Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):m1334. doi: 10.1107/S1600536811035483

Bis(μ-2-phenyl­acetato-κ2 O:O)bis­[(2,2′-bipyridyl-κ2 N,N′)(2-phenyl­acetato-κO)copper(II)] dihydrate

Wei Xu a,*, Ling Jin a, Bin-Bin Liu a
PMCID: PMC3201355  PMID: 22058686

Abstract

The mol­ecule of the binuclear title complex, [Cu2(C8H7O2)4(C10H8N2)2]·2H2O, is located on an inversion centre. The Cu atoms are bridged by two O atoms of the monodentate phenyl­acetate groups [Cu—O = 1.9808 (14) and 2.3668 (14) Å]. The longer of the two bridging Cu—O bonds takes the apical position of the distorted square-pyramidal environment of the Cu atom, which is completed by two N atoms of the chelate 2,2′-bipyridine ligand [Cu—N = 2.0107 (17) and 2.0234 (16) Å]. The mol­ecules are assembled into stacks along [100] through π–π inter­actions with inter­planar distances of 3.630 (4) and 3.407 (3) Å; the resulting stacks are further connected into a three-dimensional supra­molecular architecture by O—H⋯O and C—H⋯O hydrogen-bonding inter­actions.

Related literature

For applications of inorganic–organic hybrid materials, see: Pan et al. (2003); Shibasaki & Yoshikawa (2002). For related structures, see: Addison & Rao (1984); Antolini et al. (1985); Zhang et al. (2006).graphic file with name e-67-m1334-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C8H7O2)4(C10H8N2)2]·2H2O

  • M r = 1016.02

  • Monoclinic, Inline graphic

  • a = 10.213 (2) Å

  • b = 16.058 (3) Å

  • c = 14.633 (3) Å

  • β = 100.75 (3)°

  • V = 2357.7 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 295 K

  • 0.17 × 0.14 × 0.11 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.678, T max = 0.784

  • 22348 measured reflections

  • 5356 independent reflections

  • 4268 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.090

  • S = 1.10

  • 5356 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811035483/ya2144sup1.cif

e-67-m1334-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035483/ya2144Isup2.hkl

e-67-m1334-Isup2.hkl (262.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯O4 0.85 2.05 2.781 (3) 143
O5—H52⋯O2i 0.86 2.08 2.931 (3) 174
C20—H20A⋯O4ii 0.93 2.38 3.245 (3) 156
C24—H24A⋯O2iii 0.93 2.48 3.172 (3) 131
C25—H25A⋯O5iv 0.93 2.50 3.201 (3) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This project was supported by the K. C. Wong Magna Fund in Ningbo University.

supplementary crystallographic information

Comment

The use of metal centers for organizing of molecular building blocks into inorganic–organic hybrid materials have been studied for potential applications in catalysis, gas storage, and in molecular–based magnetic materials (Pan et al., 2003; Shibasaki & Yoshikawa, 2002). As part of our investigations of self-assemblies of Cu2+ ions and bipy with phenylacetic acid, we prepared the title complex, [Cu2(C8H7O2)4(C10H8N2)2].2H2O.

The molecule of the complex occupies a special position in the inversion centre (Fig. 1). The square pyramidal coordination environment of the Cu atom is formed by the N atoms of 2,2'-bipyridine ligands (Cu—N1 2.0108 (17) Å and Cu—N2 2.0234 (16) Å), the O atom of terminal phenylacetato ligand (Cu—O3 1.9557 (16) Å), and two O atoms of bridging phenylacetato groups, the O1i atom [symmetry code (i): 1 - x, -y, -z] takes one of the equatorial positions, whereas the O1 atom occupies the apical site. As one would expect (Antolini et al., 1985; Zhang et al., 2006), the apical bond Cu—O1 2.3669 (14) Å is substantially longer than the equatorial Cu—O1i distance of 1.9807 (14) Å. The Cu atom is displaced by 0.078 (1) Å towards the apical vertex from the mean plane of the equatorial ligands [τ = 0.04 according to Addison & Rao (1984)].

The molecules are assembled into stacks along [100] through π···π stacking interactions with the mean interplanar distance of 3.407 (3) Å between adjacent bipy ligands and 3.630 (4) Å between bipy ligands and phenylacetato groups, and the stacks are further stabilized by the weak C—H···O hydrogen bonding interactions from the phenyl CH groups to the uncoordinating carboxylate O2 and O4 atoms (Table 1), as well O—H···O bonds involving water molecule (Fig. 2). As a result, three-dimensional network is formed.

Experimental

Phenylacetic acid(0.2726 g, 2.000 mmol) was completely dissolved in a mixture of 10 ml of ethanol, 10 ml of water, and bipy (0.1561 g, 1.000 mmol). 0.2602 g (1.084 mmol) of Cu(NO3)2.3H2O were then added, and after dropwise addition of 2.0 ml (1M) NaOH to the resulting solution under continuous stirring for 1 h, the blue suspension was produced. The suspension was filtered and the filtrate (pH = 6.51) was allowed to stand at room temperature for several weeks; the precipitation of blue block crystals was observed.

Refinement

H atoms bonded to C atoms were placed in geometrically calculated positions (C—H 0.93 Å and 0.97 Å for aromatic and methylene H atoms respectively) and were included in the refinement in a riding model approximation, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were also included in the riding model approximation, with the O—H distances fixed as initially found and with Uiso(H) values set at 1.5 Ueq(O).

Figures

Fig. 1.

Fig. 1.

ORTEP view of the title compound. The displacement ellipsoids are drawn at 45% probability level; hydrogen atoms bonded to carbon were omitted.

Fig. 2.

Fig. 2.

Crystal packing of the title complex viewed down the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

[Cu2(C8H7O2)4(C10H8N2)2]·2H2O F(000) = 1052
Mr = 1016.02 Dx = 1.431 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 22348 reflections
a = 10.213 (2) Å θ = 3.1–27.4°
b = 16.058 (3) Å µ = 0.97 mm1
c = 14.633 (3) Å T = 295 K
β = 100.75 (3)° Block, blue
V = 2357.7 (8) Å3 0.17 × 0.14 × 0.11 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID diffractometer 5356 independent reflections
Radiation source: fine-focus sealed tube 4268 reflections with I > 2σ(I)
graphite Rint = 0.033
Detector resolution: 0 pixels mm-1 θmax = 27.4°, θmin = 3.1°
ω scans h = −13→13
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −20→20
Tmin = 0.678, Tmax = 0.784 l = −18→18
22348 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0357P)2 + 1.1037P] where P = (Fo2 + 2Fc2)/3
5356 reflections (Δ/σ)max < 0.001
307 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.56 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu 0.34936 (2) 0.003603 (15) 0.032956 (16) 0.03079 (8)
O1 0.51708 (12) 0.08258 (8) −0.01885 (10) 0.0349 (3)
O2 0.65975 (14) 0.18355 (10) −0.03382 (12) 0.0509 (4)
C1 0.54722 (19) 0.15958 (13) −0.02762 (13) 0.0335 (4)
C2 0.4344 (2) 0.22176 (13) −0.03118 (15) 0.0390 (5)
H2A 0.3904 0.2116 0.0211 0.047*
H2B 0.4716 0.2775 −0.0244 0.047*
C3 0.33151 (19) 0.21773 (12) −0.12042 (15) 0.0371 (4)
C4 0.3645 (3) 0.18987 (17) −0.20253 (17) 0.0583 (7)
H4A 0.4507 0.1714 −0.2029 0.070*
C5 0.2707 (3) 0.1891 (2) −0.2844 (2) 0.0775 (9)
H5A 0.2943 0.1704 −0.3393 0.093*
C6 0.1426 (3) 0.2159 (2) −0.2846 (2) 0.0747 (9)
H6A 0.0796 0.2149 −0.3394 0.090*
C7 0.1079 (2) 0.24395 (17) −0.2039 (2) 0.0633 (8)
H7A 0.0213 0.2620 −0.2039 0.076*
C8 0.2023 (2) 0.24547 (14) −0.12211 (17) 0.0467 (5)
H8A 0.1786 0.2654 −0.0678 0.056*
O3 0.43667 (14) 0.02350 (11) 0.16182 (10) 0.0444 (4)
O4 0.28773 (16) −0.06110 (11) 0.20372 (11) 0.0555 (4)
C9 0.3872 (2) −0.01680 (15) 0.22212 (14) 0.0411 (5)
C10 0.4592 (2) −0.00598 (19) 0.32311 (16) 0.0596 (7)
H10A 0.5128 −0.0550 0.3420 0.071*
H10B 0.5188 0.0414 0.3269 0.071*
C11 0.3641 (2) 0.00710 (15) 0.38924 (15) 0.0456 (5)
C12 0.3061 (3) −0.05839 (18) 0.42846 (19) 0.0650 (7)
H12A 0.3274 −0.1128 0.4152 0.078*
C13 0.2172 (3) −0.0439 (2) 0.4869 (2) 0.0742 (8)
H13A 0.1795 −0.0887 0.5129 0.089*
C14 0.1839 (3) 0.0353 (2) 0.50716 (18) 0.0636 (7)
H14A 0.1238 0.0447 0.5467 0.076*
C15 0.2394 (3) 0.10011 (19) 0.46888 (19) 0.0631 (7)
H15A 0.2170 0.1543 0.4821 0.076*
C16 0.3284 (3) 0.08655 (17) 0.41081 (18) 0.0563 (6)
H16A 0.3655 0.1319 0.3854 0.068*
N1 0.23495 (15) −0.01459 (10) −0.09298 (11) 0.0314 (3)
N2 0.19920 (15) 0.08350 (10) 0.04221 (11) 0.0325 (3)
C17 0.2643 (2) −0.06336 (14) −0.16069 (14) 0.0391 (5)
H17A 0.3461 −0.0906 −0.1511 0.047*
C18 0.1775 (2) −0.07459 (15) −0.24405 (15) 0.0466 (5)
H18A 0.2003 −0.1090 −0.2898 0.056*
C19 0.0565 (2) −0.03411 (16) −0.25860 (16) 0.0495 (6)
H19A −0.0037 −0.0413 −0.3141 0.059*
C20 0.0255 (2) 0.01729 (14) −0.18992 (15) 0.0427 (5)
H20A −0.0553 0.0456 −0.1988 0.051*
C21 0.11684 (18) 0.02584 (12) −0.10760 (13) 0.0312 (4)
C22 0.09470 (17) 0.07952 (12) −0.02961 (13) 0.0306 (4)
C23 −0.02197 (19) 0.12337 (13) −0.02906 (15) 0.0383 (5)
H23A −0.0940 0.1183 −0.0781 0.046*
C24 −0.0295 (2) 0.17477 (14) 0.04555 (16) 0.0440 (5)
H24A −0.1070 0.2047 0.0473 0.053*
C25 0.0786 (2) 0.18136 (14) 0.11732 (16) 0.0452 (5)
H25A 0.0763 0.2170 0.1671 0.054*
C26 0.1906 (2) 0.13390 (14) 0.11387 (15) 0.0405 (5)
H26A 0.2626 0.1371 0.1631 0.049*
O5 0.2460 (2) −0.23227 (13) 0.20341 (15) 0.0773 (6)
H51 0.2485 −0.1839 0.2272 0.116*
H52 0.2711 −0.2215 0.1520 0.116*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu 0.02265 (12) 0.03791 (15) 0.03088 (13) 0.00331 (9) 0.00258 (8) −0.00214 (10)
O1 0.0285 (6) 0.0323 (7) 0.0433 (8) 0.0024 (5) 0.0051 (6) 0.0023 (6)
O2 0.0342 (8) 0.0455 (9) 0.0739 (11) −0.0039 (7) 0.0121 (7) 0.0069 (8)
C1 0.0320 (10) 0.0356 (11) 0.0312 (10) 0.0014 (8) 0.0019 (8) −0.0005 (8)
C2 0.0400 (11) 0.0334 (11) 0.0426 (11) 0.0032 (9) 0.0055 (9) −0.0029 (9)
C3 0.0351 (10) 0.0321 (10) 0.0428 (11) 0.0030 (8) 0.0039 (8) 0.0058 (9)
C4 0.0551 (14) 0.0698 (18) 0.0468 (14) 0.0191 (13) 0.0007 (11) −0.0008 (13)
C5 0.090 (2) 0.090 (2) 0.0448 (15) 0.0176 (18) −0.0081 (14) −0.0041 (15)
C6 0.0710 (19) 0.075 (2) 0.0636 (19) 0.0014 (16) −0.0254 (15) 0.0121 (15)
C7 0.0376 (12) 0.0606 (17) 0.086 (2) 0.0029 (11) −0.0042 (13) 0.0222 (15)
C8 0.0377 (11) 0.0428 (12) 0.0599 (14) 0.0023 (9) 0.0099 (10) 0.0093 (11)
O3 0.0309 (7) 0.0674 (10) 0.0337 (8) 0.0018 (7) 0.0031 (6) −0.0036 (7)
O4 0.0500 (9) 0.0661 (11) 0.0491 (10) −0.0099 (8) 0.0062 (7) −0.0053 (8)
C9 0.0315 (10) 0.0574 (14) 0.0335 (11) 0.0116 (10) 0.0037 (8) −0.0074 (10)
C10 0.0410 (12) 0.100 (2) 0.0355 (12) 0.0106 (13) 0.0012 (9) −0.0053 (13)
C11 0.0457 (12) 0.0607 (15) 0.0286 (10) 0.0041 (11) 0.0024 (9) 0.0002 (10)
C12 0.090 (2) 0.0494 (15) 0.0579 (16) 0.0079 (14) 0.0187 (15) 0.0018 (13)
C13 0.096 (2) 0.071 (2) 0.0629 (18) −0.0154 (18) 0.0345 (16) 0.0074 (16)
C14 0.0631 (16) 0.085 (2) 0.0467 (15) −0.0023 (15) 0.0211 (12) −0.0068 (15)
C15 0.0716 (18) 0.0637 (17) 0.0549 (16) 0.0097 (14) 0.0144 (13) −0.0113 (13)
C16 0.0660 (16) 0.0532 (15) 0.0509 (14) −0.0050 (12) 0.0140 (12) 0.0018 (12)
N1 0.0259 (7) 0.0354 (9) 0.0325 (8) 0.0004 (6) 0.0044 (6) −0.0008 (7)
N2 0.0259 (7) 0.0372 (9) 0.0340 (8) 0.0012 (7) 0.0046 (6) −0.0020 (7)
C17 0.0321 (10) 0.0462 (12) 0.0395 (11) 0.0043 (9) 0.0080 (8) −0.0070 (9)
C18 0.0477 (12) 0.0546 (14) 0.0372 (11) 0.0004 (11) 0.0071 (9) −0.0115 (10)
C19 0.0462 (13) 0.0617 (15) 0.0358 (12) 0.0001 (11) −0.0044 (9) −0.0055 (11)
C20 0.0333 (10) 0.0501 (13) 0.0413 (12) 0.0052 (9) −0.0018 (9) 0.0010 (10)
C21 0.0260 (9) 0.0332 (10) 0.0341 (10) −0.0011 (7) 0.0048 (7) 0.0023 (8)
C22 0.0256 (8) 0.0330 (10) 0.0330 (10) −0.0009 (8) 0.0052 (7) 0.0034 (8)
C23 0.0282 (9) 0.0416 (11) 0.0440 (11) 0.0037 (8) 0.0040 (8) 0.0025 (9)
C24 0.0323 (10) 0.0449 (12) 0.0565 (14) 0.0080 (9) 0.0125 (9) −0.0031 (10)
C25 0.0416 (11) 0.0467 (13) 0.0492 (13) 0.0034 (10) 0.0135 (10) −0.0125 (10)
C26 0.0339 (10) 0.0462 (12) 0.0405 (11) 0.0011 (9) 0.0046 (8) −0.0085 (10)
O5 0.0807 (14) 0.0718 (13) 0.0769 (14) −0.0005 (11) 0.0082 (11) 0.0222 (11)

Geometric parameters (Å, °)

Cu—O3 1.9558 (15) C12—H12A 0.9300
Cu—O1i 1.9808 (14) C13—C14 1.363 (4)
Cu—N1 2.0107 (17) C13—H13A 0.9300
Cu—N2 2.0234 (16) C14—C15 1.356 (4)
Cu—O1 2.3668 (14) C14—H14A 0.9300
O1—C1 1.286 (2) C15—C16 1.372 (4)
O1—Cui 1.9808 (14) C15—H15A 0.9300
O2—C1 1.231 (2) C16—H16A 0.9300
C1—C2 1.518 (3) N1—C17 1.340 (3)
C2—C3 1.517 (3) N1—C21 1.351 (2)
C2—H2A 0.9700 N2—C26 1.340 (3)
C2—H2B 0.9700 N2—C22 1.352 (2)
C3—C4 1.381 (3) C17—C18 1.380 (3)
C3—C8 1.389 (3) C17—H17A 0.9300
C4—C5 1.388 (4) C18—C19 1.377 (3)
C4—H4A 0.9300 C18—H18A 0.9300
C5—C6 1.377 (4) C19—C20 1.382 (3)
C5—H5A 0.9300 C19—H19A 0.9300
C6—C7 1.371 (4) C20—C21 1.386 (3)
C6—H6A 0.9300 C20—H20A 0.9300
C7—C8 1.390 (3) C21—C22 1.481 (3)
C7—H7A 0.9300 C22—C23 1.385 (3)
C8—H8A 0.9300 C23—C24 1.382 (3)
O3—C9 1.272 (3) C23—H23A 0.9300
O4—C9 1.228 (3) C24—C25 1.379 (3)
C9—C10 1.533 (3) C24—H24A 0.9300
C10—C11 1.508 (3) C25—C26 1.383 (3)
C10—H10A 0.9700 C25—H25A 0.9300
C10—H10B 0.9700 C26—H26A 0.9300
C11—C16 1.380 (3) O5—H51 0.8494
C11—C12 1.383 (4) O5—H52 0.8560
C12—C13 1.379 (4)
O3—Cu—O1i 90.90 (6) C13—C12—C11 120.8 (3)
O3—Cu—N1 171.79 (6) C13—C12—H12A 119.6
O1i—Cu—N1 95.55 (6) C11—C12—H12A 119.6
O3—Cu—N2 92.68 (7) C14—C13—C12 120.8 (3)
O1i—Cu—N2 174.44 (6) C14—C13—H13A 119.6
N1—Cu—N2 80.52 (7) C12—C13—H13A 119.6
O3—Cu—O1 89.67 (6) C15—C14—C13 119.1 (3)
O1i—Cu—O1 77.72 (6) C15—C14—H14A 120.5
N1—Cu—O1 96.65 (6) C13—C14—H14A 120.5
N2—Cu—O1 106.54 (6) C14—C15—C16 120.7 (3)
C1—O1—Cui 118.61 (12) C14—C15—H15A 119.7
C1—O1—Cu 138.41 (12) C16—C15—H15A 119.7
Cui—O1—Cu 102.28 (6) C15—C16—C11 121.5 (3)
O2—C1—O1 123.49 (18) C15—C16—H16A 119.3
O2—C1—C2 120.32 (19) C11—C16—H16A 119.3
O1—C1—C2 116.18 (17) C17—N1—C21 118.68 (17)
C3—C2—C1 113.63 (17) C17—N1—Cu 126.20 (13)
C3—C2—H2A 108.8 C21—N1—Cu 115.11 (13)
C1—C2—H2A 108.8 C26—N2—C22 118.62 (16)
C3—C2—H2B 108.8 C26—N2—Cu 126.61 (13)
C1—C2—H2B 108.8 C22—N2—Cu 114.59 (13)
H2A—C2—H2B 107.7 N1—C17—C18 122.32 (19)
C4—C3—C8 118.3 (2) N1—C17—H17A 118.8
C4—C3—C2 121.36 (19) C18—C17—H17A 118.8
C8—C3—C2 120.3 (2) C19—C18—C17 119.0 (2)
C3—C4—C5 120.9 (2) C19—C18—H18A 120.5
C3—C4—H4A 119.6 C17—C18—H18A 120.5
C5—C4—H4A 119.6 C18—C19—C20 119.4 (2)
C6—C5—C4 120.1 (3) C18—C19—H19A 120.3
C6—C5—H5A 120.0 C20—C19—H19A 120.3
C4—C5—H5A 120.0 C19—C20—C21 118.9 (2)
C7—C6—C5 120.0 (2) C19—C20—H20A 120.6
C7—C6—H6A 120.0 C21—C20—H20A 120.6
C5—C6—H6A 120.0 N1—C21—C20 121.75 (19)
C6—C7—C8 119.9 (2) N1—C21—C22 114.69 (16)
C6—C7—H7A 120.1 C20—C21—C22 123.56 (18)
C8—C7—H7A 120.1 N2—C22—C23 121.76 (18)
C3—C8—C7 120.9 (2) N2—C22—C21 114.49 (16)
C3—C8—H8A 119.5 C23—C22—C21 123.75 (17)
C7—C8—H8A 119.5 C24—C23—C22 118.88 (19)
C9—O3—Cu 114.65 (14) C24—C23—H23A 120.6
O4—C9—O3 124.2 (2) C22—C23—H23A 120.6
O4—C9—C10 120.3 (2) C25—C24—C23 119.50 (19)
O3—C9—C10 115.5 (2) C25—C24—H24A 120.3
C11—C10—C9 112.61 (19) C23—C24—H24A 120.3
C11—C10—H10A 109.1 C24—C25—C26 118.7 (2)
C9—C10—H10A 109.1 C24—C25—H25A 120.6
C11—C10—H10B 109.1 C26—C25—H25A 120.6
C9—C10—H10B 109.1 N2—C26—C25 122.46 (19)
H10A—C10—H10B 107.8 N2—C26—H26A 118.8
C16—C11—C12 117.1 (2) C25—C26—H26A 118.8
C16—C11—C10 120.3 (2) H51—O5—H52 100.6
C12—C11—C10 122.5 (2)

Symmetry codes: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H51···O4 0.85 2.05 2.781 (3) 143
O5—H52···O2i 0.86 2.08 2.931 (3) 174
C20—H20A···O4ii 0.93 2.38 3.245 (3) 156
C24—H24A···O2iii 0.93 2.48 3.172 (3) 131
C25—H25A···O5iv 0.93 2.50 3.201 (3) 132

Symmetry codes: (i) −x+1, −y, −z; (ii) −x, −y, −z; (iii) x−1, y, z; (iv) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2144).

References

  1. Addison, A. W. & Rao, T. N. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Antolini, L., Menabue, L. & Saladini, M. (1985). Inorg. Chem. 24, 1219–1222.
  3. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  4. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  5. Pan, L., Liu, H. M., Lei, X., Huang, X., Olson, D. H., Turro, N. J. & Li, J. (2003). Angew. Chem. Int. Ed. 42, 542–546. [DOI] [PubMed]
  6. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  7. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Shibasaki, M. & Yoshikawa, N. (2002). Chem. Rev. 102, 2187–2209. [DOI] [PubMed]
  10. Zhang, Z.-G., Dong, X.-D., Li, Y.-P., Pu, X.-H., Huo, F.-J. & Zhu, M.-L. (2006). Acta Cryst. E62, m2326–m2327.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811035483/ya2144sup1.cif

e-67-m1334-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035483/ya2144Isup2.hkl

e-67-m1334-Isup2.hkl (262.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES