Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2807–o2808. doi: 10.1107/S1600536811039432

3-Benzyl-2-(furan-2-yl)-1,3-thia­zolidin-4-one

Hoong-Kun Fun a,*,, Madhukar Hemamalini a, Poovan Shanmugavelan b, Alagusundaram Ponnuswamy b, Rathinavel Jagatheesan c
PMCID: PMC3201349  PMID: 22064907

Abstract

In the title compound, C14H13NO2S, the thia­zolidine ring is approximately planar with a maximum deviation of 0.112 (1) Å. The furan ring is disordered over two orientations, with an occupancy ratio of 0.901 (5):0.099 (5). The central thia­zolidine ring makes dihedral angles of 85.43 (8), 87.50 (11) and 87.9 (9)° with the phenyl ring and the major and minor components of the disordered furan ring, respectively. In the crystal, mol­ecules are connected by weak inter­molecular C—H⋯O hydrogen bonds, forming supra­molecular chains parallel to the b axis.

Related literature

For details and applications of thia­zolidine-4-ones, see: Dutta et al. (1990); Jadhav & Ingle (1978); Gursoy et al. (2005); Rawal et al. (2007); Shrivastava et al. (2005); Look et al. (1996); Anders et al. (2001); Barreca et al. (2001); Diurno et al. (1992). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-o2807-scheme1.jpg

Experimental

Crystal data

  • C14H13NO2S

  • M r = 259.31

  • Monoclinic, Inline graphic

  • a = 13.2901 (2) Å

  • b = 9.6360 (1) Å

  • c = 9.9152 (1) Å

  • β = 102.855 (1)°

  • V = 1237.95 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 100 K

  • 0.30 × 0.18 × 0.16 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.928, T max = 0.961

  • 13239 measured reflections

  • 3551 independent reflections

  • 2794 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.104

  • S = 1.07

  • 3551 reflections

  • 180 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811039432/rz2640sup1.cif

e-67-o2807-sup1.cif (19.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039432/rz2640Isup2.hkl

e-67-o2807-Isup2.hkl (170.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039432/rz2640Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O2i 0.93 2.48 3.355 (3) 158

Symmetry code: (i) Inline graphic.

Acknowledgments

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

One of the main objectives of organic and medicinal chemistry is the design, synthesis and production of molecules having value as human therapeutic agents. During the past decade, combinatorial chemistry has provided access to chemical libraries based on privileged structures with heterocyclic moiety receiving special attention as they belong to a class of compounds with proven utility in medicinal chemistry. There are numerous biologically active molecules with five membered rings containing two hetero atoms. Among them, thiazolidin-4-ones are the most extensively investigated class of compounds, which have many interesting activity profiles namely bactericidal (Dutta et al., 1990), antifungal (Jadhav & Ingle, 1978), anticonvulsant (Gursoy et al., 2005), anti-HIV (Rawal et al., 2007), antituberculotic (Shrivastava et al., 2005), COX-1 inhibitors (Look et al., 1996), inhibitors of the bacterial enzyme MurB (Anders et al., 2001), non-nucleoside inhibitors of HIV-RT (Barreca et al., 2001) and anti-histaminic agents (Diurno et al., 1992).

The molecular structure of the title compound is shown in Fig. 1. The thiazolidine (S1/N1/C5–C7) ring is approximately planar, with a maximum deviation of 0.112 (1) Å for atom S1. The furan ring is disordered over two orientations, with an occupancy ratio of 0.901 (5):0.099 (5). The central thiazolidine ring makes dihedral angles of 85.43 (8)°, 87.50 (11) and 87.9 (9)° with the terminal phenyl (C9–C14) ring and the major (O1/C1–C4) and minor (O1X/C1X–C3X/C4) components of the disordered furan ring, respectively. In the crystal structure (Fig. 2), the molecules are connected by weak intermolecular C—H···O (Table 1) hydrogen bonds forming supramolecular chains parallel to the b-axis.

Experimental

To a well ground intimate mixture of triphenylphosphine (1.1 mmol) and furfuraldehyde, (1.0 mmol) in a microwave vial (10 ml) equipped with a magnetic stirring bar, benzylazide (0.2 g, 1.0 mmol) was added dropwise with stirring. Stirring was continued until liberation of nitrogen ceased and then mercaptoacetic acid, (1.1 mmol), was added to the above mixture and the reaction vessel was sealed with a septum. It was then placed into the cavity of a focused monomode microwave reactor (CEM Discover, benchmate) and operated at 150°C (temperature monitored by a built-in IR sensor), power 80W for 10 minutes. The reaction temperature was maintained by modulating the power level of the reactor. The reaction mixture was allowed to stand at room temperature. The residue was then purified by column chromatography on silica (petrolium/ether-ethylacetate, 94:6 v/v) to afford 3-benzyl-2-(furan-2-yl)thiazolidin-4-one. Yield: 0.36 g (94%); M.p: 150–151°C. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement

All hydrogen atoms were positioned geometrically [C–H = 0.93–0.98 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). The furan ring is disordered over two orientations, with an occupancy ratio of 0.901 (5):0.099 (5).

Figures

Fig. 1.

Fig. 1.

An ORTEP view of the title compound, showing 50% probability displacement ellipsoids. Open bonds indicate the mino component of the disordered furan ring.

Fig. 2.

Fig. 2.

Crystal packing of the title compound viewed along the c axis. Only the major component of the disordered furan ring is shown.

Crystal data

C14H13NO2S F(000) = 544
Mr = 259.31 Dx = 1.391 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5111 reflections
a = 13.2901 (2) Å θ = 2.6–29.8°
b = 9.6360 (1) Å µ = 0.25 mm1
c = 9.9152 (1) Å T = 100 K
β = 102.855 (1)° Block, colourless
V = 1237.95 (3) Å3 0.30 × 0.18 × 0.16 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3551 independent reflections
Radiation source: fine-focus sealed tube 2794 reflections with I > 2σ(I)
graphite Rint = 0.028
φ and ω scans θmax = 29.9°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −18→18
Tmin = 0.928, Tmax = 0.961 k = −9→13
13239 measured reflections l = −10→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0277P)2 + 1.0975P] where P = (Fo2 + 2Fc2)/3
3551 reflections (Δ/σ)max = 0.001
180 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.94899 (3) 0.23126 (5) 0.26095 (5) 0.02134 (12)
O2 0.82632 (10) 0.47724 (13) −0.03755 (13) 0.0249 (3)
N1 0.78175 (10) 0.28671 (15) 0.07263 (15) 0.0176 (3)
C1 0.85886 (16) −0.1044 (3) −0.0489 (2) 0.0257 (6) 0.901 (5)
H1A 0.8838 −0.1380 −0.1231 0.031* 0.901 (5)
C2 0.8142 (2) −0.1838 (3) 0.0346 (3) 0.0234 (7) 0.901 (5)
H2A 0.8031 −0.2791 0.0288 0.028* 0.901 (5)
C3 0.78759 (17) −0.0901 (2) 0.1338 (2) 0.0218 (5) 0.901 (5)
H3A 0.7556 −0.1132 0.2051 0.026* 0.901 (5)
O1 0.86228 (11) 0.0324 (2) −0.00892 (16) 0.0228 (4) 0.901 (5)
C1X 0.7671 (17) −0.190 (2) 0.096 (2) 0.030 (5)* 0.099 (5)
H1XA 0.7404 −0.2758 0.1125 0.036* 0.099 (5)
C2X 0.828 (2) −0.160 (3) 0.004 (3) 0.016 (6)* 0.099 (5)
H2XA 0.8446 −0.2253 −0.0560 0.019* 0.099 (5)
C3X 0.8599 (19) −0.030 (3) 0.009 (3) 0.031 (6)* 0.099 (5)
H3XA 0.9034 0.0087 −0.0426 0.037* 0.099 (5)
O1X 0.7542 (15) −0.060 (2) 0.1596 (18) 0.038 (5)* 0.099 (5)
C4 0.81768 (12) 0.03740 (19) 0.10405 (18) 0.0188 (3)
C5 0.81880 (12) 0.17612 (18) 0.17059 (18) 0.0174 (3)
H5A 0.7748 0.1722 0.2378 0.021*
C6 0.95721 (13) 0.3595 (2) 0.1314 (2) 0.0241 (4)
H6A 0.9851 0.4456 0.1751 0.029*
H6B 1.0020 0.3270 0.0730 0.029*
C7 0.84910 (12) 0.38244 (18) 0.04616 (17) 0.0177 (3)
C8 0.67229 (12) 0.29307 (19) 0.00708 (18) 0.0196 (4)
H8A 0.6477 0.2000 −0.0195 0.024*
H8B 0.6634 0.3482 −0.0766 0.024*
C9 0.60718 (12) 0.35483 (17) 0.09945 (17) 0.0164 (3)
C10 0.64856 (13) 0.44688 (19) 0.20516 (18) 0.0209 (4)
H10A 0.7185 0.4682 0.2227 0.025*
C11 0.58667 (13) 0.50767 (19) 0.28530 (18) 0.0218 (4)
H11A 0.6152 0.5694 0.3555 0.026*
C12 0.48236 (13) 0.4757 (2) 0.25993 (19) 0.0229 (4)
H12A 0.4407 0.5156 0.3134 0.027*
C13 0.44033 (13) 0.3840 (2) 0.1546 (2) 0.0257 (4)
H13A 0.3704 0.3625 0.1374 0.031*
C14 0.50243 (13) 0.32405 (19) 0.07495 (19) 0.0213 (4)
H14A 0.4737 0.2627 0.0045 0.026*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01828 (19) 0.0221 (2) 0.0216 (2) 0.00020 (16) 0.00008 (15) −0.00073 (18)
O2 0.0310 (7) 0.0178 (7) 0.0270 (7) 0.0029 (5) 0.0089 (5) 0.0037 (5)
N1 0.0153 (6) 0.0165 (7) 0.0208 (7) 0.0019 (5) 0.0037 (5) 0.0018 (6)
C1 0.0270 (10) 0.0223 (12) 0.0268 (11) 0.0083 (9) 0.0033 (9) −0.0086 (10)
C2 0.0199 (12) 0.0136 (13) 0.0337 (17) −0.0003 (9) −0.0006 (11) 0.0005 (11)
C3 0.0173 (9) 0.0179 (11) 0.0290 (11) −0.0006 (8) 0.0021 (8) 0.0011 (9)
O1 0.0266 (8) 0.0204 (10) 0.0232 (8) 0.0048 (7) 0.0093 (6) −0.0014 (7)
C4 0.0153 (7) 0.0204 (9) 0.0202 (8) 0.0026 (6) 0.0027 (6) 0.0002 (7)
C5 0.0155 (7) 0.0170 (8) 0.0203 (8) 0.0019 (6) 0.0051 (6) 0.0021 (7)
C6 0.0187 (8) 0.0208 (10) 0.0330 (10) −0.0017 (7) 0.0061 (7) 0.0024 (8)
C7 0.0206 (7) 0.0131 (8) 0.0204 (8) 0.0020 (6) 0.0069 (6) −0.0021 (7)
C8 0.0159 (7) 0.0207 (9) 0.0211 (8) 0.0018 (6) 0.0018 (6) −0.0019 (7)
C9 0.0176 (7) 0.0118 (8) 0.0189 (8) 0.0022 (6) 0.0020 (6) 0.0031 (6)
C10 0.0160 (7) 0.0223 (9) 0.0230 (9) 0.0014 (6) 0.0011 (6) −0.0005 (7)
C11 0.0238 (8) 0.0201 (9) 0.0206 (8) 0.0029 (7) 0.0026 (7) −0.0028 (7)
C12 0.0232 (8) 0.0204 (9) 0.0266 (9) 0.0070 (7) 0.0089 (7) 0.0035 (7)
C13 0.0174 (8) 0.0254 (10) 0.0355 (10) −0.0007 (7) 0.0081 (7) 0.0001 (8)
C14 0.0200 (8) 0.0151 (9) 0.0277 (9) −0.0039 (6) 0.0032 (7) −0.0031 (7)

Geometric parameters (Å, °)

S1—C6 1.8032 (19) O1X—C4 1.453 (18)
S1—C5 1.8410 (16) C4—C5 1.489 (2)
O2—C7 1.226 (2) C5—H5A 0.9800
N1—C7 1.351 (2) C6—C7 1.512 (2)
N1—C5 1.452 (2) C6—H6A 0.9700
N1—C8 1.457 (2) C6—H6B 0.9700
C1—C2 1.357 (4) C8—C9 1.515 (2)
C1—O1 1.375 (3) C8—H8A 0.9700
C1—H1A 0.9300 C8—H8B 0.9700
C2—C3 1.436 (4) C9—C10 1.390 (2)
C2—H2A 0.9300 C9—C14 1.391 (2)
C3—C4 1.344 (3) C10—C11 1.394 (2)
C3—H3A 0.9300 C10—H10A 0.9300
O1—C4 1.380 (2) C11—C12 1.387 (2)
C1X—C2X 1.37 (3) C11—H11A 0.9300
C1X—O1X 1.43 (3) C12—C13 1.387 (3)
C1X—H1XA 0.9300 C12—H12A 0.9300
C2X—C3X 1.32 (4) C13—C14 1.389 (3)
C2X—H2XA 0.9300 C13—H13A 0.9300
C3X—C4 1.36 (3) C14—H14A 0.9300
C3X—H3XA 0.9300
C6—S1—C5 92.90 (8) C4—C5—H5A 108.6
C7—N1—C5 119.36 (13) S1—C5—H5A 108.6
C7—N1—C8 121.58 (15) C7—C6—S1 107.31 (12)
C5—N1—C8 119.06 (14) C7—C6—H6A 110.3
C2—C1—O1 110.8 (2) S1—C6—H6A 110.3
C2—C1—H1A 124.6 C7—C6—H6B 110.3
O1—C1—H1A 124.6 S1—C6—H6B 110.3
C1—C2—C3 105.7 (2) H6A—C6—H6B 108.5
C1—C2—H2A 127.1 O2—C7—N1 124.45 (15)
C3—C2—H2A 127.1 O2—C7—C6 123.23 (16)
C4—C3—C2 107.1 (2) N1—C7—C6 112.32 (15)
C4—C3—H3A 126.5 N1—C8—C9 113.27 (14)
C2—C3—H3A 126.5 N1—C8—H8A 108.9
C1—O1—C4 105.93 (18) C9—C8—H8A 108.9
C2X—C1X—O1X 105 (2) N1—C8—H8B 108.9
C2X—C1X—H1XA 127.6 C9—C8—H8B 108.9
O1X—C1X—H1XA 127.6 H8A—C8—H8B 107.7
C3X—C2X—C1X 114 (3) C10—C9—C14 118.73 (16)
C3X—C2X—H2XA 122.9 C10—C9—C8 121.56 (15)
C1X—C2X—H2XA 122.9 C14—C9—C8 119.66 (15)
C2X—C3X—C4 107 (2) C9—C10—C11 120.90 (16)
C2X—C3X—H3XA 126.4 C9—C10—H10A 119.5
C4—C3X—H3XA 126.4 C11—C10—H10A 119.5
C1X—O1X—C4 105.1 (15) C12—C11—C10 119.73 (17)
C3—C4—C3X 84.6 (13) C12—C11—H11A 120.1
C3—C4—O1 110.41 (18) C10—C11—H11A 120.1
C3X—C4—O1X 108.5 (14) C13—C12—C11 119.79 (16)
O1—C4—O1X 132.6 (8) C13—C12—H12A 120.1
C3—C4—C5 134.18 (18) C11—C12—H12A 120.1
C3X—C4—C5 140.1 (13) C12—C13—C14 120.16 (16)
O1—C4—C5 115.28 (16) C12—C13—H13A 119.9
O1X—C4—C5 111.3 (8) C14—C13—H13A 119.9
N1—C5—C4 113.19 (14) C13—C14—C9 120.68 (17)
N1—C5—S1 104.82 (11) C13—C14—H14A 119.7
C4—C5—S1 112.97 (11) C9—C14—H14A 119.7
N1—C5—H5A 108.6
O1—C1—C2—C3 0.1 (2) O1—C4—C5—N1 49.22 (19)
C1—C2—C3—C4 −0.1 (2) O1X—C4—C5—N1 −121.5 (8)
C2—C1—O1—C4 0.0 (2) C3—C4—C5—S1 105.7 (2)
O1X—C1X—C2X—C3X 4(3) C3X—C4—C5—S1 −57.9 (17)
C1X—C2X—C3X—C4 −2(3) O1—C4—C5—S1 −69.72 (17)
C2X—C1X—O1X—C4 −4(2) O1X—C4—C5—S1 119.6 (8)
C2—C3—C4—C3X −6.0 (11) C6—S1—C5—N1 −16.21 (12)
C2—C3—C4—O1 0.1 (2) C6—S1—C5—C4 107.48 (13)
C2—C3—C4—O1X 153.3 (18) C5—S1—C6—C7 15.65 (13)
C2—C3—C4—C5 −175.46 (19) C5—N1—C7—O2 177.75 (16)
C2X—C3X—C4—C3 8.7 (19) C8—N1—C7—O2 −3.4 (3)
C2X—C3X—C4—O1 −159 (4) C5—N1—C7—C6 −2.0 (2)
C2X—C3X—C4—O1X −1(2) C8—N1—C7—C6 176.90 (15)
C2X—C3X—C4—C5 177.0 (13) S1—C6—C7—O2 169.34 (14)
C1—O1—C4—C3 0.0 (2) S1—C6—C7—N1 −10.94 (18)
C1—O1—C4—C3X 14 (2) C7—N1—C8—C9 −99.90 (19)
C1—O1—C4—O1X −15.4 (10) C5—N1—C8—C9 78.97 (19)
C1—O1—C4—C5 176.43 (14) N1—C8—C9—C10 25.8 (2)
C1X—O1X—C4—C3 −18.8 (11) N1—C8—C9—C14 −157.01 (16)
C1X—O1X—C4—C3X 3.0 (18) C14—C9—C10—C11 −0.1 (3)
C1X—O1X—C4—O1 16.1 (18) C8—C9—C10—C11 177.10 (16)
C1X—O1X—C4—C5 −175.3 (11) C9—C10—C11—C12 0.3 (3)
C7—N1—C5—C4 −110.10 (17) C10—C11—C12—C13 −0.3 (3)
C8—N1—C5—C4 70.99 (19) C11—C12—C13—C14 0.1 (3)
C7—N1—C5—S1 13.44 (18) C12—C13—C14—C9 0.1 (3)
C8—N1—C5—S1 −165.46 (12) C10—C9—C14—C13 −0.1 (3)
C3—C4—C5—N1 −135.4 (2) C8—C9—C14—C13 −177.32 (17)
C3X—C4—C5—N1 61.0 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2A···O2i 0.93 2.48 3.355 (3) 158

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2640).

References

  1. Anders, C. J., Bronson, J. J., Andrea, D. S. V., Deshpande, S. M., Falk, P. J., Grant-Young, K. A., Harte, W. E., Ho, H., Misco, P. F., Robertson, J. G., Stock, D., Sun, Y. & Walsh, A. W. (2001). Bioorg. Med. Chem. Lett. pp. 715–717. [DOI] [PubMed]
  2. Barreca, M. L., Chimirri, A., Luca, L. D., Monforte, A., Monforte, P., Rao, A., Zappala, M., Balzarini, J., De Clercq, E., Pannecouque, C. & Witvrouw, M. (2001). Bioorg. Med. Chem. Lett. pp. 1793–1796. [DOI] [PubMed]
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Diurno, M. V., Mazzoni, O., Calignano, P. E., Giordano, F. & Bolognese, A. (1992). J. Med. Chem. 35, 2910–2912. [DOI] [PubMed]
  6. Dutta, M. M., Goswami, B. N. & Kataky, J. C. (1990). J. Indian Chem. Soc. 67, 332–334.
  7. Gursoy, A., Terzioglu, N. & Turk, J. (2005). Turk. J. Chem. 29, 247–254.
  8. Jadhav, K. P. & Ingle, D. B. (1978). J. Indian Chem. Soc. 4, 424–426.
  9. Look, G. C., Schullek, J. R., Homes, C. P., Chinn, J. P., Gordon, E. M. & Gallop, M. A. (1996). Bioorg. Med. Chem. Lett. 6, 707–712.
  10. Rawal, R. K., Tripathi, R., Katti, S. B., Pannecouque, C. & Clercq, E. D. (2007). Bioorg. Med. Chem. 15, 1725–1731. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Shrivastava, T., Gaikwad, A. K., Haq, W., Sinha, S. & Katti, S. B. (2005). ARKIVOC, ii, 120–130.
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811039432/rz2640sup1.cif

e-67-o2807-sup1.cif (19.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039432/rz2640Isup2.hkl

e-67-o2807-Isup2.hkl (170.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039432/rz2640Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES