Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 3;67(Pt 10):o2553. doi: 10.1107/S1600536811035410

2-Phenyl-3-(trimethyl­sil­yl)propan-1-aminium chloride

Yousef M Hijji a, Ray J Butcher b,*, Jerry P Jasinski c, Zachary White b, Robert C Rosenberg b
PMCID: PMC3201342  PMID: 22058730

Abstract

The title compound, C12H22NSi+·Cl, contains two formula units in the asymmetric unit and is a hydro­chloride salt in which the amine N atom is protonated and the NH3 + group forms hydrogen bonds with the Cl anion, forming a ribbon in the c-axis direction.

Related literature

For silicon-substituted β-phenyl­ethyl amine and its biological activity, see: Frankel et al. (1968). For applications of β-phenyl­ethyl amine in alkaloid synthesis via the Pictet–Spengler reaction, see: Lorenz et al. (2010). For uses and applications of 3-amino-propyl­silanes in nano technology and self-assembled monolayers, see: Li et al. (2009) and in reverse ionic liquids in oil extraction, see: Blasucci et al. (2010). For a description of the Cambridge Structural Database, see: Allen (2002).graphic file with name e-67-o2553-scheme1.jpg

Experimental

Crystal data

  • C12H22NSi+·Cl

  • M r = 243.85

  • Monoclinic, Inline graphic

  • a = 12.3716 (4) Å

  • b = 32.6920 (8) Å

  • c = 7.44256 (18) Å

  • β = 93.006 (2)°

  • V = 3006.01 (14) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.79 mm−1

  • T = 295 K

  • 0.47 × 0.10 × 0.06 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.370, T max = 1.000

  • 11195 measured reflections

  • 5882 independent reflections

  • 3078 reflections with I > 2σ(I)

  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.076

  • wR(F 2) = 0.276

  • S = 1.14

  • 5882 reflections

  • 279 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811035410/hg5087sup1.cif

e-67-o2553-sup1.cif (24.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035410/hg5087Isup2.hkl

e-67-o2553-Isup2.hkl (288KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811035410/hg5087Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1AA⋯Cl2i 0.89 2.23 3.114 (5) 173
N1A—H1AB⋯Cl1 0.89 2.25 3.136 (4) 172
N1A—H1AC⋯Cl1ii 0.89 2.36 3.168 (5) 152
N1B—H1BA⋯Cl2ii 0.89 2.30 3.166 (4) 163
N1B—H1BB⋯Cl2 0.89 2.28 3.165 (4) 171
N1B—H1BC⋯Cl1 0.89 2.35 3.222 (5) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer. YMH acknowledges partial support from NSF-Rise award # HRD 0627276.

supplementary crystallographic information

Comment

The title compound is a substituted α-phenyethylaminium chloride. Phenylethyl amines are substrates for dopamine-β-hydroxylase and are of biological importance. Silicon substituted phenylethyl amines have been investigated for biological activity and use as insecticide and applications in pharmaceuticals (Frankel et al. 1968). Viewing these compounds as substituted 3-silylpropylamine where they have application in monolayer construction and nanotechnology (Li et al. 2009) and use in oil recovery via reverse ionic liquids (Blasucci et al., 2010). Phenylethyl amines are important building blocks in isoquinoline alkaloid synthesis via Pictet–Spengler (Lorenz et al. 2010).

In view of the importance of these compounds the structure of 2-phenyl-3-(trimethylsilyl)-propan-l-aminium chloride, C12H22ClNSi is reported. The title compound contains two formula units in the asymmetric unit and is a hydrochloride salt where the amine N is protonated and the NH3+ group forms hydrogen bonds with the Cl- anion. These hydrogen bonds form a ribbon in the c direction. The metrical parameters for the salt are in the normal range (Allen, 2002).

Experimental

To 5.20 g (44.4 mmol) benzylnitrile in 40 ml of dry THF under nitrogen atmosphere, cooled in an ice bath was added 28.0 ml of n-Bu Li (1.6 M) (44.8 mmol) dropwise. After the addition was complete the solution turned to a creamy slurry. The mixture was stirred for 10 minutes then the ice bath was removed and 5.54 g of chloromethyltrimethyl silane (6.3 ml) was added dropwise. After the addition was complete the mixture was stirred for 2 h at room temperature. The reaction was worked up by water addition and extraction with ether twice (25 ml). The organic layers were combined and washed with saturated NaCl solution, dried (MgSO4). The solvent was removed to give 3-trimethylsilyl-2-phenyl-propionitrile, as yellowish liquid 7.5 g (78%). 2.0 g of 3-trimethylsilyl-2-phenyl-propionitrile were dissolved in 5 ml of dry THF and heated to 343 K in a distillation set up. 3.0 ml of BH3.DMS (10 M) was added dropwise over a period of 10 minutes. Dimethylsulfide (DMS) distilled off the reaction mixture and was collected in the receiver. The mixture was heated for 15 minutes then cooled to room temperature. A reflux condenser was connected to the reaction flask and 10 ml of 6 M HCl was added carefully and slowly. After the addition was complete and no more gas evolved the mixture was heated for 30 minutes at reflux. The reaction mixture was cooled to room temperature, transferred to a beaker. KOH pellets were added slowly to the solution to neutralize the acid. The mixture was extracted with 2x25 ml of ether. The organic layers were combined and 5 ml of concentrated HCl was added. The aqueous layer was allowed to evaporate to give white solid. The solid was washed with ether and filtered to give 0.98 g (41%) of the title compound. A sample was dissolved in water and allowed to evaporate slowly to give clear crystals of the title compound used for x-ray crystallography.

1H NMR (DMSO-d6, 400 MHz): δ (p.p.m.) = 7.85 (br, 3H), 7.31 (m, 5H), 2.94 (m,3H), 1.00 (dd,1H, J= 14.5, 3.5 Hz), 0.92 (dd, 1 H, J = 14.5, 11 Hz), -0.28 (s, 9H). 13C NMR (DMSO-d6,, 100 MHz): δ (p.p.m.) 142.24, 128.65, 127.91, 127.16, 46.89, 39.78, 21.01, -1.21. Exact Mass = 207.084401 (M+ - HCl) Mass Spec (EI) direct probe M/z: 208 (M—Cl), 192 (M+ –NH2Cl), 177 (M—CH2NH3Cl), 147, 121, 104, 91, 73 (base).

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.93 to 0.97 Å and N—H distances of 0.89 Å and Uiso(H) = 1.2Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

Diagram of C12H22ClNSi, showing the contents of the asymmetric unit. Hydrogen bonds are shown by dashed lines (30% atomic displacement parameters).

Fig. 2.

Fig. 2.

The molecular packing for C12H22ClNSi, viewed down the a axis showing the hydogen bonded ribbons in the c direction. Hydrogen bonds are shown by dashed lines.

Crystal data

C12H22NSi+·Cl F(000) = 1056
Mr = 243.85 Dx = 1.078 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybc Cell parameters from 3131 reflections
a = 12.3716 (4) Å θ = 4.5–75.7°
b = 32.6920 (8) Å µ = 2.79 mm1
c = 7.44256 (18) Å T = 295 K
β = 93.006 (2)° Needle, colorless
V = 3006.01 (14) Å3 0.47 × 0.10 × 0.06 mm
Z = 8

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer 5882 independent reflections
Radiation source: Enhance (Cu) X-ray Source 3078 reflections with I > 2σ(I)
graphite Rint = 0.049
Detector resolution: 10.5081 pixels mm-1 θmax = 76.0°, θmin = 4.5°
ω scans h = −15→15
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −40→38
Tmin = 0.370, Tmax = 1.000 l = −9→8
11195 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.276 H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.1129P)2 + 1.1585P] where P = (Fo2 + 2Fc2)/3
5882 reflections (Δ/σ)max = 0.001
279 parameters Δρmax = 0.72 e Å3
0 restraints Δρmin = −0.49 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.51262 (14) 0.70004 (5) 0.46785 (17) 0.0747 (4)
Cl2 0.24050 (12) 0.70213 (4) −0.04653 (17) 0.0658 (4)
Si1A 0.87067 (14) 0.68876 (5) 0.88371 (19) 0.0642 (4)
N1A 0.4863 (4) 0.70536 (13) 0.8840 (5) 0.0643 (11)
H1AA 0.4150 0.7050 0.8943 0.096*
H1AB 0.5008 0.7041 0.7682 0.096*
H1AC 0.5135 0.7284 0.9314 0.096*
C1A 0.6903 (5) 0.62195 (16) 1.0207 (6) 0.0592 (13)
C2A 0.7098 (6) 0.58664 (18) 0.9246 (8) 0.0757 (17)
H2AA 0.6982 0.5864 0.8001 0.091*
C3A 0.7464 (7) 0.5518 (2) 1.0127 (10) 0.099 (2)
H3AA 0.7578 0.5282 0.9467 0.118*
C4A 0.7661 (7) 0.5512 (2) 1.1946 (10) 0.103 (2)
H4AA 0.7931 0.5278 1.2518 0.123*
C5A 0.7459 (6) 0.5855 (2) 1.2916 (8) 0.089 (2)
H5AA 0.7583 0.5853 1.4159 0.107*
C6A 0.7070 (5) 0.62050 (18) 1.2066 (7) 0.0709 (15)
H6AA 0.6918 0.6434 1.2749 0.085*
C7A 0.5364 (5) 0.66953 (18) 0.9814 (7) 0.0670 (15)
H7AA 0.4916 0.6456 0.9576 0.080*
H7AB 0.5381 0.6748 1.1098 0.080*
C8A 0.6509 (4) 0.66056 (15) 0.9266 (6) 0.0553 (12)
H8AA 0.6463 0.6547 0.7972 0.066*
C9A 0.7297 (4) 0.69618 (16) 0.9563 (7) 0.0582 (12)
H9AA 0.7338 0.7027 1.0837 0.070*
H9AB 0.6992 0.7198 0.8934 0.070*
C10A 0.9367 (6) 0.73979 (18) 0.8718 (7) 0.0756 (16)
H10A 0.9543 0.7496 0.9914 0.113*
H10B 0.8882 0.7587 0.8103 0.113*
H10C 1.0017 0.7374 0.8076 0.113*
C11A 0.8624 (6) 0.6646 (2) 0.6552 (9) 0.092 (2)
H11A 0.8152 0.6805 0.5760 0.138*
H11B 0.8346 0.6373 0.6638 0.138*
H11C 0.9333 0.6637 0.6087 0.138*
C12A 0.9525 (6) 0.6562 (2) 1.0466 (9) 0.093 (2)
H12A 0.9467 0.6667 1.1662 0.140*
H12B 1.0270 0.6566 1.0162 0.140*
H12C 0.9259 0.6286 1.0409 0.140*
Si1B 0.36327 (18) 0.56463 (5) 0.3612 (3) 0.0814 (5)
N1B 0.2550 (4) 0.70271 (12) 0.3793 (6) 0.0649 (12)
H1BA 0.2379 0.7281 0.4103 0.097*
H1BB 0.2464 0.7000 0.2604 0.097*
H1BC 0.3236 0.6976 0.4142 0.097*
C1B 0.1599 (6) 0.60320 (17) 0.5886 (8) 0.0731 (16)
C2B 0.0698 (7) 0.5861 (2) 0.4979 (11) 0.097 (2)
H2BA 0.0530 0.5928 0.3783 0.116*
C3B 0.0038 (7) 0.5584 (2) 0.5886 (14) 0.113 (3)
H3BA −0.0559 0.5466 0.5276 0.136*
C4B 0.0263 (9) 0.5491 (3) 0.7602 (14) 0.115 (3)
H4BA −0.0173 0.5306 0.8181 0.137*
C5B 0.1124 (10) 0.5663 (3) 0.8517 (11) 0.118 (3)
H5BA 0.1265 0.5599 0.9724 0.142*
C6B 0.1802 (7) 0.5935 (2) 0.7679 (9) 0.092 (2)
H6BA 0.2388 0.6052 0.8323 0.110*
C7B 0.1835 (4) 0.67343 (15) 0.4673 (7) 0.0575 (12)
H7BA 0.1168 0.6703 0.3940 0.069*
H7BB 0.1652 0.6843 0.5831 0.069*
C8B 0.2369 (6) 0.63141 (17) 0.4947 (7) 0.0717 (16)
H8BA 0.2988 0.6357 0.5804 0.086*
C9B 0.2827 (6) 0.61330 (18) 0.3298 (8) 0.0767 (17)
H9BA 0.3288 0.6337 0.2778 0.092*
H9BB 0.2232 0.6080 0.2428 0.092*
C10B 0.4703 (9) 0.5713 (3) 0.5428 (13) 0.140 (4)
H10D 0.5253 0.5510 0.5308 0.210*
H10E 0.4392 0.5685 0.6576 0.210*
H10F 0.5017 0.5981 0.5339 0.210*
C11B 0.4268 (8) 0.5546 (2) 0.1443 (11) 0.115 (3)
H11D 0.4694 0.5300 0.1546 0.173*
H11E 0.4725 0.5771 0.1162 0.173*
H11F 0.3714 0.5513 0.0503 0.173*
C12B 0.2769 (8) 0.52048 (19) 0.4136 (12) 0.120 (3)
H12D 0.3190 0.4958 0.4123 0.181*
H12E 0.2177 0.5186 0.3252 0.181*
H12F 0.2491 0.5241 0.5306 0.181*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0932 (11) 0.0737 (9) 0.0567 (7) 0.0071 (8) −0.0001 (6) −0.0029 (6)
Cl2 0.0764 (9) 0.0589 (7) 0.0617 (7) −0.0045 (7) −0.0010 (6) 0.0030 (5)
Si1A 0.0727 (10) 0.0614 (9) 0.0584 (8) −0.0013 (8) 0.0027 (7) −0.0008 (6)
N1A 0.069 (3) 0.068 (3) 0.056 (2) 0.006 (2) 0.000 (2) −0.001 (2)
C1A 0.071 (3) 0.058 (3) 0.050 (2) −0.004 (3) 0.003 (2) 0.003 (2)
C2A 0.105 (5) 0.058 (3) 0.065 (3) −0.002 (3) 0.006 (3) −0.006 (3)
C3A 0.135 (7) 0.055 (4) 0.107 (5) 0.009 (4) 0.018 (5) −0.006 (3)
C4A 0.140 (8) 0.072 (4) 0.097 (5) 0.015 (5) 0.008 (5) 0.026 (4)
C5A 0.108 (6) 0.092 (5) 0.067 (3) 0.021 (4) −0.003 (3) 0.021 (3)
C6A 0.085 (4) 0.067 (3) 0.060 (3) 0.009 (3) −0.004 (3) 0.002 (3)
C7A 0.078 (4) 0.072 (4) 0.051 (2) 0.009 (3) 0.002 (2) 0.007 (2)
C8A 0.060 (3) 0.060 (3) 0.046 (2) 0.007 (2) 0.001 (2) −0.002 (2)
C9A 0.057 (3) 0.059 (3) 0.058 (3) 0.002 (2) −0.004 (2) 0.000 (2)
C10A 0.092 (5) 0.071 (4) 0.064 (3) −0.010 (3) 0.010 (3) 0.001 (3)
C11A 0.102 (5) 0.092 (5) 0.086 (4) −0.011 (4) 0.033 (4) −0.028 (4)
C12A 0.095 (5) 0.077 (4) 0.105 (5) 0.007 (4) −0.017 (4) 0.018 (4)
Si1B 0.1019 (14) 0.0555 (9) 0.0882 (11) 0.0095 (10) 0.0187 (10) 0.0047 (8)
N1B 0.086 (3) 0.048 (2) 0.060 (2) 0.001 (2) −0.010 (2) 0.0017 (18)
C1B 0.090 (5) 0.048 (3) 0.082 (4) 0.003 (3) 0.006 (3) −0.001 (3)
C2B 0.101 (6) 0.081 (5) 0.108 (5) 0.017 (4) 0.003 (4) 0.017 (4)
C3B 0.097 (6) 0.079 (5) 0.162 (8) 0.000 (5) −0.003 (6) 0.013 (5)
C4B 0.128 (8) 0.080 (5) 0.140 (8) −0.004 (5) 0.043 (6) 0.017 (5)
C5B 0.180 (10) 0.089 (6) 0.091 (5) −0.012 (6) 0.048 (6) 0.005 (4)
C6B 0.128 (6) 0.073 (4) 0.076 (4) −0.012 (4) 0.018 (4) −0.002 (3)
C7B 0.061 (3) 0.049 (3) 0.062 (3) −0.005 (2) −0.004 (2) −0.001 (2)
C8B 0.095 (5) 0.053 (3) 0.067 (3) 0.002 (3) 0.006 (3) 0.006 (2)
C9B 0.096 (5) 0.060 (3) 0.074 (3) 0.000 (3) 0.005 (3) 0.005 (3)
C10B 0.148 (9) 0.140 (9) 0.128 (7) 0.027 (7) −0.026 (7) −0.006 (6)
C11B 0.154 (8) 0.082 (5) 0.114 (6) −0.010 (5) 0.039 (6) −0.005 (4)
C12B 0.172 (9) 0.048 (4) 0.148 (7) 0.012 (5) 0.070 (6) 0.012 (4)

Geometric parameters (Å, °)

Si1A—C10A 1.862 (6) Si1B—C12B 1.850 (8)
Si1A—C9A 1.868 (6) Si1B—C10B 1.855 (9)
Si1A—C12A 1.870 (6) Si1B—C11B 1.861 (8)
Si1A—C11A 1.872 (6) Si1B—C9B 1.886 (6)
N1A—C7A 1.495 (6) N1B—C7B 1.479 (7)
N1A—H1AA 0.8900 N1B—H1BA 0.8900
N1A—H1AB 0.8900 N1B—H1BB 0.8900
N1A—H1AC 0.8900 N1B—H1BC 0.8900
C1A—C2A 1.386 (7) C1B—C6B 1.381 (9)
C1A—C6A 1.389 (7) C1B—C2B 1.391 (10)
C1A—C8A 1.512 (7) C1B—C8B 1.522 (8)
C2A—C3A 1.380 (9) C2B—C3B 1.414 (11)
C2A—H2AA 0.9300 C2B—H2BA 0.9300
C3A—C4A 1.363 (10) C3B—C4B 1.328 (12)
C3A—H3AA 0.9300 C3B—H3BA 0.9300
C4A—C5A 1.364 (10) C4B—C5B 1.357 (13)
C4A—H4AA 0.9300 C4B—H4BA 0.9300
C5A—C6A 1.381 (8) C5B—C6B 1.393 (11)
C5A—H5AA 0.9300 C5B—H5BA 0.9300
C6A—H6AA 0.9300 C6B—H6BA 0.9300
C7A—C8A 1.523 (8) C7B—C8B 1.534 (7)
C7A—H7AA 0.9700 C7B—H7BA 0.9700
C7A—H7AB 0.9700 C7B—H7BB 0.9700
C8A—C9A 1.527 (7) C8B—C9B 1.500 (8)
C8A—H8AA 0.9800 C8B—H8BA 0.9800
C9A—H9AA 0.9700 C9B—H9BA 0.9700
C9A—H9AB 0.9700 C9B—H9BB 0.9700
C10A—H10A 0.9600 C10B—H10D 0.9600
C10A—H10B 0.9600 C10B—H10E 0.9600
C10A—H10C 0.9600 C10B—H10F 0.9600
C11A—H11A 0.9600 C11B—H11D 0.9600
C11A—H11B 0.9600 C11B—H11E 0.9600
C11A—H11C 0.9600 C11B—H11F 0.9600
C12A—H12A 0.9600 C12B—H12D 0.9600
C12A—H12B 0.9600 C12B—H12E 0.9600
C12A—H12C 0.9600 C12B—H12F 0.9600
C10A—Si1A—C9A 108.4 (3) C12B—Si1B—C10B 109.7 (5)
C10A—Si1A—C12A 108.5 (3) C12B—Si1B—C11B 108.7 (4)
C9A—Si1A—C12A 111.6 (3) C10B—Si1B—C11B 109.6 (5)
C10A—Si1A—C11A 109.7 (3) C12B—Si1B—C9B 112.1 (4)
C9A—Si1A—C11A 108.1 (3) C10B—Si1B—C9B 110.1 (4)
C12A—Si1A—C11A 110.5 (4) C11B—Si1B—C9B 106.7 (3)
C7A—N1A—H1AA 109.5 C7B—N1B—H1BA 109.5
C7A—N1A—H1AB 109.5 C7B—N1B—H1BB 109.5
H1AA—N1A—H1AB 109.5 H1BA—N1B—H1BB 109.5
C7A—N1A—H1AC 109.5 C7B—N1B—H1BC 109.5
H1AA—N1A—H1AC 109.5 H1BA—N1B—H1BC 109.5
H1AB—N1A—H1AC 109.5 H1BB—N1B—H1BC 109.5
C2A—C1A—C6A 117.7 (5) C6B—C1B—C2B 118.5 (7)
C2A—C1A—C8A 121.1 (4) C6B—C1B—C8B 119.7 (6)
C6A—C1A—C8A 121.2 (5) C2B—C1B—C8B 121.8 (6)
C3A—C2A—C1A 120.3 (6) C1B—C2B—C3B 119.6 (8)
C3A—C2A—H2AA 119.8 C1B—C2B—H2BA 120.2
C1A—C2A—H2AA 119.8 C3B—C2B—H2BA 120.2
C4A—C3A—C2A 121.3 (6) C4B—C3B—C2B 120.6 (9)
C4A—C3A—H3AA 119.3 C4B—C3B—H3BA 119.7
C2A—C3A—H3AA 119.3 C2B—C3B—H3BA 119.7
C3A—C4A—C5A 119.1 (7) C3B—C4B—C5B 120.4 (9)
C3A—C4A—H4AA 120.4 C3B—C4B—H4BA 119.8
C5A—C4A—H4AA 120.4 C5B—C4B—H4BA 119.8
C4A—C5A—C6A 120.5 (6) C4B—C5B—C6B 121.1 (8)
C4A—C5A—H5AA 119.8 C4B—C5B—H5BA 119.5
C6A—C5A—H5AA 119.8 C6B—C5B—H5BA 119.5
C5A—C6A—C1A 121.0 (6) C1B—C6B—C5B 119.7 (8)
C5A—C6A—H6AA 119.5 C1B—C6B—H6BA 120.1
C1A—C6A—H6AA 119.5 C5B—C6B—H6BA 120.1
N1A—C7A—C8A 112.8 (4) N1B—C7B—C8B 112.0 (5)
N1A—C7A—H7AA 109.0 N1B—C7B—H7BA 109.2
C8A—C7A—H7AA 109.0 C8B—C7B—H7BA 109.2
N1A—C7A—H7AB 109.0 N1B—C7B—H7BB 109.2
C8A—C7A—H7AB 109.0 C8B—C7B—H7BB 109.2
H7AA—C7A—H7AB 107.8 H7BA—C7B—H7BB 107.9
C1A—C8A—C7A 108.5 (4) C9B—C8B—C1B 114.1 (5)
C1A—C8A—C9A 112.4 (4) C9B—C8B—C7B 115.0 (5)
C7A—C8A—C9A 114.2 (4) C1B—C8B—C7B 109.1 (5)
C1A—C8A—H8AA 107.1 C9B—C8B—H8BA 105.9
C7A—C8A—H8AA 107.1 C1B—C8B—H8BA 105.9
C9A—C8A—H8AA 107.1 C7B—C8B—H8BA 105.9
C8A—C9A—Si1A 117.2 (4) C8B—C9B—Si1B 116.8 (4)
C8A—C9A—H9AA 108.0 C8B—C9B—H9BA 108.1
Si1A—C9A—H9AA 108.0 Si1B—C9B—H9BA 108.1
C8A—C9A—H9AB 108.0 C8B—C9B—H9BB 108.1
Si1A—C9A—H9AB 108.0 Si1B—C9B—H9BB 108.1
H9AA—C9A—H9AB 107.2 H9BA—C9B—H9BB 107.3
Si1A—C10A—H10A 109.5 Si1B—C10B—H10D 109.5
Si1A—C10A—H10B 109.5 Si1B—C10B—H10E 109.5
H10A—C10A—H10B 109.5 H10D—C10B—H10E 109.5
Si1A—C10A—H10C 109.5 Si1B—C10B—H10F 109.5
H10A—C10A—H10C 109.5 H10D—C10B—H10F 109.5
H10B—C10A—H10C 109.5 H10E—C10B—H10F 109.5
Si1A—C11A—H11A 109.5 Si1B—C11B—H11D 109.5
Si1A—C11A—H11B 109.5 Si1B—C11B—H11E 109.5
H11A—C11A—H11B 109.5 H11D—C11B—H11E 109.5
Si1A—C11A—H11C 109.5 Si1B—C11B—H11F 109.5
H11A—C11A—H11C 109.5 H11D—C11B—H11F 109.5
H11B—C11A—H11C 109.5 H11E—C11B—H11F 109.5
Si1A—C12A—H12A 109.5 Si1B—C12B—H12D 109.5
Si1A—C12A—H12B 109.5 Si1B—C12B—H12E 109.5
H12A—C12A—H12B 109.5 H12D—C12B—H12E 109.5
Si1A—C12A—H12C 109.5 Si1B—C12B—H12F 109.5
H12A—C12A—H12C 109.5 H12D—C12B—H12F 109.5
H12B—C12A—H12C 109.5 H12E—C12B—H12F 109.5
C6A—C1A—C2A—C3A −1.1 (10) C6B—C1B—C2B—C3B −2.1 (11)
C8A—C1A—C2A—C3A 179.6 (6) C8B—C1B—C2B—C3B 176.7 (7)
C1A—C2A—C3A—C4A −1.2 (12) C1B—C2B—C3B—C4B 1.0 (13)
C2A—C3A—C4A—C5A 2.2 (14) C2B—C3B—C4B—C5B 0.6 (15)
C3A—C4A—C5A—C6A −0.7 (13) C3B—C4B—C5B—C6B −1.1 (15)
C4A—C5A—C6A—C1A −1.6 (12) C2B—C1B—C6B—C5B 1.7 (11)
C2A—C1A—C6A—C5A 2.5 (10) C8B—C1B—C6B—C5B −177.2 (7)
C8A—C1A—C6A—C5A −178.2 (6) C4B—C5B—C6B—C1B −0.1 (13)
C2A—C1A—C8A—C7A 113.5 (6) C6B—C1B—C8B—C9B 123.7 (7)
C6A—C1A—C8A—C7A −65.8 (7) C2B—C1B—C8B—C9B −55.1 (9)
C2A—C1A—C8A—C9A −119.2 (6) C6B—C1B—C8B—C7B −106.0 (7)
C6A—C1A—C8A—C9A 61.6 (7) C2B—C1B—C8B—C7B 75.2 (7)
N1A—C7A—C8A—C1A −175.4 (4) N1B—C7B—C8B—C9B −51.3 (7)
N1A—C7A—C8A—C9A 58.3 (6) N1B—C7B—C8B—C1B 179.0 (4)
C1A—C8A—C9A—Si1A 58.3 (5) C1B—C8B—C9B—Si1B −59.5 (7)
C7A—C8A—C9A—Si1A −177.4 (3) C7B—C8B—C9B—Si1B 173.2 (4)
C10A—Si1A—C9A—C8A 163.8 (4) C12B—Si1B—C9B—C8B 70.1 (6)
C12A—Si1A—C9A—C8A −76.8 (4) C10B—Si1B—C9B—C8B −52.3 (7)
C11A—Si1A—C9A—C8A 44.9 (5) C11B—Si1B—C9B—C8B −171.1 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1A—H1AA···Cl2i 0.89 2.23 3.114 (5) 173.
N1A—H1AB···Cl1 0.89 2.25 3.136 (4) 172.
N1A—H1AC···Cl1ii 0.89 2.36 3.168 (5) 152.
N1B—H1BA···Cl2ii 0.89 2.30 3.166 (4) 163.
N1B—H1BB···Cl2 0.89 2.28 3.165 (4) 171.
N1B—H1BC···Cl1 0.89 2.35 3.222 (5) 165.

Symmetry codes: (i) x, y, z+1; (ii) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5087).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Blasucci, V., Hart, R., Mestre, V. L., Hahne, D. J., Burlager, M., Huttenhower, H., Thio, B. J. R., Pollet, P., Liotta, C. L. & Eckert, C. A. (2010). Fuel, 89, 1315–1319.
  3. Frankel, M., Broze, M., Gertner, D., Rotman, A., Shenhar, A. & Zilkha, A. (1968). J. Med. Chem. 11, 857–860. [DOI] [PubMed]
  4. Li, J.-R., Lusker, K. L., Yu, J.-J. & Garno, J. C. (2009). ACS Nano, 3, 2023–2035. [DOI] [PubMed]
  5. Lorenz, M., Linn, M. L. V. & Cook, J. M. (2010). Curr. Org. Synth. 7, 189–223.
  6. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811035410/hg5087sup1.cif

e-67-o2553-sup1.cif (24.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035410/hg5087Isup2.hkl

e-67-o2553-Isup2.hkl (288KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811035410/hg5087Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES