.3831 (3) 0.59584 (17) 0.27504 (15) 0.0561 (4)
H17A 0.4043 0.5683 0.1980 0.067*
C12 0.8149 (2) 1.24194 (17) 0.15198 (16) 0.0557 (4)
H12A 0.9188 1.2210 0.1929 0.067*
C11 0.8479 (3) 1.34320 (18) 0.10038 (17) 0.0647 (5)
H11A 0.9730 1.3902 0.1066 0.078*
C15 0.8844 (2) 0.71879 (18) 0.26679 (17) 0.0583 (5)
H15A 0.9832 0.6864 0.3079 0.070*
H15B 0.7695 0.6433 0.2384 0.070*
C21 0.3886 (3) 0.77368 (18) 0.45560 (16) 0.0628 (5)
H21A 0.4142 0.8686 0.5032 0.075*
C22 0.2070 (3) 0.4166 (2) 0.4833 (2) 0.0769 (6)
H22A 0.2832 0.3461 0.4697 0.115*
H22B 0.0756 0.3728 0.4446 0.115*
H22C 0.2147 0.4591 0.5669 0.115*
C10 0.6947 (3) 1.37576 (18) 0.03868 (16) 0.0641 (5)
H10A 0.7174 1.4442 0.0032 0.077*
C20 0.3197 (3) 0.6706 (2) 0.50019 (17) 0.0655 (5)
H20A 0.2985 0.6978 0.5772 0.079*
H1 1.074 (4) 0.793 (3) 0.196 (2) 0.111 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0505 (8) 0.0835 (9) 0.0729 (9) 0.0124 (6) 0.0160 (6) 0.0342 (7)
N1 0.0446 (7) 0.0461 (7) 0.0529 (8) 0.0092 (6) 0.0146 (6) 0.0176 (6)
C4 0.0459 (9) 0.0390 (7) 0.0424 (8) 0.0093 (6) 0.0116 (7) 0.0115 (6)
C5 0.0462 (9) 0.0418 (8) 0.0442 (9) 0.0108 (6) 0.0123 (7) 0.0122 (7)
C1 0.0457 (9) 0.0433 (8) 0.0445 (9) 0.0090 (7) 0.0133 (7) 0.0138 (7)
C3 0.0420 (8) 0.0455 (8) 0.0515 (9) 0.0058 (6) 0.0109 (7) 0.0185 (7)
C13 0.0518 (9) 0.0387 (8) 0.0414 (9) 0.0114 (7) 0.0109 (7) 0.0112 (6)
C6 0.0435 (9) 0.0544 (9) 0.0620 (11) 0.0125 (7) 0.0105 (8) 0.0196 (8)
C2 0.0467 (9) 0.0437 (8) 0.0458 (9) 0.0087 (7) 0.0107 (7) 0.0161 (7)
C8 0.0593 (10) 0.0411 (8) 0.0414 (9) 0.0149 (7) 0.0098 (7) 0.0101 (7)
C16 0.0404 (8) 0.0477 (8) 0.0503 (9) 0.0072 (6) 0.0123 (7) 0.0199 (7)
C9 0.0745 (12) 0.0502 (9) 0.0514 (10) 0.0205 (9) 0.0074 (9) 0.0196 (8)
C7 0.0532 (10) 0.0549 (9) 0.0581 (10) 0.0199 (8) 0.0059 (8) 0.0184 (8)
C19 0.0383 (8) 0.0633 (10) 0.0714 (12) 0.0083 (7) 0.0124 (8) 0.0373 (9)
C14 0.0480 (9) 0.0580 (10) 0.0600 (11) 0.0053 (7) 0.0062 (8) 0.0322 (8)
C18 0.0601 (11) 0.0470 (9) 0.0667 (12) 0.0011 (8) 0.0105 (9) 0.0200 (8)
C17 0.0647 (11) 0.0514 (9) 0.0492 (10) 0.0049 (8) 0.0133 (8) 0.0162 (8)
C12 0.0542 (10) 0.0522 (9) 0.0649 (11) 0.0081 (7) 0.0108 (8) 0.0283 (8)
C11 0.0668 (12) 0.0573 (10) 0.0725 (12) 0.0023 (9) 0.0126 (10) 0.0322 (9)
C15 0.0444 (9) 0.0620 (10) 0.0790 (12) 0.0120 (8) 0.0151 (9) 0.0373 (9)
C21 0.0784 (12) 0.0499 (9) 0.0585 (11) 0.0069 (8) 0.0286 (9) 0.0136 (8)
C22 0.0576 (11) 0.0869 (14) 0.1071 (17) 0.0101 (10) 0.0221 (11) 0.0628 (13)
C10 0.0861 (14) 0.0502 (9) 0.0610 (11) 0.0119 (9) 0.0129 (10) 0.0284 (9)
C20 0.0731 (12) 0.0716 (12) 0.0567 (11) 0.0087 (9) 0.0272 (9) 0.0264 (9)

Geometric parameters (Å, °)

O1—C15 1.413 (2) C7—H7A 0.9300
O1—H1 0.93 (3) C19—C18 1.372 (3)
N1—C1 1.3294 (19) C19—C20 1.373 (3)
N1—C5 1.3606 (19) C19—C22 1.505 (2)
C4—C3 1.402 (2) C14—C15 1.508 (2)
C4—C5 1.407 (2) C14—H14A 0.9700
C4—C13 1.448 (2) C14—H14B 0.9700
C5—C6 1.426 (2) C18—C17 1.377 (2)
C1—C2 1.415 (2) C18—H18A 0.9300
C1—C16 1.494 (2) C17—H17A 0.9300
C3—C2 1.372 (2) C12—C11 1.368 (2)
C3—H3A 0.9300 C12—H12A 0.9300
C13—C12 1.400 (2) C11—C10 1.388 (3)
C13—C8 1.414 (2) C11—H11A 0.9300
C6—C7 1.345 (2) C15—H15A 0.9700
C6—H6A 0.9300 C15—H15B 0.9700
C2—C14 1.511 (2) C21—C20 1.377 (2)
C8—C9 1.402 (2) C21—H21A 0.9300
C8—C7 1.430 (2) C22—H22A 0.9600
C16—C17 1.380 (2) C22—H22B 0.9600
C16—C21 1.380 (2) C22—H22C 0.9600
C9—C10 1.357 (3) C10—H10A 0.9300
C9—H9A 0.9300 C20—H20A 0.9300
C15—O1—H1 105.8 (15) C15—C14—H14A 108.9
C1—N1—C5 119.18 (13) C2—C14—H14A 108.9
C3—C4—C5 116.48 (14) C15—C14—H14B 108.9
C3—C4—C13 123.98 (14) C2—C14—H14B 108.9
C5—C4—C13 119.54 (14) H14A—C14—H14B 107.7
N1—C5—C4 122.42 (14) C19—C18—C17 121.72 (16)
N1—C5—C6 117.78 (14) C19—C18—H18A 119.1
C4—C5—C6 119.79 (14) C17—C18—H18A 119.1
N1—C1—C2 122.65 (14) C18—C17—C16 121.16 (16)
N1—C1—C16 115.17 (13) C18—C17—H17A 119.4
C2—C1—C16 122.17 (14) C16—C17—H17A 119.4
C2—C3—C4 121.90 (14) C11—C12—C13 121.65 (17)
C2—C3—H3A 119.1 C11—C12—H12A 119.2
C4—C3—H3A 119.0 C13—C12—H12A 119.2
C12—C13—C8 117.79 (14) C12—C11—C10 120.04 (18)
C12—C13—C4 123.31 (14) C12—C11—H11A 120.0
C8—C13—C4 118.90 (14) C10—C11—H11A 120.0
C7—C6—C5 120.72 (15) O1—C15—C14 113.27 (14)
C7—C6—H6A 119.6 O1—C15—H15A 108.9
C5—C6—H6A 119.6 C14—C15—H15A 108.9
C3—C2—C1 117.33 (14) O1—C15—H15B 108.9
C3—C2—C14 120.10 (14) C14—C15—H15B 108.9
C1—C2—C14 122.52 (13) H15A—C15—H15B 107.7
C9—C8—C13 119.27 (15) C20—C21—C16 121.03 (16)
C9—C8—C7 121.50 (15) C20—C21—H21A 119.5
C13—C8—C7 119.23 (14) C16—C21—H21A 119.5
C17—C16—C21 117.21 (15) C19—C22—H22A 109.5
C17—C16—C1 121.38 (14) C19—C22—H22B 109.5
C21—C16—C1 121.40 (14) H22A—C22—H22B 109.5
C10—C9—C8 121.18 (16) C19—C22—H22C 109.5
C10—C9—H9A 119.4 H22A—C22—H22C 109.5
C8—C9—H9A 119.4 H22B—C22—H22C 109.5
C6—C7—C8 121.74 (15) C9—C10—C11 120.07 (16)
C6—C7—H7A 119.1 C9—C10—H10A 120.0
C8—C7—H7A 119.1 C11—C10—H10A 120.0
C18—C19—C20 117.08 (15) C19—C20—C21 121.80 (17)
C18—C19—C22 121.27 (17) C19—C20—H20A 119.1
C20—C19—C22 121.65 (17) C21—C20—H20A 119.1
C15—C14—C2 113.54 (14)
C1—N1—C5—C4 −1.7 (2) C2—C1—C16—C17 −90.9 (2)
C1—N1—C5—C6 177.53 (13) N1—C1—C16—C21 −88.66 (19)
C3—C4—C5—N1 1.6 (2) C2—C1—C16—C21 90.7 (2)
C13—C4—C5—N1 −179.01 (13) C13—C8—C9—C10 −1.0 (2)
C3—C4—C5—C6 −177.56 (13) C7—C8—C9—C10 178.41 (15)
C13—C4—C5—C6 1.8 (2) C5—C6—C7—C8 −1.8 (3)
C5—N1—C1—C2 0.2 (2) C9—C8—C7—C6 −179.16 (15)
C5—N1—C1—C16 179.51 (12) C13—C8—C7—C6 0.2 (2)
C5—C4—C3—C2 −0.1 (2) C3—C2—C14—C15 −92.86 (18)
C13—C4—C3—C2 −179.40 (13) C1—C2—C14—C15 84.48 (19)
C3—C4—C13—C12 −3.5 (2) C20—C19—C18—C17 −0.5 (3)
C5—C4—C13—C12 177.21 (14) C22—C19—C18—C17 179.92 (16)
C3—C4—C13—C8 176.03 (13) C19—C18—C17—C16 0.1 (3)
C5—C4—C13—C8 −3.3 (2) C21—C16—C17—C18 0.7 (3)
N1—C5—C6—C7 −178.50 (14) C1—C16—C17—C18 −177.77 (15)
C4—C5—C6—C7 0.7 (2) C8—C13—C12—C11 −0.7 (2)
C4—C3—C2—C1 −1.3 (2) C4—C13—C12—C11 178.83 (15)
C4—C3—C2—C14 176.17 (14) C13—C12—C11—C10 −0.1 (3)
N1—C1—C2—C3 1.3 (2) C2—C14—C15—O1 60.50 (18)
C16—C1—C2—C3 −177.99 (13) C17—C16—C21—C20 −1.1 (3)
N1—C1—C2—C14 −176.11 (14) C1—C16—C21—C20 177.39 (17)
C16—C1—C2—C14 4.6 (2) C8—C9—C10—C11 0.1 (3)
C12—C13—C8—C9 1.2 (2) C12—C11—C10—C9 0.4 (3)
C4—C13—C8—C9 −178.32 (13) C18—C19—C20—C21 0.1 (3)
C12—C13—C8—C7 −178.16 (14) C22—C19—C20—C21 179.70 (17)
C4—C13—C8—C7 2.3 (2) C16—C21—C20—C19 0.7 (3)
N1—C1—C16—C17 89.77 (18)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N1,C1–C5 pyridine ring.
D—H···A D—H H···A D···A D—H···A
O1—H1···N1i 0.93 (3) 1.98 (3) 2.9110 (18) 174 (2)
C21—H21A···Cgii 0.93 2.97 3.7358 (19) 140.

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5076).

References

  1. Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Faber, K., Stueckler, H. & Kappe, T. (1984). J. Heterocycl. Chem. 21, 1177–1178.
  3. Johnson, J. V., Rauckman, S., Baccanari, P. D. & Roth, B. (1989). J. Med. Chem. 32, 1942–1949. [DOI] [PubMed]
  4. Nesterova, I., Alekseeva, L. M., Andreeva, L. M., Andreeva, N. I., Golovira, S. M. & Granic, V. G. (1995). Khim. Farm. Zh. 29, 31–34.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Yamada, N., Kadowaki, S., Takahashi, K. & Umezu, K. (1992). Biochem. Pharmacol. 44, 1211–1213. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811038736/hg5076sup1.cif

e-67-o2770-sup1.cif (20KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038736/hg5076Isup2.hkl

e-67-o2770-Isup2.hkl (141.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811038736/hg5076Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES