Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 17;67(Pt 10):o2668–o2669. doi: 10.1107/S1600536811037287

(E)-4-{[(3-Propyl-5-sulfanyl­idene-4,5-dihydro-1H-1,2,4-triazol-4-yl)imino]­meth­yl}-3-(p-tol­yl)-1,2,3-oxadiazol-3-ium-5-olate

Hoong-Kun Fun a,*,, Ching Kheng Quah a,§, Nithinchandra b, Balakrishna Kalluraya b
PMCID: PMC3201362  PMID: 22065521

Abstract

The title compound, C15H16N6O2S, exists in a trans configuration with respect to the acyclic N=C bond. The 1,2,3-oxadiazol-3-ium ring makes dihedral angles of 10.59 (8) and 73.94 (8)°, respectively, with the 1,2,4-triazole and benzene rings. The mol­ecular structure is stabilized by an intra­molecular C—H⋯S hydrogen bond, which generates an S(6) ring motif. In the crystal, mol­ecules are linked into inversion dimers by pairs of inter­molecular N—H⋯S hydrogen bonds, generating eight-membered R 2 2(8) ring motifs. The dimers are further connected by C—H⋯O hydrogen bonds, forming a sheet parallel to the bc plane. The ethyl group is disordered over two sets of sites with occupancies of 0.744 (7) and 0.256 (7).

Related literature

For general background to and applications of sydnone derivatives, see: Baker et al. (1949); Hedge et al. (2008); Rai et al. (2008); Kalluraya et al. (2002). For standard bond-length data, see: Allen et al. (1987). For graph-set notation, see: Bernstein et al. (1995). For a related structure, see: Fun et al. (2011).graphic file with name e-67-o2668-scheme1.jpg

Experimental

Crystal data

  • C15H16N6O2S

  • M r = 344.40

  • Monoclinic, Inline graphic

  • a = 13.4220 (11) Å

  • b = 6.2411 (5) Å

  • c = 21.1374 (16) Å

  • β = 104.575 (2)°

  • V = 1713.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.51 × 0.17 × 0.08 mm

Data collection

  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.865, T max = 0.983

  • 18912 measured reflections

  • 5003 independent reflections

  • 3637 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.123

  • S = 1.04

  • 5003 reflections

  • 243 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037287/is2776sup1.cif

e-67-o2668-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037287/is2776Isup2.hkl

e-67-o2668-Isup2.hkl (245KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037287/is2776Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H1N5⋯S1i 0.857 (18) 2.440 (18) 3.2933 (13) 174.3 (16)
C1—H1A⋯O2ii 0.93 2.48 3.346 (2) 154
C9—H9A⋯S1 0.93 2.42 3.1845 (13) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160).

supplementary crystallographic information

Comment

Sydnones constitute a well defined class of mesoionic compounds consisting of 1,2,3-oxadiazole ring system. The introduction of the concept of mesoionic structure for certain heterocyclic compounds in the year 1949

has proved to be a fruitful development in heterocyclic chemistry (Baker et al., 1949). The study of sydnones still remains a field of interest because of their electronic structures and also because of the various types of biological activities displayed by some of them. Interest in sydnone derivatives has also been encouraged by the discovery that they exhibit various pharmacological activities (Hedge et al., 2008; Rai et al., 2008). The 4-formyl sydnone will be used for the preparation of a new series of Schiff bases by condensation with appropriate 4-amino-4H-1,2,4-triazole-3-thiol. These Schiff bases containing sydnone is utilized for the synthesis of appropriate Mannich bases (Kalluraya et al., 2002).

The molecular structure is shown in Fig. 1. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a related structure (Fun et al., 2011). The title compound exists in trans configuration with respect to the acyclic N3═C9 bond [bond lengths = 1.2669 (17) Å]. The 1,2,4-triazole (N4–N6/C10/C11, maximum deviation of 0.004 (1) Å at atom N4) and the phenyl (C1–C6) rings form dihedral angles of 73.94 (8) and 10.59 (8)°, respectively, with the 1,2,3-oxadiazol-3-ium ring (O1/N1/N2/C7/C8, maximum deviation of 0.004 (1) Å at atoms C7 and C8). The molecular structure is stabilized by an intramolecular C9–H9A···S1 hydrogen bond, which generates an S(6) ring motif (Fig. 1, Bernstein et al., 1995). The ethyl group is disordered over two sets of sites in a 0.744 (7): 0.256 (7) ratio.

In the crystal (Fig. 2), the intermolecular N5—H1N5···S1 hydrogen bonds (Table 1) form the inversion dimers and produce eight-membered ring motifs R22(8) (Bernstein et al., 1995). Another intermolecular C1—H1A···O2 hydrogen bond connects these dimers to another molecule forming two-dimensional sheets parallel to the bc plane.

Experimental

4-Formyl-3-p-tolylsydnone (0.01 mol) and 4-amino-5-propyl-4H-1,2,4-triazole-3-thiol (0.01 mol) in ethanol and a catalytic amount of conc. sulphuric acid was stirred at room temperature for 2-3 h. The solid product that separated out was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from a 1:2 mixture solution of DMF and ethanol by slow evaporation.

Refinement

Atom H1N5 was located in a difference Fourier map and refined freely [N5—H1N5 = 0.855 (18) Å]. The remaining H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 or 1.5Ueq(C). A rotating-group model was applied for the methyl groups. The ethyl group is disordered over two sets of sites in a 0.744 (7): 0.256 (7) ratio.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms. The intramolecular hydrogen bond is shown as a dashed line. The minor component of disorder is shown as open bonds.

Fig. 2.

Fig. 2.

The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity. Only the major disorder component is shown.

Crystal data

C15H16N6O2S F(000) = 720
Mr = 344.40 Dx = 1.335 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5356 reflections
a = 13.4220 (11) Å θ = 2.2–27.6°
b = 6.2411 (5) Å µ = 0.21 mm1
c = 21.1374 (16) Å T = 296 K
β = 104.575 (2)° Needle, colourless
V = 1713.7 (2) Å3 0.51 × 0.17 × 0.08 mm
Z = 4

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 5003 independent reflections
Radiation source: fine-focus sealed tube 3637 reflections with I > 2σ(I)
graphite Rint = 0.030
φ and ω scans θmax = 30.1°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −18→18
Tmin = 0.865, Tmax = 0.983 k = −8→8
18912 measured reflections l = −29→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0622P)2 + 0.2043P] where P = (Fo2 + 2Fc2)/3
5003 reflections (Δ/σ)max = 0.001
243 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 1.08849 (3) 1.22661 (6) 0.061779 (16) 0.04353 (11)
O1 1.07417 (9) 0.32936 (18) 0.22957 (5) 0.0546 (3)
O2 0.90860 (8) 0.41866 (18) 0.18192 (5) 0.0532 (3)
N1 1.15527 (9) 0.59146 (19) 0.20345 (5) 0.0412 (3)
N2 1.17089 (11) 0.4104 (2) 0.23528 (7) 0.0560 (3)
N3 0.93160 (9) 0.8734 (2) 0.11642 (5) 0.0419 (3)
N4 0.90503 (8) 1.05639 (18) 0.07899 (5) 0.0372 (2)
N5 0.88806 (10) 1.3345 (2) 0.01976 (6) 0.0487 (3)
N6 0.78985 (10) 1.2811 (2) 0.02200 (7) 0.0552 (3)
C1 1.26773 (13) 0.9030 (3) 0.23096 (9) 0.0590 (4)
H1A 1.2297 0.9496 0.2595 0.071*
C2 1.34955 (13) 1.0220 (3) 0.22159 (10) 0.0661 (5)
H2A 1.3667 1.1500 0.2443 0.079*
C3 1.40617 (13) 0.9549 (4) 0.17941 (9) 0.0676 (5)
C4 1.37997 (16) 0.7634 (4) 0.14644 (10) 0.0825 (7)
H4A 1.4184 0.7155 0.1182 0.099*
C5 1.29812 (14) 0.6417 (4) 0.15446 (9) 0.0684 (5)
H5A 1.2804 0.5142 0.1316 0.082*
C6 1.24376 (11) 0.7144 (2) 0.19713 (7) 0.0443 (3)
C7 0.99772 (11) 0.4668 (2) 0.19272 (6) 0.0411 (3)
C8 1.05554 (10) 0.6411 (2) 0.17668 (6) 0.0361 (3)
C9 1.02620 (10) 0.8309 (2) 0.13889 (6) 0.0386 (3)
H9A 1.0762 0.9226 0.1308 0.046*
C10 0.96113 (10) 1.2042 (2) 0.05372 (6) 0.0373 (3)
C11 0.80236 (11) 1.1116 (3) 0.05860 (7) 0.0474 (3)
C12 0.71870 (12) 0.9897 (3) 0.07693 (11) 0.0679 (5)
H12A 0.6594 1.0797 0.0726 0.081* 0.744 (7)
H12B 0.7412 0.9443 0.1217 0.081* 0.744 (7)
H12C 0.6567 1.0756 0.0638 0.081* 0.256 (7)
H12D 0.7358 0.9814 0.1243 0.081* 0.256 (7)
C13A 0.6932 (7) 0.7918 (14) 0.0331 (4) 0.102 (3) 0.744 (7)
H13A 0.7545 0.7043 0.0384 0.123* 0.744 (7)
H13B 0.6718 0.8368 −0.0122 0.123* 0.744 (7)
C14A 0.6070 (3) 0.6572 (8) 0.0496 (3) 0.164 (3) 0.744 (7)
H14A 0.6042 0.5194 0.0290 0.245* 0.744 (7)
H14B 0.5423 0.7291 0.0340 0.245* 0.744 (7)
H14C 0.6209 0.6390 0.0961 0.245* 0.744 (7)
C13B 0.6925 (14) 0.770 (4) 0.0589 (11) 0.082 (6) 0.256 (7)
H13C 0.6474 0.7109 0.0839 0.098* 0.256 (7)
H13D 0.7538 0.6814 0.0658 0.098* 0.256 (7)
C14B 0.6399 (10) 0.782 (2) −0.0107 (6) 0.111 (5) 0.256 (7)
H14D 0.6068 0.6475 −0.0247 0.166* 0.256 (7)
H14E 0.6892 0.8125 −0.0354 0.166* 0.256 (7)
H14F 0.5892 0.8937 −0.0175 0.166* 0.256 (7)
C15 1.49528 (18) 1.0890 (5) 0.16902 (14) 0.1059 (9)
H15A 1.4908 1.2311 0.1855 0.159*
H15B 1.4921 1.0958 0.1232 0.159*
H15C 1.5592 1.0247 0.1919 0.159*
H1N5 0.8984 (13) 1.445 (3) −0.0018 (8) 0.053 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.04646 (19) 0.0376 (2) 0.04930 (19) −0.00191 (14) 0.01724 (14) 0.00811 (15)
O1 0.0733 (7) 0.0373 (6) 0.0597 (6) 0.0047 (5) 0.0290 (5) 0.0156 (5)
O2 0.0634 (7) 0.0455 (6) 0.0582 (6) −0.0161 (5) 0.0295 (5) −0.0057 (5)
N1 0.0470 (6) 0.0360 (6) 0.0430 (5) 0.0075 (5) 0.0159 (5) 0.0074 (5)
N2 0.0652 (8) 0.0450 (8) 0.0605 (7) 0.0138 (6) 0.0207 (6) 0.0192 (6)
N3 0.0436 (6) 0.0370 (6) 0.0467 (6) 0.0015 (5) 0.0143 (5) 0.0112 (5)
N4 0.0403 (5) 0.0317 (6) 0.0409 (5) 0.0015 (4) 0.0127 (4) 0.0046 (4)
N5 0.0514 (7) 0.0394 (7) 0.0548 (7) 0.0039 (6) 0.0128 (5) 0.0145 (6)
N6 0.0474 (7) 0.0497 (8) 0.0666 (8) 0.0070 (6) 0.0108 (6) 0.0151 (7)
C1 0.0542 (8) 0.0500 (10) 0.0791 (10) 0.0052 (7) 0.0286 (8) −0.0071 (8)
C2 0.0557 (9) 0.0518 (10) 0.0933 (13) −0.0060 (8) 0.0234 (9) −0.0122 (10)
C3 0.0485 (9) 0.0806 (14) 0.0764 (11) −0.0124 (9) 0.0203 (8) −0.0046 (10)
C4 0.0672 (11) 0.1099 (19) 0.0830 (12) −0.0267 (12) 0.0424 (10) −0.0313 (13)
C5 0.0622 (10) 0.0821 (14) 0.0679 (10) −0.0176 (10) 0.0293 (8) −0.0269 (10)
C6 0.0396 (6) 0.0440 (8) 0.0494 (7) 0.0044 (6) 0.0115 (5) 0.0046 (6)
C7 0.0599 (8) 0.0309 (7) 0.0384 (6) −0.0021 (6) 0.0234 (5) −0.0015 (5)
C8 0.0436 (6) 0.0301 (6) 0.0379 (6) 0.0011 (5) 0.0161 (5) 0.0017 (5)
C9 0.0425 (6) 0.0309 (6) 0.0454 (6) −0.0014 (5) 0.0167 (5) 0.0051 (5)
C10 0.0480 (7) 0.0305 (6) 0.0346 (5) 0.0000 (5) 0.0126 (5) 0.0005 (5)
C11 0.0424 (7) 0.0443 (8) 0.0555 (8) 0.0043 (6) 0.0119 (6) 0.0050 (7)
C12 0.0438 (8) 0.0637 (12) 0.0984 (13) 0.0038 (8) 0.0222 (8) 0.0150 (11)
C13A 0.079 (3) 0.067 (4) 0.172 (8) −0.012 (3) 0.054 (5) −0.010 (4)
C14A 0.109 (3) 0.099 (3) 0.316 (8) −0.047 (3) 0.115 (4) −0.049 (4)
C13B 0.045 (5) 0.052 (6) 0.137 (15) −0.018 (4) 0.004 (7) 0.034 (9)
C14B 0.080 (7) 0.132 (11) 0.102 (8) −0.029 (7) −0.013 (6) 0.001 (7)
C15 0.0746 (14) 0.125 (2) 0.130 (2) −0.0437 (15) 0.0464 (14) −0.0228 (18)

Geometric parameters (Å, °)

S1—C10 1.6805 (14) C7—C8 1.4260 (18)
O1—N2 1.3698 (18) C8—C9 1.4273 (18)
O1—C7 1.4118 (18) C9—H9A 0.9300
O2—C7 1.1982 (17) C11—C12 1.486 (2)
N1—N2 1.3051 (17) C12—C13B 1.45 (2)
N1—C8 1.3515 (17) C12—C13A 1.530 (10)
N1—C6 1.4482 (18) C12—H12A 0.9600
N3—C9 1.2669 (17) C12—H12B 0.9600
N3—N4 1.3838 (16) C12—H12C 0.9700
N4—C11 1.3800 (17) C12—H12D 0.9700
N4—C10 1.3806 (16) C13A—C14A 1.539 (8)
N5—C10 1.3355 (19) C13A—H13A 0.9700
N5—N6 1.3720 (18) C13A—H13B 0.9700
N5—H1N5 0.855 (18) C14A—H14A 0.9600
N6—C11 1.296 (2) C14A—H14B 0.9600
C1—C6 1.373 (2) C14A—H14C 0.9600
C1—C2 1.381 (2) C13B—C14B 1.46 (2)
C1—H1A 0.9300 C13B—H13C 0.9700
C2—C3 1.374 (3) C13B—H13D 0.9700
C2—H2A 0.9300 C14B—H14D 0.9600
C3—C4 1.384 (3) C14B—H14E 0.9600
C3—C15 1.520 (3) C14B—H14F 0.9600
C4—C5 1.381 (3) C15—H15A 0.9600
C4—H4A 0.9300 C15—H15B 0.9600
C5—C6 1.372 (2) C15—H15C 0.9600
C5—H5A 0.9300
N2—O1—C7 111.44 (10) N6—C11—C12 125.49 (14)
N2—N1—C8 115.36 (12) N4—C11—C12 123.46 (14)
N2—N1—C6 118.51 (12) C13B—C12—C11 124.6 (8)
C8—N1—C6 126.06 (12) C11—C12—C13A 108.9 (3)
N1—N2—O1 104.38 (11) C13B—C12—H12A 113.0
C9—N3—N4 118.50 (11) C11—C12—H12A 109.8
C11—N4—C10 108.14 (11) C13A—C12—H12A 111.1
C11—N4—N3 118.55 (11) C13B—C12—H12B 88.6
C10—N4—N3 133.28 (11) C11—C12—H12B 109.7
C10—N5—N6 114.54 (13) C13A—C12—H12B 109.0
C10—N5—H1N5 125.4 (12) H12A—C12—H12B 108.4
N6—N5—H1N5 120.0 (12) C13B—C12—H12C 108.4
C11—N6—N5 103.75 (12) C11—C12—H12C 107.0
C6—C1—C2 118.49 (15) C13A—C12—H12C 103.1
C6—C1—H1A 120.8 H12B—C12—H12C 118.7
C2—C1—H1A 120.8 C13B—C12—H12D 101.6
C3—C2—C1 121.25 (18) C11—C12—H12D 107.3
C3—C2—H2A 119.4 C13A—C12—H12D 122.7
C1—C2—H2A 119.4 H12A—C12—H12D 96.0
C2—C3—C4 118.55 (17) H12C—C12—H12D 106.8
C2—C3—C15 120.6 (2) C12—C13A—C14A 111.7 (6)
C4—C3—C15 120.82 (18) C12—C13A—H13A 109.3
C5—C4—C3 121.52 (17) C14A—C13A—H13A 109.3
C5—C4—H4A 119.2 C12—C13A—H13B 109.3
C3—C4—H4A 119.2 C14A—C13A—H13B 109.3
C6—C5—C4 118.02 (18) H13A—C13A—H13B 107.9
C6—C5—H5A 121.0 C12—C13B—C14B 103.8 (12)
C4—C5—H5A 121.0 C12—C13B—H13C 111.0
C5—C6—C1 122.16 (15) C14B—C13B—H13C 111.0
C5—C6—N1 118.00 (14) C12—C13B—H13D 111.0
C1—C6—N1 119.76 (13) C14B—C13B—H13D 111.0
O2—C7—O1 120.32 (12) H13C—C13B—H13D 109.0
O2—C7—C8 136.30 (14) C13B—C14B—H14D 109.5
O1—C7—C8 103.37 (12) C13B—C14B—H14E 109.5
N1—C8—C7 105.45 (12) H14D—C14B—H14E 109.5
N1—C8—C9 121.96 (12) C13B—C14B—H14F 109.5
C7—C8—C9 132.54 (12) H14D—C14B—H14F 109.5
N3—C9—C8 119.54 (12) H14E—C14B—H14F 109.5
N3—C9—H9A 120.2 C3—C15—H15A 109.5
C8—C9—H9A 120.2 C3—C15—H15B 109.5
N5—C10—N4 102.51 (12) H15A—C15—H15B 109.5
N5—C10—S1 126.47 (11) C3—C15—H15C 109.5
N4—C10—S1 131.01 (10) H15A—C15—H15C 109.5
N6—C11—N4 111.05 (13) H15B—C15—H15C 109.5
C8—N1—N2—O1 0.29 (16) O1—C7—C8—N1 0.69 (13)
C6—N1—N2—O1 −176.84 (11) O2—C7—C8—C9 −1.1 (3)
C7—O1—N2—N1 0.21 (15) O1—C7—C8—C9 177.93 (13)
C9—N3—N4—C11 −175.21 (13) N4—N3—C9—C8 −178.92 (11)
C9—N3—N4—C10 7.3 (2) N1—C8—C9—N3 −177.96 (12)
C10—N5—N6—C11 −0.05 (18) C7—C8—C9—N3 5.2 (2)
C6—C1—C2—C3 0.1 (3) N6—N5—C10—N4 0.44 (16)
C1—C2—C3—C4 −0.4 (3) N6—N5—C10—S1 −179.18 (11)
C1—C2—C3—C15 179.3 (2) C11—N4—C10—N5 −0.64 (14)
C2—C3—C4—C5 0.9 (3) N3—N4—C10—N5 177.05 (13)
C15—C3—C4—C5 −178.8 (2) C11—N4—C10—S1 178.95 (11)
C3—C4—C5—C6 −1.0 (3) N3—N4—C10—S1 −3.4 (2)
C4—C5—C6—C1 0.7 (3) N5—N6—C11—N4 −0.38 (17)
C4—C5—C6—N1 177.43 (18) N5—N6—C11—C12 179.64 (16)
C2—C1—C6—C5 −0.2 (3) C10—N4—C11—N6 0.68 (17)
C2—C1—C6—N1 −176.94 (15) N3—N4—C11—N6 −177.41 (12)
N2—N1—C6—C5 73.94 (19) C10—N4—C11—C12 −179.35 (15)
C8—N1—C6—C5 −102.85 (18) N3—N4—C11—C12 2.6 (2)
N2—N1—C6—C1 −109.20 (17) N6—C11—C12—C13B 116.8 (9)
C8—N1—C6—C1 74.02 (19) N4—C11—C12—C13B −63.2 (9)
N2—O1—C7—O2 178.68 (12) N6—C11—C12—C13A 100.0 (4)
N2—O1—C7—C8 −0.57 (14) N4—C11—C12—C13A −80.0 (4)
N2—N1—C8—C7 −0.65 (15) C13B—C12—C13A—C14A 40 (2)
C6—N1—C8—C7 176.23 (12) C11—C12—C13A—C14A 179.8 (5)
N2—N1—C8—C9 −178.25 (12) C11—C12—C13B—C14B −74.1 (13)
C6—N1—C8—C9 −1.4 (2) C13A—C12—C13B—C14B −26 (2)
O2—C7—C8—N1 −178.37 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N5—H1N5···S1i 0.857 (18) 2.440 (18) 3.2933 (13) 174.3 (16)
C1—H1A···O2ii 0.93 2.48 3.346 (2) 154
C9—H9A···S1 0.93 2.42 3.1845 (13) 139

Symmetry codes: (i) −x+2, −y+3, −z; (ii) −x+2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2776).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Baker, W., Ollis, W. D. & Poole, V. D. (1949). J. Chem. Soc. pp. 307–314.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Fun, H.-K., Quah, C. K., Nithinchandra & Kalluraya, B. (2011). Acta Cryst. E67, o1005–o1006. [DOI] [PMC free article] [PubMed]
  6. Hedge, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831–2834. [DOI] [PubMed]
  7. Kalluraya, B., Rahiman, A. & David, B. (2002). Indian J. Chem. Sect. B, 41, 1712–1717.
  8. Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037287/is2776sup1.cif

e-67-o2668-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037287/is2776Isup2.hkl

e-67-o2668-Isup2.hkl (245KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037287/is2776Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES