Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2695–o2696. doi: 10.1107/S1600536811037408

rac-(6S)-6-Hy­droxy-6-{2-[2-(propan-2-yl­idene)hydrazinyl­idene]prop­yl}indolo[2,1-b]quinazolin-12(6H)-one

Matthew E Rodstein a, Paul D Steffen a, Bogdana Krivogorsky a, Peter Grundt a,*
PMCID: PMC3201358  PMID: 22065467

Abstract

The chiral title compound, C21H20N4O2, crystallizes as a racemic mixture. In the crystal, mol­ecules form centrosymmetric π-overlapping dimers [inter­planar distance = 3.338 (6) Å], which are further connected along the a axis forming centrosymmetric dimers via O—H⋯N hydrogen bonds. C—H⋯O inter­actions are also observed. The indolo[2,1-b]quinazoline group is somewhat bent, with a small dihedral angle of 6.3 (4)° between the plane of the quinazoline system and the plane of the benzene ring of the indole moiety. The C=N—N=C atoms of the azine group is oriented almost perpendicular [84.1 (2)°] to the mean plane of the quinazoline system.

Related literature

The title compound is a derivative of the natural product tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione). For reactions occurring at the 6-keto group of tryptanthrin with nucleophiles including CH-acidic compounds, see: Grandolini et al. (1997); Bergman & Tilstam (1985); Jao et al. (2008); Zou & Huang (1985). For related strutures, see: Brufani et al. (1971); Bergman et al. (1987); Jao et al. (2008); Grundt et al. (2010). For the Chebychev weighting scheme, see: Prince (1982); Watkin (1994).graphic file with name e-67-o2695-scheme1.jpg

Experimental

Crystal data

  • C21H20N4O2

  • M r = 360.42

  • Monoclinic, Inline graphic

  • a = 8.6788 (17) Å

  • b = 15.117 (3) Å

  • c = 13.283 (3) Å

  • β = 99.58 (3)°

  • V = 1718.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID II image-plate diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.98, T max = 0.98

  • 11165 measured reflections

  • 2914 independent reflections

  • 1850 reflections with I > 2σ(I)

  • R int = 0.096

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062

  • wR(F 2) = 0.161

  • S = 1.01

  • 2899 reflections

  • 244 parameters

  • Only H-atom displacement parameters refined

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: CrystalClear (Rigaku Americas, 2009); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: CrystalClear; program(s) used to solve structure: CrystalStructure (Rigaku Americas, 2009) and SIR2004 (Burla et al., 2005); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037408/ld2027sup1.cif

e-67-o2695-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037408/ld2027Isup2.hkl

e-67-o2695-Isup2.hkl (145.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037408/ld2027Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H10⋯O18i 0.98 2.57 3.381 (6) 140 (1)
O19—H9⋯N5ii 0.83 2.08 2.872 (6) 160 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This study was supported by the Stanley Medical Research Institute (grant ID 08R-2032) and the NSF (grant CHE-0922366 for X-ray diffractometer).

supplementary crystallographic information

Comment

The 6-keto group of the natural product tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione) has been shown to react with numerous nucleophiles including CH-acidic compounds (Grandolini et al., 1997, Bergman & Tilstam, 1985, Jao et al., 2008, Zou & Huang, 1985). The title compound was obtained by reacting tryptanthrin with hydrazine in acetone as a solvent.

In the structure of the title compound, the azine moiety was determined to possess E-configuration in respect to the C21=N23 double bond with a trans-orientation around the N23—N24 bond (dihedral angle 158.6 (4)°). The CN double bonds of the azine moiety were found to be slighly shorter than the corresponding conjugated CN bonds in the quinazoline system. The C=O bond clearly has double bond character and was observed to be 1.226 (4) Å in length.

Experimental

1.0 mL (20 mmol) hydrazine hydrate was added dropwise to a suspension of 0.25 g (1.0 mmol) tryptanthrin in 10 mL of acetone and the reaction mixture was heated to reflux for 30 min. Upon cooling the title compound crystallized from the reaction mixture. The precipitate was collected and washed with a small amount of acetone to give 0.26 g (72%) of the title compound I. Crystals suitable for X-ray analysis were grown by slow diffusion of hexane into a solution of the title compound in ethylacetate/chloroform 1:1. The crystal was diffracted in the cold stream of an X-Stream2000 Liquid nitrogen generator with an open-flow nitrogen cryostat with a nominal stability of 0.1°K.

Refinement

Only hkl indices better than 0.85 Å resolution were integrated. The H atoms - except O-H - were all located in a difference map, but were repositioned geometrically. The positions of Me groups were optimized rotationally using default algorithm implemented in the CRYSTALS software. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.94 Å, O—H in the range 0.82–0.84 Å, O) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.

Fig. 1.

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 2.

Fig. 2.

Packing diagram for the title compound showing intermolecular O—H···N bonds.

Crystal data

C21H20N4O2 F(000) = 760
Mr = 360.42 Dx = 1.393 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1820 reflections
a = 8.6788 (17) Å θ = 25–2°
b = 15.117 (3) Å µ = 0.09 mm1
c = 13.283 (3) Å T = 100 K
β = 99.58 (3)° Block, colourless
V = 1718.4 (6) Å3 0.20 × 0.20 × 0.20 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID II image-plate diffractometer 2914 independent reflections
Radiation source: Mo Sealed tube tube 1850 reflections with I > 2σ(I)
graphite Rint = 0.096
Detector resolution: 10 pixels mm-1 θmax = 24.7°, θmin = 3.1°
ω/2θ scans h = −10→9
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −17→17
Tmin = 0.98, Tmax = 0.98 l = −14→15
11165 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161 Only H-atom displacement parameters refined
S = 1.01 Method, part 1, Chebychev polynomial,(Watkin, 1994; Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 5.56 6.74 1.72
2899 reflections (Δ/σ)max = 0.0001471
244 parameters Δρmax = 0.59 e Å3
0 restraints Δρmin = −0.48 e Å3
13 constraints

Special details

Experimental. 1H NMR (DMSO-d6, 500 MHz): δ 0.82 (s, 3H), 1.63 (s, 6H), 3.38 (d, J 16.6, 1H), 3.44 (d, J 16.5, 1H), 6.88 (s, 1H), 7.35 (t, J 7.3, 1H), 7.46 (t, J 7.7, 1H), 7.59 (t, J 7.2, 1H), 7.62 (d, J 6.7, 1H), 7.78 (d, J 8.0, 1H), 7.87 (t, J 8.3, 1H), 8.28 (d, J 7.8, 1H), 8.39 (d, J 7.7, 1H). 13C NMR (DMSO-d6, 125 MHz): δ 16.5, 17.3, 24.3, 45.5, 75.3, 115.9, 121.2, 123.4, 126.2, 126.3, 127.0, 127.3, 129.2, 134.4, 134.6, 139.2, 147.2, 157.6, 158.9, 159.0, 161.2.
Refinement. Crystals for Windows program eliminates all reflections with [sinθ/λ]2 < 0.01 in order to eliminate reflections that may be poorly measured in the vicinity of the beam stop. Such filter eliminated 15 reflections, which resulted in difference between 2914 measured unique reflections and 2899 reflections used for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O19 0.8991 (3) 0.37375 (18) 0.4708 (2) 0.0293
C6 0.8330 (4) 0.4137 (3) 0.3753 (3) 0.0247
C14 0.7388 (4) 0.4957 (2) 0.3956 (3) 0.0236
N11 0.5809 (3) 0.4758 (2) 0.3731 (2) 0.0246
C16 0.5590 (4) 0.3890 (2) 0.3310 (3) 0.0244
C15 0.7034 (4) 0.3519 (3) 0.3277 (3) 0.0252
C7 0.7135 (5) 0.2688 (3) 0.2869 (3) 0.0333
C8 0.5753 (5) 0.2223 (3) 0.2529 (3) 0.0340
C9 0.4329 (5) 0.2595 (3) 0.2605 (3) 0.0344
C10 0.4209 (5) 0.3440 (3) 0.2997 (3) 0.0310
C12 0.4659 (4) 0.5369 (3) 0.3857 (3) 0.0259
O18 0.3266 (3) 0.51841 (19) 0.3656 (2) 0.0338
C17 0.5287 (4) 0.6229 (3) 0.4227 (3) 0.0252
C13 0.6913 (4) 0.6366 (3) 0.4431 (3) 0.0258
N5 0.7978 (3) 0.5697 (2) 0.4294 (2) 0.0260
C4 0.7479 (5) 0.7207 (3) 0.4739 (3) 0.0312
C3 0.6455 (5) 0.7880 (3) 0.4861 (3) 0.0356
C2 0.4848 (5) 0.7732 (3) 0.4689 (3) 0.0348
C1 0.4268 (4) 0.6917 (3) 0.4381 (3) 0.0294
C20 0.9621 (4) 0.4328 (3) 0.3137 (3) 0.0272
C21 0.9162 (4) 0.4779 (2) 0.2122 (3) 0.0258
N23 0.7732 (4) 0.4958 (2) 0.1820 (2) 0.0301
N24 0.7448 (4) 0.5367 (2) 0.0842 (3) 0.0341
C25 0.6178 (5) 0.5803 (3) 0.0657 (3) 0.0370
C27 0.5820 (5) 0.6268 (3) −0.0346 (3) 0.0413
C26 0.5009 (6) 0.5914 (4) 0.1369 (4) 0.0487
C22 1.0477 (5) 0.4992 (3) 0.1570 (3) 0.0363
H5 0.8117 0.2442 0.2822 0.0396*
H6 0.5785 0.1667 0.2260 0.0411*
H7 0.3403 0.2271 0.2407 0.0409*
H8 0.3245 0.3690 0.3040 0.0364*
H4 0.8560 0.7312 0.4877 0.0372*
H3 0.6855 0.8437 0.5051 0.0417*
H2 0.4150 0.8196 0.4786 0.0419*
H1 0.3181 0.6816 0.4280 0.0349*
H10 1.0397 0.4707 0.3542 0.0334*
H11 1.0097 0.3759 0.3019 0.0321*
H20 0.4768 0.6120 −0.0675 0.0614*
H18 0.5915 0.6909 −0.0245 0.0623*
H19 0.6553 0.6078 −0.0779 0.0617*
H15 0.4565 0.6506 0.1315 0.0720*
H16 0.5516 0.5824 0.2069 0.0725*
H17 0.4179 0.5475 0.1194 0.0723*
H13 1.0232 0.4842 0.0867 0.0554*
H14 1.0673 0.5604 0.1619 0.0561*
H12 1.1415 0.4695 0.1848 0.0554*
H9 0.9793 0.4019 0.4925 0.0440*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O19 0.0221 (13) 0.0337 (15) 0.0307 (15) −0.0019 (12) 0.0004 (11) 0.0048 (12)
C6 0.0199 (18) 0.030 (2) 0.0239 (19) 0.0019 (16) 0.0029 (15) 0.0069 (16)
C14 0.0199 (18) 0.029 (2) 0.0214 (18) −0.0007 (15) 0.0025 (14) 0.0016 (16)
N11 0.0198 (15) 0.0290 (17) 0.0247 (16) −0.0018 (13) 0.0028 (12) 0.0013 (14)
C16 0.0276 (19) 0.025 (2) 0.0200 (18) −0.0013 (16) 0.0023 (15) 0.0037 (15)
C15 0.0254 (19) 0.028 (2) 0.0224 (19) −0.0033 (16) 0.0051 (15) 0.0065 (16)
C7 0.033 (2) 0.031 (2) 0.036 (2) 0.0001 (18) 0.0052 (17) 0.0031 (18)
C8 0.039 (2) 0.029 (2) 0.034 (2) −0.0014 (18) 0.0058 (18) −0.0013 (18)
C9 0.037 (2) 0.036 (2) 0.027 (2) −0.0116 (19) −0.0015 (17) 0.0008 (18)
C10 0.026 (2) 0.036 (2) 0.030 (2) −0.0031 (17) 0.0006 (16) 0.0058 (18)
C12 0.023 (2) 0.033 (2) 0.0212 (19) −0.0011 (16) 0.0028 (15) 0.0003 (16)
O18 0.0193 (14) 0.0423 (17) 0.0384 (16) −0.0002 (12) 0.0011 (12) −0.0022 (13)
C17 0.0224 (19) 0.034 (2) 0.0189 (18) 0.0002 (16) 0.0035 (14) 0.0042 (16)
C13 0.0230 (19) 0.030 (2) 0.0244 (19) 0.0033 (16) 0.0049 (15) 0.0058 (16)
N5 0.0210 (16) 0.0290 (18) 0.0278 (17) −0.0004 (14) 0.0033 (13) 0.0038 (14)
C4 0.026 (2) 0.029 (2) 0.039 (2) −0.0041 (17) 0.0069 (17) 0.0003 (18)
C3 0.038 (2) 0.028 (2) 0.040 (2) −0.0015 (18) 0.0060 (19) −0.0028 (18)
C2 0.034 (2) 0.035 (2) 0.036 (2) 0.0072 (19) 0.0065 (18) 0.0013 (19)
C1 0.0231 (19) 0.035 (2) 0.030 (2) 0.0068 (17) 0.0040 (16) 0.0073 (17)
C20 0.0226 (19) 0.028 (2) 0.031 (2) 0.0020 (16) 0.0040 (16) 0.0020 (16)
C21 0.028 (2) 0.025 (2) 0.0245 (19) 0.0039 (16) 0.0060 (16) −0.0017 (16)
N23 0.0278 (18) 0.0352 (19) 0.0271 (17) 0.0024 (15) 0.0042 (14) 0.0050 (15)
N24 0.0301 (18) 0.039 (2) 0.0329 (19) 0.0024 (16) 0.0034 (15) 0.0086 (16)
C25 0.034 (2) 0.040 (2) 0.037 (2) −0.004 (2) 0.0052 (18) 0.003 (2)
C27 0.037 (2) 0.048 (3) 0.037 (2) 0.004 (2) 0.0009 (19) 0.008 (2)
C26 0.044 (3) 0.058 (3) 0.044 (3) 0.011 (2) 0.007 (2) 0.004 (2)
C22 0.032 (2) 0.043 (3) 0.035 (2) 0.0011 (19) 0.0101 (18) −0.001 (2)

Geometric parameters (Å, °)

O19—C6 1.436 (4) C4—C3 1.379 (6)
O19—H9 0.826 C4—H4 0.939
C6—C14 1.532 (5) C3—C2 1.393 (6)
C6—C15 1.518 (5) C3—H3 0.929
C6—C20 1.520 (5) C2—C1 1.367 (6)
C14—N11 1.386 (5) C2—H2 0.950
C14—N5 1.281 (5) C1—H1 0.942
N11—C16 1.426 (5) C20—C21 1.505 (5)
N11—C12 1.391 (5) C20—H10 0.975
C16—C15 1.380 (5) C20—H11 0.979
C16—C10 1.381 (5) C21—N23 1.268 (5)
C15—C7 1.377 (6) C21—C22 1.491 (5)
C7—C8 1.399 (6) N23—N24 1.423 (4)
C7—H5 0.941 N24—C25 1.272 (5)
C8—C9 1.377 (6) C25—C27 1.493 (6)
C8—H6 0.916 C25—C26 1.507 (6)
C9—C10 1.390 (6) C27—H20 0.971
C9—H7 0.941 C27—H18 0.979
C10—H8 0.928 C27—H19 0.969
C12—O18 1.226 (4) C26—H15 0.973
C12—C17 1.463 (5) C26—H16 0.970
C17—C13 1.408 (5) C26—H17 0.979
C17—C1 1.402 (5) C22—H13 0.950
C13—N5 1.401 (5) C22—H14 0.942
C13—C4 1.399 (5) C22—H12 0.948
C6—O19—H9 106.3 C3—C4—H4 119.7
O19—C6—C14 109.3 (3) C4—C3—C2 120.6 (4)
O19—C6—C15 105.5 (3) C4—C3—H3 118.8
C14—C6—C15 101.0 (3) C2—C3—H3 120.6
O19—C6—C20 109.4 (3) C3—C2—C1 120.2 (4)
C14—C6—C20 113.8 (3) C3—C2—H2 120.2
C15—C6—C20 117.0 (3) C1—C2—H2 119.6
C6—C14—N11 108.9 (3) C17—C1—C2 120.1 (4)
C6—C14—N5 125.1 (3) C17—C1—H1 120.0
N11—C14—N5 126.0 (3) C2—C1—H1 119.9
C14—N11—C16 110.3 (3) C6—C20—C21 117.3 (3)
C14—N11—C12 122.3 (3) C6—C20—H10 108.6
C16—N11—C12 127.4 (3) C21—C20—H10 106.4
N11—C16—C15 108.9 (3) C6—C20—H11 106.8
N11—C16—C10 128.6 (4) C21—C20—H11 108.1
C15—C16—C10 122.5 (4) H10—C20—H11 109.6
C6—C15—C16 110.5 (3) C20—C21—N23 118.6 (3)
C6—C15—C7 129.4 (4) C20—C21—C22 115.4 (3)
C16—C15—C7 120.1 (4) N23—C21—C22 126.0 (4)
C15—C7—C8 118.5 (4) C21—N23—N24 113.2 (3)
C15—C7—H5 120.3 N23—N24—C25 114.4 (3)
C8—C7—H5 121.2 N24—C25—C27 117.4 (4)
C7—C8—C9 120.2 (4) N24—C25—C26 126.1 (4)
C7—C8—H6 120.4 C27—C25—C26 116.5 (4)
C9—C8—H6 119.3 C25—C27—H20 109.5
C8—C9—C10 121.8 (4) C25—C27—H18 110.1
C8—C9—H7 120.1 H20—C27—H18 109.9
C10—C9—H7 118.0 C25—C27—H19 109.3
C9—C10—C16 116.7 (4) H20—C27—H19 109.0
C9—C10—H8 121.4 H18—C27—H19 109.0
C16—C10—H8 121.9 C25—C26—H15 110.9
N11—C12—O18 121.6 (4) C25—C26—H16 109.9
N11—C12—C17 113.4 (3) H15—C26—H16 108.1
O18—C12—C17 125.0 (4) C25—C26—H17 108.7
C12—C17—C13 120.0 (3) H15—C26—H17 109.8
C12—C17—C1 120.0 (3) H16—C26—H17 109.4
C13—C17—C1 120.0 (4) C21—C22—H13 111.6
C17—C13—N5 122.1 (4) C21—C22—H14 108.7
C17—C13—C4 118.8 (3) H13—C22—H14 108.1
N5—C13—C4 119.1 (3) C21—C22—H12 112.6
C13—N5—C14 116.3 (3) H13—C22—H12 107.9
C13—C4—C3 120.2 (4) H14—C22—H12 107.8
C13—C4—H4 120.1

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C20—H10···O18i 0.98 2.57 3.381 (6) 140.(1)
O19—H9···N5ii 0.83 2.08 2.872 (6) 160.(1)

Symmetry codes: (i) x+1, y, z; (ii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2027).

References

  1. Bergman, J. & Tilstam, U. (1985). Tetrahedron, 41, 2883–2884.
  2. Bergman, J., Tilstam, U. & Tornroos, K. W. (1987). J. Chem. Soc. Perkin Trans. 1, pp 519–527.
  3. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
  4. Brufani, M., Fedeli, W., Mazza, F., Gerhard, A. & Keller-Schierlein, W. (1971). Experientia, 27, 1249–1250. [DOI] [PubMed]
  5. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  6. Grandolini, G., Ambrogi, V., Perioli, L., Giannangeli, M., Jovicevic, L. & Rossi, V. (1997). Farmaco, 52, 679–683. [PubMed]
  7. Grundt, P., Douglas, K. A., Krivogorsky, B. & Nemykin, V. N. (2010). Acta Cryst. E66, o1474–o1475. [DOI] [PMC free article] [PubMed]
  8. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  9. Jao, C. W., Lin, W. C., Wu, Y. T. & Wu, P. L. (2008). J. Nat. Prod. 71, 1275–1279. [DOI] [PubMed]
  10. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  11. Prince, E. (1982). In Mathematical Techniques in Crystallography and Materials Science New York: Springer-Verlag.
  12. Rigaku Americas (2009). CrystalClear and CrystalStructure Rigaku Americas, The Woodlands, Texas, USA.
  13. Watkin, D. (1994). Acta Cryst. A50, 411–437.
  14. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.
  15. Zou, J. & Huang, L. (1985). Acta Pharmacol. Sin. 20, 45–51. [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037408/ld2027sup1.cif

e-67-o2695-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037408/ld2027Isup2.hkl

e-67-o2695-Isup2.hkl (145.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037408/ld2027Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES