Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2724–o2725. doi: 10.1107/S1600536811036622

10,21-Dimethyl-2,7,13,18-tetraphenyl-3,6,14,17-tetraazatricyclo[17.3.1.18,12]tetracosa-1(23),2,6,8(24),9,11,13,17,19,21-decaene-23,24-diol cyclohexane 0.33-solvate

Ashish K Asatkar a, Vinay K Verma a, Tripti A Jain a, Rajendra Singh b, Sushil K Gupta c, Ray J Butcher d,*
PMCID: PMC3201359  PMID: 22065495

Abstract

The title compound, C46H40N4O2·0.33C6H12, was obtained unintentionally as a product of an attempted synthesis of a cadmium(II) complex of the [2,6-{PhSe(CH2)2N=CPh}2C6H2(4-Me)(OH)] ligand. The full tetra­imino­diphenol macrocyclic ligand is generated by the application of an inversion centre. The macrocyclic ligand features strong intra­molecular O—H⋯N hydrogen bonds. The dihedral angles formed between the phenyl ring incorporated within the macrocycle and the peripheral phenyl rings are 82.99 (8) and 88.20 (8)°. The cyclo­hexane solvent mol­ecule lies about a site of Inline graphic symmetry. Other solvent within the lattice was disordered and was treated with the SQUEEZE routine [Spek (2009). Acta Cryst. D65, 148–155].

Related literature

For information on phenol-based Schiff base ligands, complexes and their applications, see: Vigato et al. (2007); Fenton et al. (2010); Avaji et al. (2009); Na et al. (2006); Dutta et al. (2004); Mandal et al. (1989); Gupta et al. (2002, 2010).graphic file with name e-67-o2724-scheme1.jpg

Experimental

Crystal data

  • 3C46H40N4O2·C6H12

  • M r = 2126.62

  • Rhombohedral, Inline graphic

  • a = 28.0966 (2) Å

  • c = 16.0265 (2) Å

  • α = 90°

  • γ = 120°

  • V = 10956.6 (2) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 295 K

  • 0.44 × 0.41 × 0.32 mm

Data collection

  • Oxford Diffraction Gemini R diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.173, T max = 1.000

  • 10270 measured reflections

  • 5016 independent reflections

  • 3022 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063

  • wR(F 2) = 0.222

  • S = 0.93

  • 5016 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811036622/tk2788sup1.cif

e-67-o2724-sup1.cif (22.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036622/tk2788Isup2.hkl

e-67-o2724-Isup2.hkl (290KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036622/tk2788Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1A 0.82 1.81 2.532 (2) 146

Acknowledgments

RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer. The authors are grateful to Defence Research and Development Organization (DRDO), New Delhi, for financial assistance and for the award of a fellowship to AKA. They thank Professor B. L. Khandelwal, DIMAT, Raipur, for helpful discussions.

supplementary crystallographic information

Comment

Schiff bases have played an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism and supramolecular architectures (Vigato et al., 2007; Fenton et al., 2010; Avaji et al., 2009; Na et al., 2006; Dutta et al., 2004; Mandal et al., 1989). Very recently we have reported a dinuclear copper (II) complex with a neutral tetraiminodiphenol macrocycle with a C2 lateral chain (Gupta et al., 2010). We herein report the synthesis and crystal structure of its Schiff base ligand, Fig. 1. The phenolic hydrogen forms an intramolecular hydrogen bond with N1 of the imino group, Table 1. The C1—O1 bond [1.342 (2) Å] appears to be shorter than the equivalent bond in the related structure, (PhCO)2C6H2(OH)(4-Me) [1.360 (4) Å] (Gupta et al., 2002). The imino groups are coplanar with the phenyl ring to which they are attached. The dihedral angles between the phenyl moiety which is part of the macrocycle and the peripheral phenyl rings are 82.99 (8) and 88.20 (8) °. The crystals contain cyclohexane solvent molecules which lie on a site of 3 symmetry and thus only one atom is unique and a chair conformation is imposed.

Experimental

A methanolic solution of ethylenediamine (0.13 ml, 1.94 mmol) was added drop wise to a suspension of CdCl2.H2O (0.194 g, 0.97 mmol) in methanol and stirred for 5 min. A methanolic solution of [2,6-{PhSe(CH2)2N═ CPh}2C6H2(4-Me)(OH)] (0.66 g, 0.97 mmol) was added drop wise to the above reaction mixture with constant stirring under Ar atmosphere. The reaction was carried out at room temperature while stirring vigorously. After stirring the reaction mixture for 12 h, the precipitate thus obtained was filtered, dried under vacuum and isolated as the mixture of solid compounds. The macrocycle from the mixture was separated by dissolving it in warm chloroform. Crystals suitable were grown by slow evaporation of its solution in chloroform-cyclohexane mixture (9:1 v/v), giving rise to yellow regular cubic crystals in 45% yield. Anal. Calcd. for C48H44N4O2: C, 81.30; H, 6.21; N, 7.90%. Found: C, 81.61; H, 6.41; N, 8.02.

Refinement

C-bound H atoms were located at their idealized positions and were included in the final structural model in riding-motion approximation with d(C—H) = 0.93 Å for aromatic CH, 0.97 Å for CH2 groups, 0.96 Å for CH3 groups, and d(O—H) = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl-C and O). The structure contained disordered solvent molecules located near symmetry elements. These were not able to be resolved and so were removed using the SQUEEZE routine in PLATON (Spek, 2009).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. The cyclohexane ring has 3 symmetry.

Crystal data

3C46H40N4O2·C6H12 F(000) = 3384
Mr = 2126.62 Dx = 0.967 Mg m3
Rhombohedral, R3 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -R 3 Cell parameters from 3689 reflections
a = 28.0966 (2) Å θ = 4.2–77.4°
c = 16.0265 (2) Å µ = 0.06 mm1
α = 90° T = 295 K
γ = 120° Block, yellow
V = 10956.6 (2) Å3 0.44 × 0.41 × 0.32 mm
Z = 3

Data collection

Oxford Diffraction Gemini R diffractometer 5016 independent reflections
Radiation source: fine-focus sealed tube 3022 reflections with I > 2σ(I)
graphite Rint = 0.020
Detector resolution: 10.5081 pixels mm-1 θmax = 26.8°, θmin = 2.1°
φ and ω scans h = −34→33
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) k = −35→31
Tmin = 0.173, Tmax = 1.000 l = −17→19
10270 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.222 H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.1584P)2] where P = (Fo2 + 2Fc2)/3
5016 reflections (Δ/σ)max < 0.001
246 parameters Δρmax = 0.85 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.00757 (6) 0.45286 (6) 0.94763 (8) 0.0730 (4)
H1O −0.0035 0.4423 0.9952 0.088*
N1A 0.01498 (8) 0.43270 (7) 1.09956 (10) 0.0711 (4)
N1B 0.04471 (7) 0.53952 (7) 0.76712 (10) 0.0743 (5)
C1 0.06233 (8) 0.48575 (8) 0.94867 (12) 0.0624 (4)
C2 0.09343 (8) 0.49450 (8) 1.02149 (12) 0.0645 (5)
C3 0.15063 (9) 0.52866 (9) 1.01686 (13) 0.0724 (5)
H3A 0.1714 0.5343 1.0648 0.087*
C4 0.17723 (9) 0.55424 (9) 0.94371 (14) 0.0757 (5)
C5 0.14523 (9) 0.54553 (9) 0.87394 (13) 0.0752 (5)
H5A 0.1624 0.5629 0.8244 0.090*
C6 0.08866 (8) 0.51206 (8) 0.87453 (12) 0.0669 (5)
C7 0.23917 (11) 0.59108 (13) 0.9403 (2) 0.1046 (9)
H7A 0.2548 0.5740 0.9068 0.157*
H7B 0.2539 0.5968 0.9958 0.157*
H7C 0.2480 0.6258 0.9161 0.157*
C1A −0.01466 (10) 0.40063 (10) 1.17263 (14) 0.0781 (6)
H1AA 0.0100 0.4121 1.2202 0.094*
H1AB −0.0275 0.3620 1.1624 0.094*
C2A 0.06650 (9) 0.46672 (8) 1.10066 (12) 0.0663 (5)
C3A 0.10126 (9) 0.48103 (9) 1.17789 (12) 0.0694 (5)
C4A 0.11904 (9) 0.44689 (10) 1.20864 (14) 0.0775 (6)
H4AA 0.1107 0.4147 1.1806 0.093*
C5A 0.14966 (11) 0.46100 (12) 1.28222 (16) 0.0909 (7)
H5AA 0.1621 0.4382 1.3030 0.109*
C6A 0.16148 (12) 0.50778 (13) 1.32378 (18) 0.0991 (8)
H6AA 0.1817 0.5168 1.3730 0.119*
C7A 0.14353 (14) 0.54175 (13) 1.29287 (19) 0.1052 (9)
H7AA 0.1517 0.5738 1.3214 0.126*
C8A 0.11359 (12) 0.52882 (11) 1.22012 (15) 0.0878 (7)
H8AA 0.1017 0.5521 1.1995 0.105*
C1B 0.06337 (9) 0.59170 (9) 0.80786 (13) 0.0762 (6)
H1BA 0.0890 0.6212 0.7719 0.091*
H1BB 0.0824 0.5931 0.8591 0.091*
C2B 0.05487 (8) 0.50364 (8) 0.79799 (12) 0.0689 (5)
C3B 0.03317 (10) 0.45037 (9) 0.75241 (13) 0.0770 (6)
C4B −0.00983 (11) 0.43386 (12) 0.69686 (16) 0.0958 (8)
H4BA −0.0262 0.4553 0.6892 0.115*
C5B −0.02877 (14) 0.38494 (14) 0.6522 (2) 0.1131 (10)
H5BA −0.0584 0.3736 0.6161 0.136*
C6B −0.00516 (16) 0.35455 (13) 0.6604 (2) 0.1179 (12)
H6BA −0.0172 0.3230 0.6283 0.141*
C7B 0.03724 (17) 0.36951 (12) 0.7163 (2) 0.1160 (11)
H7BA 0.0533 0.3477 0.7229 0.139*
C8B 0.05599 (13) 0.41755 (11) 0.76307 (17) 0.0957 (8)
H8BA 0.0841 0.4274 0.8016 0.115*
C1S 0.2722 (4) 0.6162 (8) 1.1813 (4) 0.244 (6)
H1SA 0.2686 0.6132 1.2416 0.293*
H1SB 0.2379 0.5879 1.1573 0.293*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0741 (8) 0.0811 (9) 0.0525 (7) 0.0303 (7) 0.0009 (6) 0.0076 (6)
N1A 0.0838 (11) 0.0741 (10) 0.0554 (9) 0.0395 (9) 0.0047 (8) 0.0089 (7)
N1B 0.0852 (11) 0.0795 (10) 0.0536 (9) 0.0378 (9) 0.0032 (8) 0.0041 (7)
C1 0.0697 (11) 0.0624 (9) 0.0551 (10) 0.0330 (9) 0.0014 (8) 0.0006 (7)
C2 0.0766 (11) 0.0649 (10) 0.0563 (10) 0.0387 (9) 0.0002 (8) 0.0008 (8)
C3 0.0747 (12) 0.0779 (12) 0.0679 (12) 0.0407 (10) −0.0049 (9) −0.0011 (9)
C4 0.0710 (12) 0.0788 (12) 0.0751 (13) 0.0358 (10) 0.0028 (10) 0.0010 (10)
C5 0.0795 (13) 0.0786 (12) 0.0645 (12) 0.0372 (10) 0.0110 (9) 0.0067 (10)
C6 0.0750 (11) 0.0684 (10) 0.0557 (10) 0.0347 (9) 0.0045 (8) 0.0023 (8)
C7 0.0771 (15) 0.119 (2) 0.1015 (19) 0.0369 (14) 0.0056 (13) 0.0134 (16)
C1A 0.0922 (14) 0.0802 (13) 0.0623 (12) 0.0433 (11) 0.0065 (10) 0.0161 (9)
C2A 0.0833 (13) 0.0694 (11) 0.0554 (10) 0.0452 (10) −0.0006 (8) 0.0010 (8)
C3A 0.0833 (12) 0.0795 (12) 0.0524 (9) 0.0460 (10) 0.0008 (8) 0.0044 (8)
C4A 0.0883 (14) 0.0843 (13) 0.0722 (13) 0.0523 (12) −0.0018 (10) 0.0034 (10)
C5A 0.0928 (15) 0.1126 (19) 0.0818 (15) 0.0622 (14) −0.0079 (12) 0.0121 (14)
C6A 0.1021 (18) 0.120 (2) 0.0752 (15) 0.0557 (17) −0.0221 (13) −0.0040 (14)
C7A 0.133 (2) 0.1024 (18) 0.0819 (16) 0.0597 (18) −0.0228 (16) −0.0222 (14)
C8A 0.1165 (18) 0.0890 (15) 0.0726 (13) 0.0622 (14) −0.0160 (13) −0.0088 (11)
C1B 0.0842 (13) 0.0747 (12) 0.0632 (11) 0.0349 (10) 0.0047 (10) 0.0084 (9)
C2B 0.0748 (11) 0.0757 (11) 0.0480 (9) 0.0315 (9) 0.0094 (8) 0.0048 (8)
C3B 0.0891 (14) 0.0745 (12) 0.0540 (10) 0.0309 (11) 0.0141 (9) 0.0006 (9)
C4B 0.0947 (16) 0.1020 (17) 0.0703 (14) 0.0340 (14) 0.0022 (12) −0.0152 (12)
C5B 0.107 (2) 0.109 (2) 0.0857 (18) 0.0260 (17) 0.0073 (15) −0.0288 (16)
C6B 0.124 (2) 0.0865 (18) 0.098 (2) 0.0187 (17) 0.0379 (19) −0.0227 (15)
C7B 0.156 (3) 0.0860 (17) 0.099 (2) 0.0557 (19) 0.036 (2) 0.0008 (15)
C8B 0.125 (2) 0.0843 (15) 0.0737 (15) 0.0490 (15) 0.0074 (14) −0.0013 (12)
C1S 0.195 (7) 0.318 (16) 0.099 (4) 0.037 (6) −0.012 (4) −0.054 (8)

Geometric parameters (Å, °)

O1—C1 1.342 (2) C4A—H4AA 0.9300
O1—H1O 0.8200 C5A—C6A 1.358 (4)
N1A—C2A 1.275 (3) C5A—H5AA 0.9300
N1A—C1A 1.458 (2) C6A—C7A 1.375 (4)
N1B—C2B 1.277 (3) C6A—H6AA 0.9300
N1B—C1B 1.443 (3) C7A—C8A 1.376 (4)
C1—C6 1.400 (3) C7A—H7AA 0.9300
C1—C2 1.404 (3) C8A—H8AA 0.9300
C2—C3 1.402 (3) C1B—C1Ai 1.521 (3)
C2—C2A 1.484 (3) C1B—H1BA 0.9700
C3—C4 1.383 (3) C1B—H1BB 0.9700
C3—H3A 0.9300 C2B—C3B 1.494 (3)
C4—C5 1.378 (3) C3B—C8B 1.372 (4)
C4—C7 1.517 (3) C3B—C4B 1.381 (4)
C5—C6 1.384 (3) C4B—C5B 1.398 (4)
C5—H5A 0.9300 C4B—H4BA 0.9300
C6—C2B 1.496 (3) C5B—C6B 1.324 (5)
C7—H7A 0.9600 C5B—H5BA 0.9300
C7—H7B 0.9600 C6B—C7B 1.378 (5)
C7—H7C 0.9600 C6B—H6BA 0.9300
C1A—C1Bi 1.520 (3) C7B—C8B 1.396 (4)
C1A—H1AA 0.9700 C7B—H7BA 0.9300
C1A—H1AB 0.9700 C8B—H8BA 0.9300
C2A—C3A 1.502 (3) C1S—C1Sii 1.657 (7)
C3A—C4A 1.375 (3) C1S—C1Siii 1.658 (7)
C3A—C8A 1.384 (3) C1S—H1SA 0.9700
C4A—C5A 1.395 (3) C1S—H1SB 0.9700
C1—O1—H1O 109.5 C4A—C5A—H5AA 119.8
C2A—N1A—C1A 122.38 (18) C5A—C6A—C7A 119.9 (2)
C2B—N1B—C1B 121.06 (18) C5A—C6A—H6AA 120.1
O1—C1—C6 118.32 (17) C7A—C6A—H6AA 120.1
O1—C1—C2 122.01 (17) C6A—C7A—C8A 120.7 (3)
C6—C1—C2 119.67 (18) C6A—C7A—H7AA 119.7
C3—C2—C1 118.41 (18) C8A—C7A—H7AA 119.7
C3—C2—C2A 120.92 (18) C7A—C8A—C3A 119.6 (2)
C1—C2—C2A 120.65 (18) C7A—C8A—H8AA 120.2
C4—C3—C2 122.5 (2) C3A—C8A—H8AA 120.2
C4—C3—H3A 118.8 N1B—C1B—C1Ai 109.98 (19)
C2—C3—H3A 118.8 N1B—C1B—H1BA 109.7
C5—C4—C3 117.41 (19) C1Ai—C1B—H1BA 109.7
C5—C4—C7 121.1 (2) N1B—C1B—H1BB 109.7
C3—C4—C7 121.5 (2) C1Ai—C1B—H1BB 109.7
C4—C5—C6 122.7 (2) H1BA—C1B—H1BB 108.2
C4—C5—H5A 118.6 N1B—C2B—C3B 117.44 (19)
C6—C5—H5A 118.6 N1B—C2B—C6 124.58 (19)
C5—C6—C1 119.25 (19) C3B—C2B—C6 117.94 (19)
C5—C6—C2B 121.62 (18) C8B—C3B—C4B 118.6 (2)
C1—C6—C2B 119.13 (17) C8B—C3B—C2B 121.2 (2)
C4—C7—H7A 109.5 C4B—C3B—C2B 120.1 (2)
C4—C7—H7B 109.5 C3B—C4B—C5B 120.0 (3)
H7A—C7—H7B 109.5 C3B—C4B—H4BA 120.0
C4—C7—H7C 109.5 C5B—C4B—H4BA 120.0
H7A—C7—H7C 109.5 C6B—C5B—C4B 121.1 (3)
H7B—C7—H7C 109.5 C6B—C5B—H5BA 119.5
N1A—C1A—C1Bi 110.73 (17) C4B—C5B—H5BA 119.5
N1A—C1A—H1AA 109.5 C5B—C6B—C7B 120.2 (3)
C1Bi—C1A—H1AA 109.5 C5B—C6B—H6BA 119.9
N1A—C1A—H1AB 109.5 C7B—C6B—H6BA 119.9
C1Bi—C1A—H1AB 109.5 C6B—C7B—C8B 119.6 (3)
H1AA—C1A—H1AB 108.1 C6B—C7B—H7BA 120.2
N1A—C2A—C2 118.15 (18) C8B—C7B—H7BA 120.2
N1A—C2A—C3A 123.70 (18) C3B—C8B—C7B 120.4 (3)
C2—C2A—C3A 118.15 (18) C3B—C8B—H8BA 119.8
C4A—C3A—C8A 119.9 (2) C7B—C8B—H8BA 119.8
C4A—C3A—C2A 121.5 (2) C1Sii—C1S—C1Siii 112.3 (4)
C8A—C3A—C2A 118.47 (18) C1Sii—C1S—H1SA 109.1
C3A—C4A—C5A 119.5 (2) C1Siii—C1S—H1SA 109.1
C3A—C4A—H4AA 120.3 C1Sii—C1S—H1SB 109.1
C5A—C4A—H4AA 120.3 C1Siii—C1S—H1SB 109.1
C6A—C5A—C4A 120.5 (2) H1SA—C1S—H1SB 107.9
C6A—C5A—H5AA 119.8
O1—C1—C2—C3 178.78 (18) C8A—C3A—C4A—C5A −0.3 (4)
C6—C1—C2—C3 −1.5 (3) C2A—C3A—C4A—C5A −177.8 (2)
O1—C1—C2—C2A 0.8 (3) C3A—C4A—C5A—C6A 0.6 (4)
C6—C1—C2—C2A −179.53 (17) C4A—C5A—C6A—C7A −0.5 (4)
C1—C2—C3—C4 0.6 (3) C5A—C6A—C7A—C8A 0.1 (5)
C2A—C2—C3—C4 178.54 (19) C6A—C7A—C8A—C3A 0.3 (5)
C2—C3—C4—C5 0.7 (3) C4A—C3A—C8A—C7A −0.2 (4)
C2—C3—C4—C7 179.9 (2) C2A—C3A—C8A—C7A 177.4 (2)
C3—C4—C5—C6 −1.0 (3) C2B—N1B—C1B—C1Ai −122.1 (2)
C7—C4—C5—C6 179.8 (2) C1B—N1B—C2B—C3B 178.98 (18)
C4—C5—C6—C1 0.0 (3) C1B—N1B—C2B—C6 −3.4 (3)
C4—C5—C6—C2B 179.6 (2) C5—C6—C2B—N1B −73.2 (3)
O1—C1—C6—C5 −179.04 (18) C1—C6—C2B—N1B 106.3 (2)
C2—C1—C6—C5 1.3 (3) C5—C6—C2B—C3B 104.3 (2)
O1—C1—C6—C2B 1.4 (3) C1—C6—C2B—C3B −76.1 (2)
C2—C1—C6—C2B −178.29 (18) N1B—C2B—C3B—C8B 158.1 (2)
C2A—N1A—C1A—C1Bi 126.2 (2) C6—C2B—C3B—C8B −19.6 (3)
C1A—N1A—C2A—C2 175.90 (17) N1B—C2B—C3B—C4B −20.4 (3)
C1A—N1A—C2A—C3A −5.3 (3) C6—C2B—C3B—C4B 161.9 (2)
C3—C2—C2A—N1A −174.41 (18) C8B—C3B—C4B—C5B −0.8 (4)
C1—C2—C2A—N1A 3.5 (3) C2B—C3B—C4B—C5B 177.8 (2)
C3—C2—C2A—C3A 6.7 (3) C3B—C4B—C5B—C6B −1.9 (4)
C1—C2—C2A—C3A −175.39 (17) C4B—C5B—C6B—C7B 2.9 (5)
N1A—C2A—C3A—C4A 78.9 (3) C5B—C6B—C7B—C8B −1.4 (5)
C2—C2A—C3A—C4A −102.2 (2) C4B—C3B—C8B—C7B 2.3 (4)
N1A—C2A—C3A—C8A −98.6 (3) C2B—C3B—C8B—C7B −176.3 (2)
C2—C2A—C3A—C8A 80.2 (3) C6B—C7B—C8B—C3B −1.3 (4)

Symmetry codes: (i) −x, −y+1, −z+2; (ii) xy+2/3, x+1/3, −z+7/3; (iii) y−1/3, −x+y+1/3, −z+7/3.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1O···N1A 0.82 1.81 2.532 (2) 146.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2788).

References

  1. Avaji, P. G., Kumar, C. H. V., Patil, S. A., Shivananda, K. N. & Nagaraju, C. (2009). Eur. J. Med. Chem. 44, 3552–3559. [DOI] [PubMed]
  2. Dutta, B., Bag, P., Adhikary, B., Flörke, U. & Nag, K. (2004). J. Org. Chem. 69, 5419–5427. [DOI] [PubMed]
  3. Fenton, H., Tidmash, I. S. & Ward, M. D. (2010). Dalton Trans. 39, 3805–3815. [DOI] [PubMed]
  4. Gupta, S. K., Anjana, C., Butcher, R. J. & Sen, N. (2010). Acta Cryst. E66, m1531–m1532. [DOI] [PMC free article] [PubMed]
  5. Gupta, S. K., Hitchock, P. B. & Kushwah, Y. S. (2002). Polyhedron, 21, 1787–1793.
  6. Mandal, S. T., Thomson, L. K., Newlands, M. J., Biswas, A. K., Adhikari, B., Nag, K., Gabe, E. J. & Lee, F. L. (1989). Can. J. Chem. 67, 662–670.
  7. Na, S. J., Joe, D. J., Sujith, S., Han, W.-S., Kang, S. O. & Lee, B. Y. (2006). J. Organomet. Chem. 691, 611–620.
  8. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Vigato, P. A., Tamburini, S. & Bartolo, L. (2007). Coord. Chem. Rev. 251, 1311–1492.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811036622/tk2788sup1.cif

e-67-o2724-sup1.cif (22.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036622/tk2788Isup2.hkl

e-67-o2724-Isup2.hkl (290KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036622/tk2788Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES