Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):o2602–o2603. doi: 10.1107/S1600536811035872

N-(4-Chloro-1,3-benzothia­zol-2-yl)-2-(3-methyl­phen­yl)acetamide monohydrate

A S Praveen a, Jerry P Jasinski b,*, James A Golen b, H S Yathirajan a, B Narayana c
PMCID: PMC3201351  PMID: 22064942

Abstract

In the title compound, C16H13ClN2OS·H2O, the dihedral angle between the mean planes of the benzothia­zole ring system and the methylphenyl ring is 79.3 (6)°. The crystal packing features inter­molecular O—H⋯N, O—H⋯O and N—H⋯O hydrogen bonds involving the water mol­ecule and weak C—H⋯O, C—H⋯Cg and π–π stacking inter­actions [centroid–centroid distances = 3.8743 (7), 3.7229 (7) and 3.7076 (8) Å].

Related literature

For the biological activity of compounds with benzothia­zole skeletons, see: Aiello et al. (2008); Cho et al. (2008). For their structural similarity to the lateral chain of natural benzyl­penicillin, see: Mijin & Marinkovic (2006); Mijin et al. (2006, 2008) and for their coordination abilities, see: Wu et al. (2008, 2010). For related structures, see: Davis & Healy (2010); John et al. (2010); Nogueira et al. (2010); Praveen et al. (2011); Selig et al. (2010); Wen et al. (2010); Xiao et al. (2010). For standard bond lengths, see Allen et al. (1987).graphic file with name e-67-o2602-scheme1.jpg

Experimental

Crystal data

  • C16H13ClN2OS·H2O

  • M r = 334.81

  • Triclinic, Inline graphic

  • a = 7.2771 (3) Å

  • b = 9.2568 (5) Å

  • c = 12.0851 (5) Å

  • α = 83.948 (4)°

  • β = 84.306 (3)°

  • γ = 72.133 (4)°

  • V = 768.58 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 173 K

  • 0.25 × 0.21 × 0.20 mm

Data collection

  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) T min = 0.908, T max = 0.926

  • 10307 measured reflections

  • 4303 independent reflections

  • 3834 reflections with I > 2σ(I)

  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.089

  • S = 1.01

  • 4303 reflections

  • 209 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811035872/im2316sup1.cif

e-67-o2602-sup1.cif (19.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035872/im2316Isup2.hkl

e-67-o2602-Isup2.hkl (210.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811035872/im2316Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2OB⋯N1i 0.88 (1) 2.10 (2) 2.924 (1) 158 (2)
O2—H2OA⋯O1ii 0.88 (1) 2.05 (1) 2.904 (1) 164 (2)
N2—H2N⋯O2 0.87 (1) 1.92 (1) 2.785 (1) 177 (2)
C5—H5A⋯O1iii 0.95 2.56 3.351 (2) 141
C3—H3ACg3iv 0.95 2.66 3.502 (1) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

ASP and HSY thank the UoM for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Comment

The biological activity of compounds with benzothiazole skeletons includes anticancer, antibacterial, antifungal and anthelmintic properties (Aiello et al., 2008; Cho et al., 2008) N-Substituted 2-arylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin et al., 2008; Mijin et al., 2006). Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008; 2010). Crystal structures of some acetamidederivatives, viz., 2-(4-bromophenyl)-N-(2-methoxyphenyl)acetamide (Xiao et al., 2010), N-benzyl-2-(3-chloro-4-hydroxyphenyl)acetamide (Davis et al., 2010), 2-[(5,7-dibromoquinolin-8-yl)oxy]-N-(2-methoxyphenyl)acetamide (Wen et al., 2010), N-(4-bromophenyl)-2-(2-thienyl)acetamide (Nogueira et al., 2010), N-[4-(benzylsulfamoyl)phenyl]acetamide (John et al., 2010), 2-(4-fluorophenyl)-N-{4-[6-(4-fluorophenyl)-2,3-dihydroimidazo[2,1-b][1,3] thiazol-5-yl]pyridin-2-yl}acetamide (Selig et al., 2010) and N-(3-chloro-4-fluorophenyl)-2-(naphthalen-1-yl)acetamide (Praveen et al., 2011) have been reported. As part of our ongoing studies of amides, the title compound is synthesized and its crystal structure is reported.

In the title hydrated compound, C16H13ClN2OS × H2O, the dihedral angle between the mean planes of the benzothiazole and benzenes is 79.3 (6)° (Fig. 1). Crystal packing is realized by O–H···N, O—H···O and N—H···O hydrogen bonds involving the water molecule and weak O—H···O, C—H···O, C—H···Cg (Table 1) and π–π stacking (Table 2) intermolecular interactions (Fig. 2).

Experimental

To a stirred solution of (3-methylphenyl)acetic acid (1 g, 6.65 mmol), triethylamine (1.34 g, 13.31 mmol) and 4-chloro-1,3-benzothiazol-2-amine (1.27 g, 6.65 mmol) in dichloromethane (10 ml), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide HCl (1.52 g, 7.93 mmol) was added at 273 K. The reaction mixture was stirred at room temperature for 3 h. After the completion of the reaction, the reaction mixture was poured into ice cold water and the layers were separated. The organic layer was washed with 10% aq. NaHCO3 solution (10 ml), brine (10 ml), dried over anhydrous Na2SO4, filtered and concentrated under vacuum to obtain the crude product which was triturated with ethanol and filtered to afford 1.92 g of the title compound (I) as a white solid in 91 % yield. Single crystals were grown from ethanol by slow evaporation method (m.p.: 397-398 K).

Refinement

H20A, H20B and H2N were located by a Fourier map and refined isotropically. All other H atoms were placed in their calculated positions and then refined using the riding model with atom—H lengths of 0.95Å (CH), 0.99Å (CH2) or 0.98Å (CH3). Isotropic displacement parameters for these atoms were set to 1.18-1.21 (CH) 1.20 CH2) or 1.51 (CH3) times Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed down the a axis. Dashed lines indicate O—H···N hydrogen bonds.

Crystal data

C16H13ClN2OS·H2O Z = 2
Mr = 334.81 F(000) = 348
Triclinic, P1 Dx = 1.447 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.2771 (3) Å Cell parameters from 5935 reflections
b = 9.2568 (5) Å θ = 3.2–32.2°
c = 12.0851 (5) Å µ = 0.39 mm1
α = 83.948 (4)° T = 173 K
β = 84.306 (3)° Block, colorless
γ = 72.133 (4)° 0.25 × 0.21 × 0.20 mm
V = 768.58 (6) Å3

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer 4303 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3834 reflections with I > 2σ(I)
graphite Rint = 0.013
Detector resolution: 16.1500 pixels mm-1 θmax = 29.6°, θmin = 3.2°
ω scans h = −6→10
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) k = −12→12
Tmin = 0.908, Tmax = 0.926 l = −16→16
10307 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.2662P] where P = (Fo2 + 2Fc2)/3
4303 reflections (Δ/σ)max = 0.007
209 parameters Δρmax = 0.40 e Å3
4 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.10411 (4) 0.65402 (3) 0.47845 (2) 0.02017 (8)
Cl1 0.78434 (4) 0.64763 (4) 0.28146 (3) 0.02807 (9)
O1 −0.10370 (13) 0.84965 (11) 0.62242 (8) 0.02685 (19)
O2 0.47923 (14) 0.98584 (11) 0.64369 (9) 0.0289 (2)
H2OB 0.477 (2) 1.0762 (16) 0.6127 (14) 0.035*
H2OA 0.600 (2) 0.9272 (17) 0.6380 (15) 0.035*
N1 0.41640 (14) 0.74054 (11) 0.44287 (8) 0.01894 (19)
N2 0.19872 (14) 0.86818 (11) 0.58166 (8) 0.01959 (19)
H2N 0.285 (2) 0.9074 (18) 0.5985 (13) 0.024*
C1 0.43805 (16) 0.62472 (13) 0.37390 (9) 0.0181 (2)
C2 0.59653 (16) 0.56742 (13) 0.29843 (10) 0.0202 (2)
C3 0.60131 (18) 0.44952 (14) 0.23612 (11) 0.0242 (2)
H3A 0.7097 0.4102 0.1856 0.029*
C4 0.44702 (19) 0.38796 (14) 0.24728 (11) 0.0263 (3)
H4A 0.4525 0.3063 0.2043 0.032*
C5 0.28611 (18) 0.44326 (14) 0.31952 (11) 0.0237 (2)
H5A 0.1808 0.4018 0.3261 0.028*
C6 0.28419 (17) 0.56185 (13) 0.38211 (9) 0.0195 (2)
C7 0.25131 (16) 0.76327 (13) 0.50223 (9) 0.0179 (2)
C8 0.02371 (17) 0.90296 (13) 0.64119 (10) 0.0200 (2)
C9 0.00054 (18) 1.00506 (14) 0.73487 (10) 0.0224 (2)
H9A −0.1334 1.0745 0.7408 0.027*
H9B 0.0903 1.0675 0.7194 0.027*
C10 0.04473 (18) 0.90619 (14) 0.84323 (10) 0.0219 (2)
C11 0.20475 (18) 0.90263 (15) 0.89814 (10) 0.0246 (2)
H11A 0.2826 0.9654 0.8689 0.030*
C12 0.2537 (2) 0.80858 (16) 0.99563 (11) 0.0303 (3)
C13 0.1374 (2) 0.71844 (17) 1.03722 (12) 0.0348 (3)
H13A 0.1688 0.6535 1.1033 0.042*
C14 −0.0235 (2) 0.72173 (17) 0.98378 (12) 0.0347 (3)
H14A −0.1020 0.6597 1.0137 0.042*
C15 −0.0708 (2) 0.81538 (16) 0.88651 (11) 0.0287 (3)
H15A −0.1813 0.8174 0.8498 0.034*
C20 0.4298 (2) 0.8049 (2) 1.05269 (14) 0.0455 (4)
H20A 0.5070 0.6990 1.0692 0.068*
H20B 0.3894 0.8551 1.1224 0.068*
H20C 0.5076 0.8584 1.0037 0.068*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01938 (14) 0.02259 (14) 0.02136 (14) −0.01061 (11) 0.00229 (10) −0.00472 (10)
Cl1 0.02011 (15) 0.03273 (17) 0.03346 (17) −0.01163 (12) 0.00420 (11) −0.00644 (12)
O1 0.0204 (4) 0.0311 (5) 0.0311 (5) −0.0101 (4) 0.0026 (3) −0.0085 (4)
O2 0.0231 (4) 0.0243 (4) 0.0412 (5) −0.0111 (4) 0.0024 (4) −0.0034 (4)
N1 0.0190 (4) 0.0195 (4) 0.0197 (4) −0.0079 (4) 0.0003 (3) −0.0030 (4)
N2 0.0192 (5) 0.0215 (5) 0.0203 (4) −0.0089 (4) 0.0008 (4) −0.0049 (4)
C1 0.0190 (5) 0.0172 (5) 0.0181 (5) −0.0056 (4) −0.0012 (4) −0.0004 (4)
C2 0.0175 (5) 0.0202 (5) 0.0221 (5) −0.0054 (4) −0.0003 (4) −0.0004 (4)
C3 0.0225 (6) 0.0219 (5) 0.0260 (6) −0.0035 (4) 0.0021 (4) −0.0055 (4)
C4 0.0288 (6) 0.0209 (5) 0.0293 (6) −0.0066 (5) 0.0007 (5) −0.0081 (5)
C5 0.0247 (6) 0.0220 (5) 0.0269 (6) −0.0103 (5) 0.0003 (4) −0.0052 (4)
C6 0.0197 (5) 0.0193 (5) 0.0199 (5) −0.0069 (4) 0.0005 (4) −0.0017 (4)
C7 0.0189 (5) 0.0181 (5) 0.0177 (5) −0.0074 (4) −0.0013 (4) −0.0009 (4)
C8 0.0206 (5) 0.0181 (5) 0.0200 (5) −0.0045 (4) −0.0007 (4) −0.0005 (4)
C9 0.0256 (6) 0.0188 (5) 0.0213 (5) −0.0046 (4) 0.0018 (4) −0.0039 (4)
C10 0.0235 (5) 0.0200 (5) 0.0197 (5) −0.0034 (4) 0.0041 (4) −0.0048 (4)
C11 0.0240 (6) 0.0243 (6) 0.0235 (5) −0.0047 (5) 0.0032 (4) −0.0052 (4)
C12 0.0282 (6) 0.0319 (7) 0.0245 (6) −0.0002 (5) 0.0015 (5) −0.0032 (5)
C13 0.0387 (8) 0.0317 (7) 0.0259 (6) −0.0027 (6) 0.0045 (5) 0.0040 (5)
C14 0.0375 (8) 0.0315 (7) 0.0327 (7) −0.0120 (6) 0.0100 (6) 0.0018 (5)
C15 0.0274 (6) 0.0299 (6) 0.0284 (6) −0.0096 (5) 0.0044 (5) −0.0032 (5)
C20 0.0377 (8) 0.0574 (11) 0.0365 (8) −0.0071 (8) −0.0108 (6) 0.0042 (7)

Geometric parameters (Å, °)

S1—C6 1.7382 (12) C5—H5A 0.9500
S1—C7 1.7436 (12) C8—C9 1.5144 (16)
Cl1—C2 1.7310 (12) C9—C10 1.5186 (17)
O1—C8 1.2250 (15) C9—H9A 0.9900
O2—H2OB 0.876 (13) C9—H9B 0.9900
O2—H2OA 0.883 (13) C10—C11 1.3866 (18)
N1—C7 1.3068 (15) C10—C15 1.3934 (18)
N1—C1 1.3884 (14) C11—C12 1.3963 (18)
N2—C8 1.3633 (15) C11—H11A 0.9500
N2—C7 1.3809 (14) C12—C13 1.387 (2)
N2—H2N 0.868 (13) C12—C20 1.504 (2)
C1—C2 1.4004 (15) C13—C14 1.383 (2)
C1—C6 1.4028 (16) C13—H13A 0.9500
C2—C3 1.3799 (17) C14—C15 1.391 (2)
C3—C4 1.3964 (18) C14—H14A 0.9500
C3—H3A 0.9500 C15—H15A 0.9500
C4—C5 1.3853 (17) C20—H20A 0.9800
C4—H4A 0.9500 C20—H20B 0.9800
C5—C6 1.3932 (16) C20—H20C 0.9800
C6—S1—C7 88.18 (5) C8—C9—C10 108.76 (10)
H2OB—O2—H2OA 107.2 (14) C8—C9—H9A 109.9
C7—N1—C1 109.19 (10) C10—C9—H9A 109.9
C8—N2—C7 123.21 (10) C8—C9—H9B 109.9
C8—N2—H2N 118.6 (10) C10—C9—H9B 109.9
C7—N2—H2N 118.0 (11) H9A—C9—H9B 108.3
N1—C1—C2 126.10 (11) C11—C10—C15 119.52 (12)
N1—C1—C6 115.52 (10) C11—C10—C9 119.83 (11)
C2—C1—C6 118.38 (11) C15—C10—C9 120.63 (12)
C3—C2—C1 120.19 (11) C10—C11—C12 121.27 (13)
C3—C2—Cl1 120.05 (9) C10—C11—H11A 119.4
C1—C2—Cl1 119.75 (9) C12—C11—H11A 119.4
C2—C3—C4 120.06 (11) C13—C12—C11 118.40 (14)
C2—C3—H3A 120.0 C13—C12—C20 121.33 (14)
C4—C3—H3A 120.0 C11—C12—C20 120.26 (14)
C5—C4—C3 121.51 (11) C14—C13—C12 120.94 (13)
C5—C4—H4A 119.2 C14—C13—H13A 119.5
C3—C4—H4A 119.2 C12—C13—H13A 119.5
C4—C5—C6 117.62 (11) C13—C14—C15 120.30 (14)
C4—C5—H5A 121.2 C13—C14—H14A 119.8
C6—C5—H5A 121.2 C15—C14—H14A 119.8
C5—C6—C1 122.21 (11) C14—C15—C10 119.57 (13)
C5—C6—S1 128.07 (9) C14—C15—H15A 120.2
C1—C6—S1 109.71 (8) C10—C15—H15A 120.2
N1—C7—N2 120.77 (10) C12—C20—H20A 109.5
N1—C7—S1 117.35 (9) C12—C20—H20B 109.5
N2—C7—S1 121.88 (8) H20A—C20—H20B 109.5
O1—C8—N2 121.69 (11) C12—C20—H20C 109.5
O1—C8—C9 122.33 (11) H20A—C20—H20C 109.5
N2—C8—C9 115.92 (10) H20B—C20—H20C 109.5
C7—N1—C1—C2 −179.68 (11) C8—N2—C7—N1 175.97 (11)
C7—N1—C1—C6 0.58 (14) C8—N2—C7—S1 −5.13 (16)
N1—C1—C2—C3 178.77 (11) C6—S1—C7—N1 2.23 (10)
C6—C1—C2—C3 −1.50 (17) C6—S1—C7—N2 −176.71 (10)
N1—C1—C2—Cl1 −2.55 (17) C7—N2—C8—O1 −4.83 (18)
C6—C1—C2—Cl1 177.18 (9) C7—N2—C8—C9 172.42 (10)
C1—C2—C3—C4 0.67 (19) O1—C8—C9—C10 81.73 (14)
Cl1—C2—C3—C4 −178.01 (10) N2—C8—C9—C10 −95.49 (12)
C2—C3—C4—C5 0.5 (2) C8—C9—C10—C11 114.28 (12)
C3—C4—C5—C6 −0.8 (2) C8—C9—C10—C15 −63.84 (14)
C4—C5—C6—C1 −0.11 (19) C15—C10—C11—C12 0.61 (18)
C4—C5—C6—S1 179.87 (10) C9—C10—C11—C12 −177.53 (11)
N1—C1—C6—C5 −179.00 (11) C10—C11—C12—C13 −0.31 (19)
C2—C1—C6—C5 1.24 (18) C10—C11—C12—C20 179.05 (13)
N1—C1—C6—S1 1.01 (13) C11—C12—C13—C14 −0.2 (2)
C2—C1—C6—S1 −178.75 (9) C20—C12—C13—C14 −179.55 (14)
C7—S1—C6—C5 178.34 (12) C12—C13—C14—C15 0.4 (2)
C7—S1—C6—C1 −1.67 (9) C13—C14—C15—C10 −0.1 (2)
C1—N1—C7—N2 176.95 (10) C11—C10—C15—C14 −0.39 (19)
C1—N1—C7—S1 −2.00 (13) C9—C10—C15—C14 177.73 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2OB···N1i 0.88 (1) 2.10 (2) 2.924 (1) 158 (2)
O2—H2OA···O1ii 0.88 (1) 2.05 (1) 2.904 (1) 164 (2)
N2—H2N···O2 0.87 (1) 1.92 (1) 2.785 (1) 177 (2)
C5—H5A···O1iii 0.95 2.56 3.351 (2) 141.
C3—H3A···Cg3iv 0.95 2.66 3.502 (1) 148

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x+1, y, z; (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+1.

Table 2 Cg···Cg π-stacking interactions, Cg1, Cg2 and Cg3 are the centroids of rings S1/C6/C1/N1/C7 C1–C6 and C10–C15, respectively. [Symmetry codes: (i) 1-x, -1-y, 1-z; (ii) -x, 2-y, 2-z]

CgI···CgJ CgI···CgJ (Å) CgI···Perp (Å) CgJ···Perp (Å)
Cg1···Cg1i 3.8743 (7) 3.5381 (4) 3.581 (4)
Cg1···Cg2i 3.7229 (7) 3.5474 (4) 3.5229 (5)
Cg3···Cg3ii 3.7076 (8) 3.4878 (6) 3.4878 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2316).

References

  1. Aiello, S., Wells, G., Stone, E. L., Kadri, H., Bazzi, R., Bell, D. R., Stevens, M. F. G., Matthews, C. S., Bradshaw, T. D. & Westwell, A. D. (2008). J. Med. Chem. 51, 5135–5139. [DOI] [PubMed]
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Cho, Y., Ioerger, T. R. & Sacchettini, J. C. (2008). J. Med. Chem. 51, 5984–5992. [DOI] [PMC free article] [PubMed]
  4. Davis, R. A. & Healy, P. C. (2010). Acta Cryst. E66, o2521. [DOI] [PMC free article] [PubMed]
  5. John, P., Ahmad, W., Khan, I. U., Sharif, S. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2048. [DOI] [PMC free article] [PubMed]
  6. Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193–198.
  7. Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.
  8. Nogueira, T. C. M., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o177. [DOI] [PMC free article] [PubMed]
  9. Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  10. Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1826. [DOI] [PMC free article] [PubMed]
  11. Selig, R., Schollmeyer, D., Albrecht, W. & Laufer, S. (2010). Acta Cryst. E66, o1132. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Wen, Y.-H., Qin, H.-Q. & Wen, H.-L. (2010). Acta Cryst. E66, o3294. [DOI] [PMC free article] [PubMed]
  14. Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.
  15. Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288. [DOI] [PMC free article] [PubMed]
  16. Xiao, Z.-P., Ouyang, Y.-Z., Qin, S.-D., Xie, T. & Yang, J. (2010). Acta Cryst. E66, o67. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811035872/im2316sup1.cif

e-67-o2602-sup1.cif (19.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035872/im2316Isup2.hkl

e-67-o2602-Isup2.hkl (210.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811035872/im2316Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES