Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 3;67(Pt 10):o2548. doi: 10.1107/S1600536811035082

6-Benzyl-2-[(triphenyl-λ5-phosphanyl­idene)amino]-4,5,6,7-tetra­hydro­thieno[2,3-c]pyridine-3-carbonitrile

Hong Chen a,*, Kai Yan b
PMCID: PMC3201343  PMID: 22058728

Abstract

In the title compound, C33H28N3PS, the P atom has a distorted tetra­hedral PNC3 environment, formed by the N atom and three aryl rings. No inter­molecular hydrogen-bonding inter­actions or π–π stacking inter­actions are present in the crystal structure.

Related literature

For general background to the potential use of imino­phospho­ranes in the synthesis of N-heterocyclic compounds by means of an aza-Wittig reaction, see: Bräse et al. (2005); Ding et al. (2005); Huang et al. (2009a ,b ); Liu et al. (2008); Palacios et al. (2007). For a related structure, see: Muller (2011).graphic file with name e-67-o2548-scheme1.jpg

Experimental

Crystal data

  • C33H28N3PS

  • M r = 529.61

  • Monoclinic, Inline graphic

  • a = 8.926 (4) Å

  • b = 27.537 (12) Å

  • c = 11.719 (5) Å

  • β = 101.970 (4)°

  • V = 2818 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.23 × 0.15 × 0.14 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.965, T max = 0.973

  • 25582 measured reflections

  • 6415 independent reflections

  • 5506 reflections with I > 2σ(I)

  • R int = 0.078

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.145

  • S = 1.09

  • 6415 reflections

  • 343 parameters

  • 14 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811035082/aa2019sup1.cif

e-67-o2548-sup1.cif (25KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035082/aa2019Isup2.hkl

e-67-o2548-Isup2.hkl (314KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811035082/aa2019Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the Science Foundation of Hubei Province Education Department, China (project No. D20091301) and the Excellent Fund for Scientific Research and Special Projects in China Three Gorges University, China (project No. KJ2009B004).

supplementary crystallographic information

Comment

Over the past twenty years, the aza-Wittig reactions of iminophosphoranes have received increasing attention in view of their utility in the synthesis of N-heterocyclic compounds (Bräse et al., 2005; Palacios et al., 2007). Annelation of ring systems with N-heterocycles by means of an aza-Wittig reaction has been widely utilized because of the availability of functionalized iminophosphoranes. Consequently, the discovery of novel functionalized iminophosphoranes is important in this respect. Recently we have become interested in the synthesis of thienopyrimidinone, quinazolinones, and imidazolinones by an aza-Wittig reaction, with the aim of evaluating their fungicidal activities (Ding et al., 2005; Huang et al., 2009a,b; Liu et al., 2008). Meanwhile, the title compound can be used as a new precursor for obtaining of bioactive molecules with fluorescence properties. Herein we wish to report the efficient synthesis, structural characterization of the title compound.

The molecular structure of the title compound is shown in Fig.1. The molecule has a benzyl substituent at the N6 atom of the thienopyridine ring and an nitrile group substituent at C3. Within the molecule, the bond lengths and bond angles present no unusual features. In the fused thienopyridine ring system, the thiophene ring is essentially coplanar, with maximum deviation of -0.0052 and 0.0059 Å for C8 and C9, respectively. The dihedral angle between plane (N6, C5, C7) and plane (C4, C5, C7) is 61.69°. The thiophene ring forms dihedral angles of 84.67, 73.58, 2.35 and 65.29° with the adjacent 6-membered rings C12–C17, C18–C23, C24–C29 and C33–C38, respectively. Meanwhile, the P atom has a distorted PNC3 tetrahedral environment, formed by the N atom [P═N = 1.5782 (16) Å] and three aryl rings. The crystal packing is determined by van der Waals forces. No intermolecular hydrogen bonding interaction or π-π stacking interactions are present in the crystal structure.

Experimental

A well stirred mixture of 1-benzylpiperidin-4-one (1.89 g, 10 mmol), sulfur (0.32 g, 10 mmol), malononitrile (0.66 g, 10 mmol) in EtOH (10 ml) was cooled in an ice bath and treated dropwise with Et3N (1.01 g, 10 mmol). When addition was complete, the reaction mixture was warmed to 333 K for 40 min and then stored in the cold place until crystallization occurred. The product, 2-amino-6-benzyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carbonitrile (2.29 g, yield 85%) was recrystallized from EtOH as colourless needles, M.p. 422–423 K.

To a mixture of 2-amino-6-benzyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carbonitrile (1.35 g, 5 mmol), PPh3 (3.94 g, 15 mmol) and C2Cl6 (3.55 g, 15 mmol) in anhydrous CH3CN (40 ml), were added dropwise Et3N (2.42 g, 24 mmol) at room temperature. The color of the reaction mixture quickly turned yellow. After stirring for 4–6 h, the solvent was removed under reduced pressure and the residue was recrystallized from EtOH to give iminophosphorane in light yellow crystals, 3.63 g (83%), M.p. 463 K; IR (KBr), cm-1 2190 (C≡N), 1490, 1346, 1100, 688; 1H NMR(CDCl3, 400 MHz) δ(p.p.m.): 7.78–7.23 (m, 20H, Ar—H), 3.62 (s, 2H, Ar—CH2), 3.24 (s, 2H, NCH2-thiophene), 2.75 (t, J = 8.7 Hz, 2H, NCH2CH2), 2.64 (t, J = 8.7 Hz, 2H, NCH2CH2); ESI-MS (m/z): 529.2 (M+), 530.2 ([M+H]+), 531.1 ([M+2H]+).

Refinement

All H atoms were positioned geometrically [C—H = 0.93, 0.97 Å] and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The rigid bond restraint "DELU, SIMU" instructions are used to restrain the anisotropic displacement parameters of C32—C33 and C34—C35 in the direction of the bond between them to be equal within a given standard uncertainty.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram of the title compound projected along the c axis direction. H atoms are omitted for clarity.

Fig. 3.

Fig. 3.

Reaction scheme.

Crystal data

C33H28N3PS F(000) = 1112
Mr = 529.61 Dx = 1.248 Mg m3
Monoclinic, P21/c Melting point: 463 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 8.926 (4) Å Cell parameters from 6648 reflections
b = 27.537 (12) Å θ = 2.7–27.5°
c = 11.719 (5) Å µ = 0.20 mm1
β = 101.970 (4)° T = 296 K
V = 2818 (2) Å3 Block, yellow
Z = 4 0.23 × 0.15 × 0.14 mm

Data collection

Bruker SMART CCD diffractometer 6415 independent reflections
Radiation source: fine-focus sealed tube 5506 reflections with I > 2σ(I)
graphite Rint = 0.078
CCD Profile fitting scans θmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −11→11
Tmin = 0.965, Tmax = 0.973 k = −35→35
25582 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.6222P] where P = (Fo2 + 2Fc2)/3
6415 reflections (Δ/σ)max = 0.001
343 parameters Δρmax = 0.35 e Å3
14 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.39018 (6) 0.490734 (17) 0.21538 (4) 0.04728 (14)
P11 0.32811 (5) 0.375360 (16) 0.10480 (4) 0.03695 (13)
C2 0.29442 (19) 0.44156 (6) 0.26335 (15) 0.0385 (4)
N10 0.26996 (18) 0.39751 (5) 0.21202 (13) 0.0430 (3)
C24 0.2666 (2) 0.31289 (7) 0.10029 (15) 0.0423 (4)
C3 0.2455 (2) 0.45503 (7) 0.36345 (15) 0.0409 (4)
C18 0.2416 (2) 0.40262 (7) −0.03330 (16) 0.0433 (4)
C9 0.2855 (2) 0.50376 (7) 0.40134 (15) 0.0431 (4)
C4 0.2442 (3) 0.52902 (8) 0.50410 (17) 0.0533 (5)
H4A 0.2822 0.5103 0.5742 0.064*
H4B 0.1336 0.5310 0.4932 0.064*
C12 0.5327 (2) 0.37745 (7) 0.11612 (16) 0.0431 (4)
C8 0.3613 (2) 0.52716 (7) 0.32988 (17) 0.0467 (4)
C30 0.1641 (2) 0.42171 (7) 0.42103 (16) 0.0482 (4)
C19 0.1165 (2) 0.43269 (8) −0.03768 (18) 0.0526 (5)
H19 0.0819 0.4395 0.0302 0.063*
N6 0.3003 (2) 0.60358 (7) 0.40430 (17) 0.0624 (5)
C7 0.4035 (3) 0.57978 (8) 0.3403 (2) 0.0613 (6)
H7A 0.5089 0.5835 0.3818 0.074*
H7B 0.3932 0.5941 0.2635 0.074*
C29 0.1868 (3) 0.29638 (8) 0.18196 (19) 0.0559 (5)
H29 0.1703 0.3171 0.2409 0.067*
N31 0.0979 (3) 0.39483 (8) 0.46615 (18) 0.0729 (6)
C13 0.6239 (2) 0.34442 (9) 0.18892 (19) 0.0573 (5)
H13 0.5789 0.3190 0.2221 0.069*
C5 0.3120 (3) 0.58015 (9) 0.5189 (2) 0.0666 (6)
H5A 0.2575 0.5994 0.5665 0.080*
H5B 0.4187 0.5784 0.5586 0.080*
C33 0.3007 (3) 0.67981 (8) 0.2956 (2) 0.0681 (6)
C27 0.1534 (3) 0.21872 (9) 0.0894 (3) 0.0765 (8)
H27 0.1140 0.1874 0.0849 0.092*
C23 0.2916 (3) 0.39258 (10) −0.13584 (18) 0.0643 (6)
H23 0.3761 0.3726 −0.1341 0.077*
C25 0.2919 (3) 0.28159 (8) 0.0134 (2) 0.0628 (6)
H25 0.3471 0.2920 −0.0413 0.075*
C26 0.2338 (4) 0.23443 (9) 0.0087 (2) 0.0775 (8)
H26 0.2499 0.2134 −0.0498 0.093*
C17 0.6018 (3) 0.41492 (9) 0.0675 (2) 0.0630 (6)
H17 0.5420 0.4372 0.0184 0.076*
C16 0.7602 (3) 0.41936 (11) 0.0916 (3) 0.0805 (8)
H16 0.8063 0.4446 0.0587 0.097*
C36 0.2460 (5) 0.72224 (11) 0.0748 (3) 0.0943 (9)
H36 0.2282 0.7364 0.0012 0.113*
C15 0.8486 (3) 0.38665 (12) 0.1639 (3) 0.0797 (8)
H15 0.9546 0.3898 0.1803 0.096*
C14 0.7818 (3) 0.34928 (11) 0.2122 (2) 0.0748 (7)
H14 0.8427 0.3271 0.2607 0.090*
C28 0.1311 (3) 0.24919 (9) 0.1766 (3) 0.0753 (7)
H28 0.0786 0.2383 0.2324 0.090*
C22 0.2153 (3) 0.41234 (12) −0.2402 (2) 0.0827 (9)
H22 0.2480 0.4053 −0.3087 0.099*
C20 0.0417 (3) 0.45287 (10) −0.1435 (2) 0.0723 (7)
H20 −0.0416 0.4734 −0.1462 0.087*
C21 0.0922 (3) 0.44216 (12) −0.2433 (2) 0.0802 (8)
H21 0.0420 0.4553 −0.3140 0.096*
C35 0.3784 (4) 0.72998 (12) 0.1508 (4) 0.0936 (10)
H35 0.4520 0.7499 0.1292 0.112*
C32 0.3298 (4) 0.65581 (9) 0.4136 (3) 0.0824 (8)
H32A 0.4353 0.6613 0.4526 0.099*
H32B 0.2643 0.6704 0.4607 0.099*
C38 0.1630 (3) 0.67270 (10) 0.2154 (3) 0.0808 (8)
H38 0.0867 0.6536 0.2358 0.097*
C34 0.4080 (3) 0.70931 (11) 0.2599 (3) 0.0888 (9)
H34 0.5013 0.7152 0.3103 0.107*
C37 0.1393 (4) 0.69361 (12) 0.1064 (3) 0.0931 (10)
H37 0.0478 0.6879 0.0537 0.112*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0532 (3) 0.0445 (3) 0.0489 (3) −0.00073 (19) 0.0216 (2) −0.00419 (18)
P11 0.0375 (2) 0.0411 (2) 0.0327 (2) 0.00167 (17) 0.00837 (17) −0.00069 (16)
C2 0.0377 (8) 0.0432 (9) 0.0346 (8) 0.0036 (7) 0.0076 (7) 0.0006 (6)
N10 0.0485 (8) 0.0442 (8) 0.0386 (8) −0.0012 (6) 0.0143 (7) −0.0042 (6)
C24 0.0422 (9) 0.0443 (9) 0.0374 (9) 0.0003 (7) 0.0014 (7) −0.0019 (7)
C3 0.0432 (9) 0.0476 (9) 0.0314 (8) 0.0064 (7) 0.0065 (7) 0.0001 (7)
C18 0.0415 (9) 0.0501 (10) 0.0376 (9) −0.0001 (7) 0.0070 (7) 0.0037 (7)
C9 0.0423 (9) 0.0505 (10) 0.0348 (9) 0.0091 (8) 0.0040 (7) −0.0045 (7)
C4 0.0608 (12) 0.0609 (12) 0.0356 (9) 0.0127 (9) 0.0040 (9) −0.0081 (8)
C12 0.0400 (9) 0.0491 (10) 0.0406 (9) 0.0035 (7) 0.0094 (7) −0.0051 (7)
C8 0.0450 (9) 0.0462 (9) 0.0492 (10) 0.0052 (8) 0.0104 (8) −0.0090 (8)
C30 0.0582 (11) 0.0536 (10) 0.0339 (9) 0.0080 (9) 0.0119 (8) 0.0017 (7)
C19 0.0443 (10) 0.0608 (12) 0.0512 (11) 0.0049 (9) 0.0064 (9) 0.0052 (9)
N6 0.0780 (13) 0.0471 (9) 0.0629 (11) 0.0041 (9) 0.0170 (10) −0.0168 (8)
C7 0.0602 (12) 0.0494 (11) 0.0773 (15) −0.0018 (10) 0.0213 (11) −0.0146 (10)
C29 0.0691 (13) 0.0484 (11) 0.0515 (11) −0.0074 (9) 0.0158 (10) 0.0022 (8)
N31 0.0974 (16) 0.0704 (13) 0.0583 (12) −0.0061 (11) 0.0330 (12) 0.0098 (9)
C13 0.0485 (11) 0.0683 (13) 0.0529 (12) 0.0064 (10) 0.0056 (9) 0.0076 (10)
C5 0.0779 (15) 0.0678 (14) 0.0499 (12) 0.0049 (12) 0.0036 (11) −0.0212 (10)
C33 0.0764 (15) 0.0455 (11) 0.0805 (16) 0.0092 (10) 0.0119 (13) −0.0187 (10)
C27 0.0892 (18) 0.0464 (12) 0.0819 (18) −0.0119 (12) −0.0100 (15) 0.0005 (11)
C23 0.0621 (13) 0.0937 (17) 0.0391 (11) 0.0135 (12) 0.0152 (10) 0.0084 (10)
C25 0.0818 (15) 0.0564 (12) 0.0504 (12) 0.0022 (11) 0.0143 (11) −0.0109 (9)
C26 0.103 (2) 0.0541 (13) 0.0662 (16) 0.0051 (13) −0.0043 (14) −0.0223 (11)
C17 0.0470 (11) 0.0652 (13) 0.0806 (16) 0.0025 (10) 0.0220 (11) 0.0123 (11)
C16 0.0498 (13) 0.0850 (18) 0.112 (2) −0.0080 (12) 0.0288 (14) 0.0093 (16)
C36 0.119 (3) 0.0695 (18) 0.095 (2) 0.0008 (18) 0.025 (2) −0.0063 (15)
C15 0.0403 (11) 0.114 (2) 0.0847 (19) −0.0037 (13) 0.0122 (12) −0.0092 (16)
C14 0.0482 (12) 0.105 (2) 0.0668 (16) 0.0173 (13) 0.0017 (11) 0.0068 (14)
C28 0.0913 (18) 0.0535 (13) 0.0814 (17) −0.0172 (12) 0.0187 (14) 0.0079 (12)
C22 0.0768 (17) 0.132 (3) 0.0392 (12) −0.0004 (17) 0.0118 (12) 0.0154 (13)
C20 0.0526 (12) 0.0819 (16) 0.0743 (17) 0.0134 (12) −0.0057 (12) 0.0194 (13)
C21 0.0652 (15) 0.113 (2) 0.0549 (15) −0.0024 (15) −0.0054 (12) 0.0301 (14)
C35 0.105 (2) 0.0723 (18) 0.115 (3) −0.0176 (17) 0.048 (2) −0.0176 (17)
C32 0.1019 (19) 0.0533 (13) 0.0851 (17) 0.0030 (13) 0.0036 (15) −0.0268 (11)
C38 0.0603 (14) 0.0636 (15) 0.116 (2) −0.0038 (12) 0.0126 (15) 0.0062 (15)
C34 0.0697 (16) 0.0736 (17) 0.117 (3) −0.0124 (14) 0.0048 (17) −0.0369 (17)
C37 0.086 (2) 0.0790 (19) 0.101 (2) 0.0032 (16) −0.0105 (18) 0.0071 (17)

Geometric parameters (Å, °)

S1—C8 1.737 (2) C33—C34 1.385 (4)
S1—C2 1.7550 (19) C33—C38 1.397 (4)
P11—N10 1.5782 (16) C33—C32 1.506 (4)
P11—C24 1.803 (2) C27—C28 1.368 (4)
P11—C12 1.804 (2) C27—C26 1.371 (4)
P11—C18 1.8057 (19) C27—H27 0.9300
C2—N10 1.351 (2) C23—C22 1.382 (3)
C2—C3 1.385 (2) C23—H23 0.9300
C24—C29 1.383 (3) C25—C26 1.395 (3)
C24—C25 1.388 (3) C25—H25 0.9300
C3—C30 1.424 (3) C26—H26 0.9300
C3—C9 1.435 (3) C17—C16 1.389 (3)
C18—C19 1.383 (3) C17—H17 0.9300
C18—C23 1.394 (3) C16—C15 1.369 (4)
C9—C8 1.345 (3) C16—H16 0.9300
C9—C4 1.501 (2) C36—C35 1.341 (5)
C4—C5 1.528 (3) C36—C37 1.347 (5)
C4—H4A 0.9700 C36—H36 0.9300
C4—H4B 0.9700 C15—C14 1.369 (4)
C12—C17 1.384 (3) C15—H15 0.9300
C12—C13 1.389 (3) C14—H14 0.9300
C8—C7 1.496 (3) C28—H28 0.9300
C30—N31 1.143 (3) C22—C21 1.367 (4)
C19—C20 1.396 (3) C22—H22 0.9300
C19—H19 0.9300 C20—C21 1.370 (4)
N6—C7 1.458 (3) C20—H20 0.9300
N6—C32 1.462 (3) C21—H21 0.9300
N6—C5 1.474 (3) C35—C34 1.373 (5)
C7—H7A 0.9700 C35—H35 0.9300
C7—H7B 0.9700 C32—H32A 0.9700
C29—C28 1.388 (3) C32—H32B 0.9700
C29—H29 0.9300 C38—C37 1.376 (4)
C13—C14 1.386 (3) C38—H38 0.9300
C13—H13 0.9300 C34—H34 0.9300
C5—H5A 0.9700 C37—H37 0.9300
C5—H5B 0.9700
C8—S1—C2 92.17 (9) C34—C33—C38 116.4 (3)
N10—P11—C24 104.09 (8) C34—C33—C32 122.4 (3)
N10—P11—C12 115.09 (8) C38—C33—C32 121.1 (3)
C24—P11—C12 109.28 (8) C28—C27—C26 120.0 (2)
N10—P11—C18 113.76 (9) C28—C27—H27 120.0
C24—P11—C18 107.42 (9) C26—C27—H27 120.0
C12—P11—C18 106.90 (9) C22—C23—C18 119.8 (2)
N10—C2—C3 124.56 (16) C22—C23—H23 120.1
N10—C2—S1 126.48 (13) C18—C23—H23 120.1
C3—C2—S1 108.96 (13) C24—C25—C26 119.4 (2)
C2—N10—P11 130.67 (13) C24—C25—H25 120.3
C29—C24—C25 119.31 (19) C26—C25—H25 120.3
C29—C24—P11 119.39 (15) C27—C26—C25 120.7 (2)
C25—C24—P11 121.24 (16) C27—C26—H26 119.7
C2—C3—C30 120.69 (17) C25—C26—H26 119.7
C2—C3—C9 114.23 (16) C12—C17—C16 120.2 (2)
C30—C3—C9 125.07 (16) C12—C17—H17 119.9
C19—C18—C23 119.18 (18) C16—C17—H17 119.9
C19—C18—P11 118.30 (15) C15—C16—C17 120.0 (3)
C23—C18—P11 122.44 (16) C15—C16—H16 120.0
C8—C9—C3 112.36 (16) C17—C16—H16 120.0
C8—C9—C4 121.09 (18) C35—C36—C37 119.1 (3)
C3—C9—C4 126.47 (17) C35—C36—H36 120.5
C9—C4—C5 111.13 (18) C37—C36—H36 120.5
C9—C4—H4A 109.4 C16—C15—C14 120.4 (2)
C5—C4—H4A 109.4 C16—C15—H15 119.8
C9—C4—H4B 109.4 C14—C15—H15 119.8
C5—C4—H4B 109.4 C15—C14—C13 120.2 (2)
H4A—C4—H4B 108.0 C15—C14—H14 119.9
C17—C12—C13 119.13 (19) C13—C14—H14 119.9
C17—C12—P11 121.62 (15) C27—C28—C29 120.1 (3)
C13—C12—P11 118.64 (15) C27—C28—H28 120.0
C9—C8—C7 124.33 (18) C29—C28—H28 120.0
C9—C8—S1 112.26 (15) C21—C22—C23 120.4 (2)
C7—C8—S1 123.18 (16) C21—C22—H22 119.8
N31—C30—C3 179.3 (2) C23—C22—H22 119.8
C18—C19—C20 120.3 (2) C21—C20—C19 119.4 (2)
C18—C19—H19 119.8 C21—C20—H20 120.3
C20—C19—H19 119.8 C19—C20—H20 120.3
C7—N6—C32 110.9 (2) C22—C21—C20 120.8 (2)
C7—N6—C5 109.80 (19) C22—C21—H21 119.6
C32—N6—C5 112.64 (19) C20—C21—H21 119.6
N6—C7—C8 107.58 (18) C36—C35—C34 121.7 (3)
N6—C7—H7A 110.2 C36—C35—H35 119.1
C8—C7—H7A 110.2 C34—C35—H35 119.1
N6—C7—H7B 110.2 N6—C32—C33 111.7 (2)
C8—C7—H7B 110.2 N6—C32—H32A 109.3
H7A—C7—H7B 108.5 C33—C32—H32A 109.3
C24—C29—C28 120.5 (2) N6—C32—H32B 109.3
C24—C29—H29 119.8 C33—C32—H32B 109.3
C28—C29—H29 119.8 H32A—C32—H32B 107.9
C14—C13—C12 120.0 (2) C37—C38—C33 120.7 (3)
C14—C13—H13 120.0 C37—C38—H38 119.7
C12—C13—H13 120.0 C33—C38—H38 119.7
N6—C5—C4 110.37 (17) C35—C34—C33 120.8 (3)
N6—C5—H5A 109.6 C35—C34—H34 119.6
C4—C5—H5A 109.6 C33—C34—H34 119.6
N6—C5—H5B 109.6 C36—C37—C38 121.2 (3)
C4—C5—H5B 109.6 C36—C37—H37 119.4
H5A—C5—H5B 108.1 C38—C37—H37 119.4
C8—S1—C2—N10 179.48 (17) P11—C18—C19—C20 −177.18 (18)
C8—S1—C2—C3 −0.05 (14) C32—N6—C7—C8 −177.4 (2)
C3—C2—N10—P11 −174.79 (14) C5—N6—C7—C8 57.4 (2)
S1—C2—N10—P11 5.7 (3) C9—C8—C7—N6 −22.4 (3)
C24—P11—N10—C2 173.39 (17) S1—C8—C7—N6 151.68 (16)
C12—P11—N10—C2 53.8 (2) C25—C24—C29—C28 −0.6 (3)
C18—P11—N10—C2 −70.01 (19) P11—C24—C29—C28 176.58 (19)
N10—P11—C24—C29 0.25 (18) C17—C12—C13—C14 0.1 (3)
C12—P11—C24—C29 123.69 (16) P11—C12—C13—C14 −171.05 (19)
C18—P11—C24—C29 −120.68 (16) C7—N6—C5—C4 −69.2 (2)
N10—P11—C24—C25 177.42 (17) C32—N6—C5—C4 166.6 (2)
C12—P11—C24—C25 −59.14 (19) C9—C4—C5—N6 39.9 (3)
C18—P11—C24—C25 56.49 (19) C19—C18—C23—C22 −0.5 (4)
N10—C2—C3—C30 0.5 (3) P11—C18—C23—C22 176.3 (2)
S1—C2—C3—C30 −179.95 (14) C29—C24—C25—C26 1.3 (3)
N10—C2—C3—C9 179.89 (16) P11—C24—C25—C26 −175.92 (18)
S1—C2—C3—C9 −0.57 (19) C28—C27—C26—C25 −0.9 (4)
N10—P11—C18—C19 −11.62 (19) C24—C25—C26—C27 −0.5 (4)
C24—P11—C18—C19 103.01 (17) C13—C12—C17—C16 −0.2 (4)
C12—P11—C18—C19 −139.79 (16) P11—C12—C17—C16 170.7 (2)
N10—P11—C18—C23 171.61 (18) C12—C17—C16—C15 −0.1 (4)
C24—P11—C18—C23 −73.8 (2) C17—C16—C15—C14 0.4 (5)
C12—P11—C18—C23 43.4 (2) C16—C15—C14—C13 −0.5 (5)
C2—C3—C9—C8 1.1 (2) C12—C13—C14—C15 0.2 (4)
C30—C3—C9—C8 −179.54 (17) C26—C27—C28—C29 1.5 (4)
C2—C3—C9—C4 177.94 (17) C24—C29—C28—C27 −0.8 (4)
C30—C3—C9—C4 −2.7 (3) C18—C23—C22—C21 0.8 (4)
C8—C9—C4—C5 −5.3 (3) C18—C19—C20—C21 0.8 (4)
C3—C9—C4—C5 178.09 (18) C23—C22—C21—C20 −0.2 (5)
N10—P11—C12—C17 −94.91 (19) C19—C20—C21—C22 −0.6 (4)
C24—P11—C12—C17 148.44 (18) C37—C36—C35—C34 0.3 (5)
C18—P11—C12—C17 32.5 (2) C7—N6—C32—C33 62.6 (3)
N10—P11—C12—C13 76.04 (18) C5—N6—C32—C33 −173.9 (2)
C24—P11—C12—C13 −40.61 (18) C34—C33—C32—N6 −127.8 (3)
C18—P11—C12—C13 −156.57 (16) C38—C33—C32—N6 51.2 (3)
C3—C9—C8—C7 173.52 (19) C34—C33—C38—C37 1.1 (4)
C4—C9—C8—C7 −3.5 (3) C32—C33—C38—C37 −178.0 (3)
C3—C9—C8—S1 −1.1 (2) C36—C35—C34—C33 −0.5 (5)
C4—C9—C8—S1 −178.14 (14) C38—C33—C34—C35 −0.2 (4)
C2—S1—C8—C9 0.68 (15) C32—C33—C34—C35 179.0 (3)
C2—S1—C8—C7 −174.02 (18) C35—C36—C37—C38 0.7 (5)
C23—C18—C19—C20 −0.3 (3) C33—C38—C37—C36 −1.4 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2019).

References

  1. Bräse, S., Gil, C., Knepper, K. & Zimmermann, V. (2005). Angew. Chem. Int. Ed. 44, 5188–5240. [DOI] [PubMed]
  2. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Ding, M. W., Huang, N. Y. & He, H. W. (2005). Synthesis, 10, 1601–1604.
  4. Huang, N. Y., Liang, Y. J., Ding, M. W., Fu, L. W. & He, H. W. (2009a). Bioorg. Med. Chem. Lett. 19, 831–833. [DOI] [PubMed]
  5. Huang, N. Y., Liu, M. G. & Ding, M. W. (2009b). J. Org. Chem. 74, 6874–6877. [DOI] [PubMed]
  6. Liu, M. G., Hu, Y. G. & Ding, M. W. (2008). Tetrahedron, 64, 9052–9059.
  7. Muller, A. (2011). Acta Cryst. E67, o45. [DOI] [PMC free article] [PubMed]
  8. Palacios, F., Alonso, C., Aparicio, D., Rbbiales, G. & Santos, J. M. (2007). Tetrahedron, 63, 523–575.
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811035082/aa2019sup1.cif

e-67-o2548-sup1.cif (25KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035082/aa2019Isup2.hkl

e-67-o2548-Isup2.hkl (314KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811035082/aa2019Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES