Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2753. doi: 10.1107/S1600536811038359

(E)-Methyl 3-(4-ethyl­phen­yl)-2-{2-[(E)-(hy­droxy­imino)­meth­yl]phen­oxy­meth­yl}acrylate

E Govindan a, K SakthiMurugesan a, J Srinivasan b, M Bakthadoss b, A SubbiahPandi a,*
PMCID: PMC3201344  PMID: 22058811

Abstract

In the title compound, C20H21NO4, the two benzene rings are almost perpendicular to each other, making a dihedral angle of 86.1 (7)°. The hy­droxy­ethanimine group is essentially coplanar with the benzene ring, the largest deviation from the mean plane of the hy­droxy­ethanimine [C=N—OH] group being 0.011 (1) Å for the O atom. An intra­molecular C—H⋯O hydrogen bond occurs. The mol­ecules are linked into cyclic centrosymmetric R 2 2(6) dimers via O—H⋯N hydrogen bonds. Inter­molecular C—H⋯O hydrogen bonds link the mol­ecules, forming a C(8) chain along the a axis. The crystal packing is further stabilized by C—H⋯π inter­actions.

Related literature

For structures of other acrylate derivatives, see: Zhang et al. (2009); Wang et al. (2011); SakthiMurugesan et al. (2011). For the use of oxime ligands in coordination chemistry, see: Chaudhuri (2003).graphic file with name e-67-o2753-scheme1.jpg

Experimental

Crystal data

  • C20H21NO4

  • M r = 339.38

  • Triclinic, Inline graphic

  • a = 9.0053 (2) Å

  • b = 9.3655 (3) Å

  • c = 12.1793 (3) Å

  • α = 75.299 (1)°

  • β = 74.756 (1)°

  • γ = 64.891 (1)°

  • V = 885.43 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.978, T max = 0.983

  • 24628 measured reflections

  • 6955 independent reflections

  • 4453 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.189

  • S = 1.02

  • 6955 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811038359/nk2110sup1.cif

e-67-o2753-sup1.cif (20.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038359/nk2110Isup2.hkl

e-67-o2753-Isup2.hkl (333.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811038359/nk2110Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 2.15 2.8568 (15) 145
C14—H14⋯O2 0.93 2.51 3.3002 (16) 143
C15—H15⋯O4ii 0.93 2.50 3.3524 (16) 152
C5—H5⋯Cg2iii 0.93 2.94 3.7756 (14) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

EG and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

supplementary crystallographic information

Comment

Recently, 2-cyanoacrylates have been extensively used as agrochemicals because of their unique mechanism of action and good environmental profiles (Zhang et al., 2009). Oximes are a classical type of chelating ligands which are widely used in coordination and analytical chemistry (Chaudhuri, 2003). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The bond lengths and angles in (Fig. 1) agree with those observed in other acrylate derivatives (Wang et al., 2011). The whole molecule is not planar as the dihedral angle between the two aryl rings is 86.1 (7)°, it shows that both the rings are almost perpendicular to each other. The oxime group having the C═N forming an E configuration. The hydroxyethanimine group is essentially coplanar with the benzene ring, the largest deviation from the mean plane of the hydroxyethanimine [C═N—OH] group is 0.011 (1)Å for the O1 atom.

The enoate group assumes an extended conformation as can be seen from torsion angles C9—C10—O3—C11 [178.1 (1) °] and C12—C9—C10—O3 [171.6 (1) °]. The atom C15 in the molecule (x,y,z) donate one proton to atom O4 of the molecule at (-1 + x,y,z) forming a C(8) chain along a axis. The hydroxyethanimine group in the molecules are linked into cyclic centrosymmetric dimers via O—H···N hydrogen bonds with the motif R22(6) (Figure 2). In addition to van der Waals interaction, the crystal packing is stabilized by C–H..O, O–H···N and C–H···π interactions.

Experimental

To a stirred solution of (E)-methyl 2-((2-formylphenoxy)methyl) -3-(4-ethylphenyl)acrylate (4 mmol) in 10 ml of EtOH/H2O mixture (1:1) was added NH2OH.HCl (6 mmol) in the presence of 50% NaOH at room temperature. Then the reaction mixture was allowed to stir at room temperature for 1.5 h. After completion of the reaction, solvent was removed and the crude mass was diluted with water (15 ml) and extracted with ethyl acetate (3 x 15 ml). The combined organic layer was washed with brine (2 x 10 ml) and dried over anhydrous Na2SO4 and then evaporated under reduced pressure to obtain (E)-methyl3- (4-ethylphenyl)-2-((2-((E)-(hydroxyimino)methyl)phenoxy)methyl)acrylate as a colourless solid. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The title compound with displacement ellipsoids at the 30% probability level.

Fig. 2.

Fig. 2.

The crystal structure showing the centrosymmetric hydrogen bond motif R22(6). H atoms not involved in the motif have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (-1 - x, 2 - y, 1 - z). Dashed lines indicate the hydrogen bonds.

Crystal data

C20H21NO4 Z = 2
Mr = 339.38 F(000) = 360
Triclinic, P1 Dx = 1.273 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.0053 (2) Å Cell parameters from 6955 reflections
b = 9.3655 (3) Å θ = 1.8–33.6°
c = 12.1793 (3) Å µ = 0.09 mm1
α = 75.299 (1)° T = 293 K
β = 74.756 (1)° Block, white
γ = 64.891 (1)° 0.25 × 0.22 × 0.19 mm
V = 885.43 (4) Å3

Data collection

Bruker APEXII CCD area detector diffractometer 6955 independent reflections
Radiation source: fine-focus sealed tube 4453 reflections with I > 2σ(I)
graphite Rint = 0.023
ω and φ scans θmax = 33.6°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −13→13
Tmin = 0.978, Tmax = 0.983 k = −14→14
24628 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1052P)2 + 0.0753P] where P = (Fo2 + 2Fc2)/3
6955 reflections (Δ/σ)max < 0.001
229 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.16884 (13) 0.61894 (13) 0.41644 (9) 0.0372 (2)
C2 −0.25120 (16) 0.53924 (17) 0.50619 (11) 0.0506 (3)
H2 −0.3220 0.5916 0.5669 0.061*
C3 −0.23045 (18) 0.38465 (18) 0.50735 (13) 0.0587 (4)
H3 −0.2877 0.3337 0.5677 0.070*
C4 −0.12419 (17) 0.30617 (16) 0.41841 (13) 0.0533 (3)
H4 −0.1100 0.2017 0.4190 0.064*
C5 −0.03793 (15) 0.38050 (15) 0.32794 (11) 0.0444 (3)
H5 0.0334 0.3263 0.2682 0.053*
C6 −0.05852 (12) 0.53598 (13) 0.32705 (9) 0.0354 (2)
C7 −0.19037 (14) 0.78288 (14) 0.41442 (10) 0.0411 (2)
H7 −0.1036 0.8170 0.3784 0.049*
C8 0.13999 (13) 0.54048 (14) 0.15190 (10) 0.0404 (2)
H8A 0.0841 0.5207 0.1027 0.048*
H8B 0.2179 0.4387 0.1839 0.048*
C9 0.23062 (13) 0.64543 (14) 0.08369 (9) 0.0376 (2)
C10 0.39509 (14) 0.61395 (15) 0.11024 (10) 0.0420 (3)
C11 0.58541 (18) 0.4676 (2) 0.23780 (14) 0.0680 (4)
H11A 0.6696 0.4611 0.1697 0.102*
H11B 0.6146 0.3663 0.2880 0.102*
H11C 0.5773 0.5483 0.2769 0.102*
C12 0.17940 (13) 0.76549 (14) −0.00239 (10) 0.0400 (2)
H12 0.2523 0.8176 −0.0358 0.048*
C13 0.02946 (14) 0.82890 (14) −0.05290 (10) 0.0389 (2)
C14 −0.11884 (15) 0.80690 (17) −0.00057 (11) 0.0474 (3)
H14 −0.1272 0.7486 0.0734 0.057*
C15 −0.25321 (16) 0.87026 (18) −0.05692 (12) 0.0516 (3)
H15 −0.3495 0.8518 −0.0205 0.062*
C16 −0.24822 (16) 0.96077 (15) −0.16646 (11) 0.0459 (3)
C17 −0.10288 (17) 0.98621 (16) −0.21751 (11) 0.0492 (3)
H17 −0.0966 1.0479 −0.2903 0.059*
C18 0.03252 (15) 0.92197 (15) −0.16260 (11) 0.0468 (3)
H18 0.1284 0.9410 −0.1994 0.056*
C19 −0.3973 (2) 1.0316 (2) −0.22612 (15) 0.0637 (4)
H19A −0.4829 1.1184 −0.1881 0.076*
H19B −0.3646 1.0766 −0.3051 0.076*
C20 −0.4694 (3) 0.9162 (3) −0.2271 (2) 0.0898 (7)
H20A −0.3902 0.8366 −0.2726 0.135*
H20B −0.5691 0.9716 −0.2597 0.135*
H20C −0.4954 0.8656 −0.1496 0.135*
N1 −0.32728 (13) 0.87907 (12) 0.46171 (9) 0.0449 (2)
O1 −0.32289 (13) 1.02929 (12) 0.45450 (10) 0.0588 (3)
H1 −0.4168 1.0924 0.4764 0.088*
O2 0.01993 (10) 0.62061 (9) 0.24319 (7) 0.0415 (2)
O3 0.42776 (12) 0.50810 (14) 0.20593 (8) 0.0585 (3)
O4 0.49093 (12) 0.67314 (14) 0.05241 (10) 0.0682 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0339 (4) 0.0404 (5) 0.0323 (5) −0.0132 (4) −0.0039 (4) −0.0013 (4)
C2 0.0490 (6) 0.0528 (7) 0.0386 (6) −0.0196 (5) 0.0047 (5) −0.0010 (5)
C3 0.0605 (8) 0.0540 (8) 0.0535 (8) −0.0303 (6) 0.0014 (6) 0.0081 (6)
C4 0.0555 (7) 0.0415 (6) 0.0603 (8) −0.0233 (5) −0.0075 (6) 0.0018 (6)
C5 0.0447 (6) 0.0403 (6) 0.0466 (6) −0.0179 (5) −0.0036 (5) −0.0063 (5)
C6 0.0327 (4) 0.0379 (5) 0.0325 (5) −0.0136 (4) −0.0053 (4) −0.0010 (4)
C7 0.0406 (5) 0.0453 (6) 0.0345 (5) −0.0171 (4) −0.0008 (4) −0.0064 (4)
C8 0.0390 (5) 0.0399 (6) 0.0396 (6) −0.0159 (4) 0.0031 (4) −0.0110 (4)
C9 0.0359 (5) 0.0424 (6) 0.0343 (5) −0.0167 (4) 0.0024 (4) −0.0119 (4)
C10 0.0379 (5) 0.0475 (6) 0.0390 (6) −0.0158 (5) −0.0017 (4) −0.0107 (5)
C11 0.0469 (7) 0.0909 (12) 0.0560 (9) −0.0153 (7) −0.0158 (6) −0.0077 (8)
C12 0.0379 (5) 0.0447 (6) 0.0386 (6) −0.0193 (4) −0.0002 (4) −0.0090 (4)
C13 0.0404 (5) 0.0404 (6) 0.0371 (5) −0.0178 (4) −0.0027 (4) −0.0085 (4)
C14 0.0444 (6) 0.0608 (7) 0.0360 (6) −0.0254 (5) −0.0049 (4) 0.0009 (5)
C15 0.0445 (6) 0.0660 (8) 0.0458 (7) −0.0289 (6) −0.0081 (5) 0.0021 (6)
C16 0.0494 (6) 0.0448 (6) 0.0456 (6) −0.0199 (5) −0.0126 (5) −0.0032 (5)
C17 0.0578 (7) 0.0466 (7) 0.0417 (6) −0.0251 (6) −0.0094 (5) 0.0052 (5)
C18 0.0466 (6) 0.0471 (7) 0.0460 (6) −0.0244 (5) −0.0041 (5) 0.0008 (5)
C19 0.0647 (9) 0.0652 (9) 0.0617 (9) −0.0253 (7) −0.0287 (7) 0.0077 (7)
C20 0.0947 (13) 0.1082 (15) 0.0893 (13) −0.0635 (12) −0.0580 (11) 0.0331 (11)
N1 0.0464 (5) 0.0425 (5) 0.0423 (5) −0.0165 (4) 0.0006 (4) −0.0104 (4)
O1 0.0607 (6) 0.0479 (5) 0.0677 (7) −0.0234 (4) 0.0043 (5) −0.0207 (5)
O2 0.0445 (4) 0.0389 (4) 0.0361 (4) −0.0188 (3) 0.0074 (3) −0.0080 (3)
O3 0.0459 (5) 0.0795 (7) 0.0437 (5) −0.0238 (5) −0.0092 (4) 0.0013 (5)
O4 0.0510 (5) 0.0811 (7) 0.0752 (7) −0.0386 (5) −0.0171 (5) 0.0124 (6)

Geometric parameters (Å, °)

C1—C2 1.3898 (15) C11—H11B 0.9600
C1—C6 1.4076 (15) C11—H11C 0.9600
C1—C7 1.4582 (17) C12—C13 1.4579 (16)
C2—C3 1.376 (2) C12—H12 0.9300
C2—H2 0.9300 C13—C14 1.3969 (15)
C3—C4 1.375 (2) C13—C18 1.3984 (16)
C3—H3 0.9300 C14—C15 1.3812 (18)
C4—C5 1.3862 (17) C14—H14 0.9300
C4—H4 0.9300 C15—C16 1.3883 (18)
C5—C6 1.3851 (16) C15—H15 0.9300
C5—H5 0.9300 C16—C17 1.3848 (18)
C6—O2 1.3621 (12) C16—C19 1.5112 (19)
C7—N1 1.2692 (15) C17—C18 1.3777 (19)
C7—H7 0.9300 C17—H17 0.9300
C8—O2 1.4392 (13) C18—H18 0.9300
C8—C9 1.4940 (15) C19—C20 1.482 (2)
C8—H8A 0.9700 C19—H19A 0.9700
C8—H8B 0.9700 C19—H19B 0.9700
C9—C12 1.3387 (17) C20—H20A 0.9600
C9—C10 1.4893 (16) C20—H20B 0.9600
C10—O4 1.1985 (14) C20—H20C 0.9600
C10—O3 1.3320 (16) N1—O1 1.4039 (14)
C11—O3 1.4380 (17) O1—H1 0.8200
C11—H11A 0.9600
C2—C1—C6 118.34 (11) H11B—C11—H11C 109.5
C2—C1—C7 121.91 (10) C9—C12—C13 131.31 (10)
C6—C1—C7 119.73 (9) C9—C12—H12 114.3
C3—C2—C1 121.56 (12) C13—C12—H12 114.3
C3—C2—H2 119.2 C14—C13—C18 116.77 (11)
C1—C2—H2 119.2 C14—C13—C12 125.70 (11)
C4—C3—C2 119.34 (12) C18—C13—C12 117.53 (10)
C4—C3—H3 120.3 C15—C14—C13 121.07 (11)
C2—C3—H3 120.3 C15—C14—H14 119.5
C3—C4—C5 120.98 (12) C13—C14—H14 119.5
C3—C4—H4 119.5 C14—C15—C16 121.71 (11)
C5—C4—H4 119.5 C14—C15—H15 119.1
C6—C5—C4 119.63 (12) C16—C15—H15 119.1
C6—C5—H5 120.2 C17—C16—C15 117.40 (12)
C4—C5—H5 120.2 C17—C16—C19 121.52 (12)
O2—C6—C5 124.79 (10) C15—C16—C19 121.07 (12)
O2—C6—C1 115.07 (10) C18—C17—C16 121.33 (12)
C5—C6—C1 120.13 (10) C18—C17—H17 119.3
N1—C7—C1 120.10 (10) C16—C17—H17 119.3
N1—C7—H7 120.0 C17—C18—C13 121.68 (11)
C1—C7—H7 120.0 C17—C18—H18 119.2
O2—C8—C9 108.04 (9) C13—C18—H18 119.2
O2—C8—H8A 110.1 C20—C19—C16 114.28 (13)
C9—C8—H8A 110.1 C20—C19—H19A 108.7
O2—C8—H8B 110.1 C16—C19—H19A 108.7
C9—C8—H8B 110.1 C20—C19—H19B 108.7
H8A—C8—H8B 108.4 C16—C19—H19B 108.7
C12—C9—C10 115.74 (10) H19A—C19—H19B 107.6
C12—C9—C8 125.94 (11) C19—C20—H20A 109.5
C10—C9—C8 118.30 (10) C19—C20—H20B 109.5
O4—C10—O3 122.56 (11) H20A—C20—H20B 109.5
O4—C10—C9 125.05 (12) C19—C20—H20C 109.5
O3—C10—C9 112.38 (10) H20A—C20—H20C 109.5
O3—C11—H11A 109.5 H20B—C20—H20C 109.5
O3—C11—H11B 109.5 C7—N1—O1 111.99 (10)
H11A—C11—H11B 109.5 N1—O1—H1 109.5
O3—C11—H11C 109.5 C6—O2—C8 117.90 (9)
H11A—C11—H11C 109.5 C10—O3—C11 116.58 (11)
C6—C1—C2—C3 −1.8 (2) C9—C12—C13—C14 19.8 (2)
C7—C1—C2—C3 179.87 (13) C9—C12—C13—C18 −161.25 (12)
C1—C2—C3—C4 0.8 (2) C18—C13—C14—C15 2.05 (19)
C2—C3—C4—C5 0.0 (2) C12—C13—C14—C15 −178.95 (13)
C3—C4—C5—C6 0.2 (2) C13—C14—C15—C16 −1.3 (2)
C4—C5—C6—O2 179.74 (12) C14—C15—C16—C17 −0.3 (2)
C4—C5—C6—C1 −1.19 (18) C14—C15—C16—C19 −178.94 (14)
C2—C1—C6—O2 −178.86 (11) C15—C16—C17—C18 1.1 (2)
C7—C1—C6—O2 −0.51 (15) C19—C16—C17—C18 179.70 (13)
C2—C1—C6—C5 1.98 (17) C16—C17—C18—C13 −0.3 (2)
C7—C1—C6—C5 −179.66 (11) C14—C13—C18—C17 −1.29 (19)
C2—C1—C7—N1 −30.13 (18) C12—C13—C18—C17 179.63 (12)
C6—C1—C7—N1 151.58 (11) C17—C16—C19—C20 131.30 (18)
O2—C8—C9—C12 −84.39 (14) C15—C16—C19—C20 −50.1 (2)
O2—C8—C9—C10 97.11 (11) C1—C7—N1—O1 177.99 (10)
C12—C9—C10—O4 −9.75 (18) C5—C6—O2—C8 −3.60 (16)
C8—C9—C10—O4 168.90 (12) C1—C6—O2—C8 177.30 (9)
C12—C9—C10—O3 171.59 (10) C9—C8—O2—C6 −169.80 (9)
C8—C9—C10—O3 −9.75 (15) O4—C10—O3—C11 0.3 (2)
C10—C9—C12—C13 179.15 (11) C9—C10—O3—C11 178.95 (12)
C8—C9—C12—C13 0.6 (2)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C13–C18 ring.
D—H···A D—H H···A D···A D—H···A
O1—H1···N1i 0.82 2.15 2.8568 (15) 145.
C8—H8B···O3 0.97 2.34 2.7146 (18) 102
C12—H12···O4 0.93 2.37 2.7742 (18) 106
C14—H14···O2 0.93 2.51 3.3002 (16) 143
C15—H15···O4ii 0.93 2.50 3.3524 (16) 152.
C5—H5···Cg2iii 0.93 2.94 3.7756 (14) 150

Symmetry codes: (i) −x−1, −y+2, −z+1; (ii) x−1, y, z; (iii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2110).

References

  1. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison Wisconsin, USA.
  2. Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143–168.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. SakthiMurugesan, K., Govindan, E., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2754. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Wang, L., Meng, F.-Y., Lin, C.-W., Chen, H.-Y. & Luo, X. (2011). Acta Cryst. E67, o354. [DOI] [PMC free article] [PubMed]
  9. Zhang, D., Zhang, X. & Guo, L. (2009). Acta Cryst. E65, o90.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811038359/nk2110sup1.cif

e-67-o2753-sup1.cif (20.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038359/nk2110Isup2.hkl

e-67-o2753-Isup2.hkl (333.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811038359/nk2110Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES