Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 3;67(Pt 10):o2554–o2555. doi: 10.1107/S1600536811034994

Redetermination of (E)-3-(anthracen-9-yl)-1-(2-hy­droxy­phen­yl)prop-2-en-1-one1

Suchada Chantrapromma a,*,, Thawanrat Kobkeatthawin a, Kullapa Chanawanno a, Jaruwan Joothamongkhon a, Hoong-Kun Fun b,§
PMCID: PMC3201364  PMID: 22065671

Abstract

The redetermined structure of title chalcone derivative, C23H16O2, corrects errors in the title, scheme and synthesis in the previous report of the same structure [Jasinski et al. (2011). Acta Cryst. E67, o795]. There are two independent mol­ecules in the asymmetric unit with slight differences in bond lengths and angles. The dihedral angle between the benzene ring and the anthracene ring system is 73.30 (4)° in one mol­ecule and 73.18 (4)° in the other. Both mol­ecules feature an intra­molecular O—H⋯O hydrogen bond, which generates an S(6) ring. In the crystal, mol­ecules are arranged into sheets lying parallel to the ac plane and further stacked along the b axis by π–π inter­actions with centroid–centroid distances in the range 3.6421 (6)–3.7607 (6) Å. The crystal structure is further stabilized by C—H⋯π inter­actions. There are also C⋯O [3.2159 (15) Å] short contacts.

Related literature

For the previous structure determination, see: Jasinski et al. (2011). For a related structure and background references, see: Joothamongkhon et al. (2010). For graph-set motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).graphic file with name e-67-o2554-scheme1.jpg

Experimental

Crystal data

  • C23H16O2

  • M r = 324.36

  • Monoclinic, Inline graphic

  • a = 14.0843 (2) Å

  • b = 13.7224 (2) Å

  • c = 16.9615 (3) Å

  • β = 101.411 (1)°

  • V = 3213.36 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.50 × 0.39 × 0.37 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.959, T max = 0.969

  • 40230 measured reflections

  • 9368 independent reflections

  • 7868 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.132

  • S = 1.02

  • 9368 reflections

  • 459 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811034994/hb5945sup1.cif

e-67-o2554-sup1.cif (31.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034994/hb5945Isup2.hkl

e-67-o2554-Isup2.hkl (458.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034994/hb5945Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg3, Cg5, Cg6 and Cg7 are the centroids of the C1A–C6A, C8A–C13A, C1B–C6B, C1B/C6B–C8B/C13B–C14B and C8B–C13B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2A—H1OA⋯O1A 0.93 (2) 1.69 (2) 2.5459 (12) 152.2 (19)
O2B—H1OB⋯O1B 0.88 (2) 1.75 (2) 2.5725 (13) 154.2 (19)
C5A—H5AACg5 0.93 2.84 3.6754 (13) 151
C7A—H7AACg6 0.93 2.76 3.6440 (12) 158
C9A—H9AACg7 0.93 2.73 3.6325 (12) 164
C9B—H9BACg1i 0.93 2.76 3.4023 (12) 127
C23B—H23BCg3 0.93 2.91 3.7661 (11) 154

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Thailand Research Fund (TRF) for a research grant (RSA 5280033) and the Prince of Songkla University for financial support. The authors also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

supplementary crystallographic information

Comment

From our previous work, which revealed that a chalcone derivative containing the anthracene moiety displayed fluorescence (Joothamongkhon et al., 2010), the title compound (I) was synthesized by changing the substituent group on the phenyl ring for comparison of their properties. It was then discovered that a recent study of the same structure (Jasinski et al., 2011) contained errors in the title, scheme and synthesis. It was found that (I) exhibits fluorescence with the maximum emission at 438 nm when excited at 380 nm in chloroform solution. In addition our experiment shows that (I) also exhibits tyrosinase inhibitory activity with % inhibition of 12.882±8.511 at the concentration 0.125 mg ml-1 when L-tyrosine was used as substrate.

The asymmetric unit of (I) contains two molecules, A and B, with the same configuration but with slight differences in bond lengths and angles. The molecule of (I) (Fig. 1) exists in an E configuration with respect to the C15═C16 double bond [1.3392 (15) Å in molecule A and 1.3370 (15) Å in molecule B] and the torsion angle C14–C15–C16–C17 = 177.64 (10)° in molecule A [-179.49 (10)° in molecule B]. The anthracene unit is essentially planar with the r.m.s. 0.0270 (1) Å for molecule A [0.0236 (1) Å for molecule B]. Atom O1 of the prop-2-en-1-one (C15–C17/O1) moiety is deviated from the propene plane with the torsion angle C15–C16–C17–O1 = 18.56 (16)° in molecule A [-17.28 (17)° in molecule B]. The total molecule is twisted as the dihedral angle between phenyl and anthracene rings is 73.70 (4)° and the mean through the pro-2-en-1-one unit makes the dihedral angles of 14.70 (7) and 61.46 (6)° with the phenyl and anthracene rings, respectively [the corresponding values are 73.18 (4), 11.04 (7) and 62.15 (6)° in molecule B]. Intramolecular O2A—H1OA···O1A and O2B—H1OB..O1B hydrogen bonds (Table 1) generate S(6) ring motifs (Bernstein et al., 1995).

The bond distances are comparable with those in the related structure noted above (Joothamongkhon et al., 2010).

In the crystal (Fig. 2), the molecules are arranged into sheets parallel to the ac plane and further stacked along the b axis by π–π interactions with the centroid···centroid distances: Cg1···Cg2ii = 3.6421 (6) Å; Cg1···Cg3ii = 3.6800 (7) Å; Cg2···Cg2ii = 3.7607 (6) Å; Cg4···Cg8iii = 3.6434 (7) Å and Cg5···Cg6ii = 3.7084 (6) Å. The crystal structure is further stabilized by C—H···π interactions (Table 1); Cg1, Cg2, Cg3, Cg4, Cg5, Cg6, Cg7 and Cg8 are the centroids of C1A–C6A, C1A/C6A–C8A/C13A–C14A, C8A–C13A, C18A–C23A, C1B–C6B, C1B/C6B–C8B/C13B–C14B, C8B–C13B and C18B–C23B rings, respectively. C···Oiii[3.2159 (15) Å] short contacts were also observed [symmetry code: (iii) -x, -1/2 + y, 1/2 - z].

Experimental

The title compound was synthesized by the condensation of anthracene-9-carbaldehyde (2 mmol, 0.41 g) with 2-hydroxyacetophenone (2 mmol, 0.27 g) in ethanol (40 ml) in the presence of NaOH(aq) (10 ml, 40%). After stirring for 4 hr at room temperature, a yellow solid appeared and was then collected by filtration, washed with distilled water and dried in air. Yellow blocks of (I) were recrystalized from acetone by the slow evaporation of the solvent at room temperature after several days, Mp. 431–432 K.

Refinement

Hydroxy H atoms were located in a difference maps and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic and CH. and the Uiso values were constrained to be 1.2Ueq of the carrier atoms. The highest residual electron density peak is located at 0.71 Å from C1A and the deepest hole is located at 0.43 Å from H1OA.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids. O—H···O hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the b axis.

Crystal data

C23H16O2 F(000) = 1360
Mr = 324.36 Dx = 1.341 Mg m3
Monoclinic, P21/c Melting point = 431–432 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 14.0843 (2) Å Cell parameters from 9368 reflections
b = 13.7224 (2) Å θ = 1.9–30.0°
c = 16.9615 (3) Å µ = 0.09 mm1
β = 101.411 (1)° T = 100 K
V = 3213.36 (9) Å3 Block, yellow
Z = 8 0.50 × 0.39 × 0.37 mm

Data collection

Bruker APEXII CCD diffractometer 9368 independent reflections
Radiation source: sealed tube 7868 reflections with I > 2σ(I)
graphite Rint = 0.032
φ and ω scans θmax = 30.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −19→19
Tmin = 0.959, Tmax = 0.969 k = −17→19
40230 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0739P)2 + 1.125P] where P = (Fo2 + 2Fc2)/3
9368 reflections (Δ/σ)max = 0.001
459 parameters Δρmax = 0.54 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.23244 (6) 0.20731 (6) 0.25499 (5) 0.02242 (17)
O2A 0.12311 (6) 0.12104 (6) 0.13834 (5) 0.02449 (18)
C1A 0.44611 (8) 0.49417 (8) 0.37297 (6) 0.0174 (2)
C2A 0.50222 (8) 0.44622 (9) 0.32283 (6) 0.0227 (2)
H2AA 0.4773 0.3914 0.2936 0.027*
C3A 0.59212 (9) 0.48005 (11) 0.31737 (7) 0.0271 (3)
H3AA 0.6279 0.4475 0.2850 0.033*
C4A 0.63149 (9) 0.56412 (11) 0.36045 (7) 0.0279 (3)
H4AA 0.6923 0.5867 0.3556 0.033*
C5A 0.58036 (8) 0.61172 (9) 0.40878 (7) 0.0239 (2)
H5AA 0.6069 0.6666 0.4371 0.029*
C6A 0.48658 (8) 0.57869 (8) 0.41671 (6) 0.0185 (2)
C7A 0.43416 (8) 0.62652 (8) 0.46690 (7) 0.0194 (2)
H7AA 0.4608 0.6811 0.4955 0.023*
C8A 0.34265 (8) 0.59435 (8) 0.47522 (6) 0.0173 (2)
C9A 0.29196 (9) 0.64164 (8) 0.52973 (7) 0.0210 (2)
H9AA 0.3197 0.6953 0.5590 0.025*
C10A 0.20378 (9) 0.60920 (9) 0.53942 (7) 0.0231 (2)
H10A 0.1713 0.6412 0.5746 0.028*
C11A 0.16130 (8) 0.52659 (9) 0.49592 (7) 0.0217 (2)
H11A 0.1012 0.5045 0.5032 0.026*
C12A 0.20734 (8) 0.47903 (8) 0.44350 (6) 0.0188 (2)
H12A 0.1782 0.4248 0.4159 0.023*
C13A 0.29970 (8) 0.51123 (8) 0.43031 (6) 0.01584 (19)
C14A 0.35199 (8) 0.46226 (8) 0.37893 (6) 0.01602 (19)
C15A 0.31128 (8) 0.37739 (8) 0.33147 (6) 0.0184 (2)
H15A 0.3487 0.3211 0.3358 0.022*
C16A 0.22424 (8) 0.37492 (8) 0.28239 (6) 0.0199 (2)
H16A 0.1840 0.4292 0.2782 0.024*
C17A 0.19193 (8) 0.28682 (8) 0.23504 (6) 0.0179 (2)
C18A 0.11383 (8) 0.29411 (8) 0.16329 (6) 0.0172 (2)
C19A 0.08536 (8) 0.20943 (9) 0.11699 (6) 0.0193 (2)
C20A 0.01483 (9) 0.21635 (10) 0.04625 (7) 0.0242 (2)
H20A −0.0024 0.1613 0.0147 0.029*
C21A −0.02897 (9) 0.30437 (10) 0.02334 (7) 0.0252 (2)
H21A −0.0761 0.3080 −0.0234 0.030*
C22A −0.00370 (9) 0.38831 (9) 0.06921 (7) 0.0240 (2)
H22A −0.0346 0.4472 0.0538 0.029*
C23A 0.06780 (8) 0.38290 (9) 0.13788 (7) 0.0209 (2)
H23A 0.0858 0.4390 0.1679 0.025*
O1B 0.18383 (6) 0.94230 (6) 0.26687 (5) 0.02468 (18)
O2B 0.03389 (7) 0.89265 (7) 0.16165 (5) 0.02348 (18)
C1B 0.50277 (8) 0.87960 (7) 0.47232 (6) 0.01604 (19)
C2B 0.53592 (8) 0.88359 (8) 0.39761 (6) 0.0194 (2)
H2BA 0.4912 0.8925 0.3499 0.023*
C3B 0.63166 (9) 0.87455 (9) 0.39523 (7) 0.0221 (2)
H3BA 0.6512 0.8783 0.3461 0.026*
C4B 0.70218 (9) 0.85953 (9) 0.46673 (7) 0.0223 (2)
H4BA 0.7673 0.8534 0.4641 0.027*
C5B 0.67406 (8) 0.85419 (8) 0.53925 (7) 0.0198 (2)
H5BA 0.7203 0.8442 0.5859 0.024*
C6B 0.57425 (8) 0.86375 (8) 0.54417 (6) 0.0166 (2)
C7B 0.54489 (8) 0.85640 (8) 0.61815 (6) 0.0173 (2)
H7BA 0.5912 0.8461 0.6647 0.021*
C8B 0.44772 (8) 0.86415 (8) 0.62337 (6) 0.0175 (2)
C9B 0.41872 (9) 0.85451 (9) 0.69944 (6) 0.0220 (2)
H9BA 0.4652 0.8414 0.7453 0.026*
C10B 0.32440 (9) 0.86416 (10) 0.70549 (7) 0.0253 (2)
H10B 0.3065 0.8564 0.7550 0.030*
C11B 0.25298 (9) 0.88619 (9) 0.63594 (7) 0.0233 (2)
H11B 0.1888 0.8945 0.6407 0.028*
C12B 0.27755 (8) 0.89535 (8) 0.56208 (7) 0.0196 (2)
H12B 0.2298 0.9104 0.5175 0.024*
C13B 0.37537 (8) 0.88220 (8) 0.55225 (6) 0.0165 (2)
C14B 0.40387 (8) 0.88795 (7) 0.47662 (6) 0.01590 (19)
C15B 0.33125 (8) 0.90127 (8) 0.40140 (6) 0.0180 (2)
H15B 0.3405 0.9525 0.3679 0.022*
C16B 0.25332 (8) 0.84486 (8) 0.37825 (6) 0.0189 (2)
H16B 0.2422 0.7934 0.4110 0.023*
C17B 0.18418 (8) 0.86241 (8) 0.30157 (6) 0.0181 (2)
C18B 0.11590 (8) 0.78474 (8) 0.26706 (6) 0.0167 (2)
C19B 0.04372 (8) 0.80431 (8) 0.19787 (6) 0.0184 (2)
C20B −0.02191 (8) 0.73166 (9) 0.16524 (6) 0.0215 (2)
H20B −0.0693 0.7450 0.1200 0.026*
C21B −0.01681 (8) 0.64008 (9) 0.19984 (7) 0.0229 (2)
H21B −0.0609 0.5922 0.1778 0.027*
C22B 0.05418 (9) 0.61899 (9) 0.26782 (7) 0.0217 (2)
H22B 0.0578 0.5572 0.2907 0.026*
C23B 0.11898 (8) 0.69067 (8) 0.30083 (6) 0.0190 (2)
H23B 0.1656 0.6765 0.3463 0.023*
H1OA 0.1696 (15) 0.1326 (15) 0.1845 (13) 0.052 (6)*
H1OB 0.0847 (15) 0.9246 (15) 0.1878 (12) 0.052 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0194 (4) 0.0219 (4) 0.0243 (4) 0.0023 (3) 0.0002 (3) −0.0037 (3)
O2A 0.0203 (4) 0.0243 (4) 0.0272 (4) 0.0028 (3) 0.0006 (3) −0.0089 (3)
C1A 0.0145 (5) 0.0220 (5) 0.0147 (4) −0.0008 (4) 0.0008 (3) 0.0034 (4)
C2A 0.0185 (5) 0.0334 (6) 0.0157 (4) 0.0012 (4) 0.0021 (4) 0.0007 (4)
C3A 0.0182 (5) 0.0450 (8) 0.0187 (5) 0.0036 (5) 0.0048 (4) 0.0056 (5)
C4A 0.0159 (5) 0.0417 (7) 0.0254 (5) −0.0036 (5) 0.0026 (4) 0.0124 (5)
C5A 0.0177 (5) 0.0273 (6) 0.0247 (5) −0.0061 (4) −0.0005 (4) 0.0094 (4)
C6A 0.0166 (5) 0.0195 (5) 0.0181 (4) −0.0027 (4) 0.0004 (4) 0.0062 (4)
C7A 0.0206 (5) 0.0150 (5) 0.0209 (5) −0.0032 (4) −0.0001 (4) 0.0028 (4)
C8A 0.0187 (5) 0.0149 (5) 0.0173 (4) 0.0000 (4) 0.0011 (4) 0.0024 (3)
C9A 0.0255 (6) 0.0155 (5) 0.0210 (5) 0.0025 (4) 0.0023 (4) −0.0006 (4)
C10A 0.0257 (6) 0.0226 (6) 0.0216 (5) 0.0057 (4) 0.0065 (4) 0.0009 (4)
C11A 0.0182 (5) 0.0245 (6) 0.0232 (5) 0.0006 (4) 0.0062 (4) 0.0034 (4)
C12A 0.0171 (5) 0.0193 (5) 0.0199 (5) −0.0025 (4) 0.0030 (4) 0.0013 (4)
C13A 0.0159 (5) 0.0155 (5) 0.0154 (4) −0.0003 (4) 0.0015 (3) 0.0019 (3)
C14A 0.0148 (5) 0.0178 (5) 0.0148 (4) −0.0014 (4) 0.0013 (3) 0.0010 (3)
C15A 0.0176 (5) 0.0193 (5) 0.0182 (5) −0.0005 (4) 0.0034 (4) −0.0013 (4)
C16A 0.0194 (5) 0.0200 (5) 0.0192 (5) 0.0001 (4) 0.0016 (4) −0.0035 (4)
C17A 0.0142 (5) 0.0221 (5) 0.0175 (4) −0.0013 (4) 0.0037 (4) −0.0028 (4)
C18A 0.0139 (5) 0.0222 (5) 0.0156 (4) −0.0021 (4) 0.0036 (3) −0.0017 (4)
C19A 0.0148 (5) 0.0242 (5) 0.0197 (5) −0.0007 (4) 0.0055 (4) −0.0046 (4)
C20A 0.0194 (5) 0.0319 (6) 0.0201 (5) −0.0018 (5) 0.0012 (4) −0.0084 (4)
C21A 0.0207 (5) 0.0365 (7) 0.0172 (5) −0.0010 (5) 0.0010 (4) −0.0010 (4)
C22A 0.0230 (6) 0.0274 (6) 0.0207 (5) 0.0000 (5) 0.0024 (4) 0.0045 (4)
C23A 0.0216 (5) 0.0221 (5) 0.0188 (5) −0.0030 (4) 0.0032 (4) 0.0010 (4)
O1B 0.0254 (4) 0.0208 (4) 0.0249 (4) −0.0021 (3) −0.0021 (3) 0.0047 (3)
O2B 0.0221 (4) 0.0248 (4) 0.0214 (4) 0.0002 (3) −0.0009 (3) 0.0023 (3)
C1B 0.0177 (5) 0.0129 (5) 0.0173 (4) −0.0021 (4) 0.0028 (4) −0.0009 (3)
C2B 0.0223 (5) 0.0185 (5) 0.0173 (5) −0.0008 (4) 0.0038 (4) 0.0005 (4)
C3B 0.0242 (6) 0.0221 (5) 0.0217 (5) −0.0015 (4) 0.0088 (4) −0.0001 (4)
C4B 0.0179 (5) 0.0230 (6) 0.0273 (5) −0.0004 (4) 0.0074 (4) −0.0004 (4)
C5B 0.0165 (5) 0.0194 (5) 0.0228 (5) −0.0003 (4) 0.0023 (4) −0.0002 (4)
C6B 0.0173 (5) 0.0136 (5) 0.0186 (5) −0.0009 (4) 0.0027 (4) −0.0010 (3)
C7B 0.0179 (5) 0.0162 (5) 0.0169 (4) −0.0013 (4) 0.0011 (4) −0.0011 (3)
C8B 0.0195 (5) 0.0159 (5) 0.0169 (4) −0.0029 (4) 0.0033 (4) −0.0027 (3)
C9B 0.0234 (6) 0.0260 (6) 0.0163 (5) −0.0046 (4) 0.0031 (4) −0.0032 (4)
C10B 0.0254 (6) 0.0324 (6) 0.0193 (5) −0.0059 (5) 0.0078 (4) −0.0065 (4)
C11B 0.0183 (5) 0.0278 (6) 0.0249 (5) −0.0035 (4) 0.0067 (4) −0.0079 (4)
C12B 0.0177 (5) 0.0189 (5) 0.0219 (5) −0.0018 (4) 0.0031 (4) −0.0042 (4)
C13B 0.0172 (5) 0.0139 (5) 0.0180 (4) −0.0020 (4) 0.0026 (4) −0.0028 (3)
C14B 0.0170 (5) 0.0129 (5) 0.0171 (4) −0.0015 (4) 0.0018 (4) −0.0006 (3)
C15B 0.0193 (5) 0.0171 (5) 0.0172 (4) 0.0005 (4) 0.0023 (4) 0.0003 (4)
C16B 0.0188 (5) 0.0186 (5) 0.0182 (5) −0.0012 (4) 0.0010 (4) 0.0013 (4)
C17B 0.0162 (5) 0.0194 (5) 0.0183 (4) −0.0002 (4) 0.0026 (4) −0.0006 (4)
C18B 0.0144 (5) 0.0203 (5) 0.0155 (4) 0.0000 (4) 0.0035 (3) −0.0020 (4)
C19B 0.0164 (5) 0.0231 (5) 0.0164 (4) 0.0019 (4) 0.0046 (4) −0.0015 (4)
C20B 0.0163 (5) 0.0305 (6) 0.0173 (5) −0.0011 (4) 0.0028 (4) −0.0052 (4)
C21B 0.0191 (5) 0.0264 (6) 0.0237 (5) −0.0049 (4) 0.0057 (4) −0.0081 (4)
C22B 0.0212 (5) 0.0208 (5) 0.0241 (5) −0.0019 (4) 0.0069 (4) −0.0028 (4)
C23B 0.0172 (5) 0.0216 (5) 0.0184 (5) 0.0002 (4) 0.0042 (4) −0.0014 (4)

Geometric parameters (Å, °)

O1A—C17A 1.2466 (14) O1B—C17B 1.2438 (14)
O2A—C19A 1.3449 (14) O2B—C19B 1.3537 (14)
O2A—H1OA 0.93 (2) O2B—H1OB 0.88 (2)
C1A—C14A 1.4186 (14) C1B—C14B 1.4138 (15)
C1A—C2A 1.4306 (15) C1B—C6B 1.4354 (14)
C1A—C6A 1.4329 (16) C1B—C2B 1.4356 (14)
C2A—C3A 1.3688 (17) C2B—C3B 1.3627 (16)
C2A—H2AA 0.9300 C2B—H2BA 0.9300
C3A—C4A 1.418 (2) C3B—C4B 1.4224 (17)
C3A—H3AA 0.9300 C3B—H3BA 0.9300
C4A—C5A 1.3606 (19) C4B—C5B 1.3668 (15)
C4A—H4AA 0.9300 C4B—H4BA 0.9300
C5A—C6A 1.4277 (15) C5B—C6B 1.4307 (15)
C5A—H5AA 0.9300 C5B—H5BA 0.9300
C6A—C7A 1.3962 (16) C6B—C7B 1.4003 (14)
C7A—C8A 1.3957 (15) C7B—C8B 1.3930 (15)
C7A—H7AA 0.9300 C7B—H7BA 0.9300
C8A—C9A 1.4306 (15) C8B—C9B 1.4344 (14)
C8A—C13A 1.4371 (15) C8B—C13B 1.4383 (15)
C9A—C10A 1.3595 (17) C9B—C10B 1.3590 (17)
C9A—H9AA 0.9300 C9B—H9BA 0.9300
C10A—C11A 1.4187 (17) C10B—C11B 1.4231 (17)
C10A—H10A 0.9300 C10B—H10B 0.9300
C11A—C12A 1.3657 (15) C11B—C12B 1.3699 (15)
C11A—H11A 0.9300 C11B—H11B 0.9300
C12A—C13A 1.4327 (15) C12B—C13B 1.4315 (15)
C12A—H12A 0.9300 C12B—H12B 0.9300
C13A—C14A 1.4167 (14) C13B—C14B 1.4200 (14)
C14A—C15A 1.4664 (15) C14B—C15B 1.4802 (14)
C15A—C16A 1.3392 (15) C15B—C16B 1.3370 (15)
C15A—H15A 0.9300 C15B—H15B 0.9300
C16A—C17A 1.4728 (15) C16B—C17B 1.4821 (14)
C16A—H16A 0.9300 C16B—H16B 0.9300
C17A—C18A 1.4736 (14) C17B—C18B 1.4767 (15)
C18A—C23A 1.4072 (16) C18B—C23B 1.4095 (15)
C18A—C19A 1.4153 (15) C18B—C19B 1.4179 (14)
C19A—C20A 1.4014 (15) C19B—C20B 1.3972 (16)
C20A—C21A 1.3768 (18) C20B—C21B 1.3828 (18)
C20A—H20A 0.9300 C20B—H20B 0.9300
C21A—C22A 1.3962 (17) C21B—C22B 1.3989 (17)
C21A—H21A 0.9300 C21B—H21B 0.9300
C22A—C23A 1.3828 (16) C22B—C23B 1.3827 (16)
C22A—H22A 0.9300 C22B—H22B 0.9300
C23A—H23A 0.9300 C23B—H23B 0.9300
C19A—O2A—H1OA 104.3 (13) C19B—O2B—H1OB 102.6 (13)
C14A—C1A—C2A 122.30 (10) C14B—C1B—C6B 120.07 (9)
C14A—C1A—C6A 119.63 (10) C14B—C1B—C2B 122.56 (10)
C2A—C1A—C6A 118.04 (10) C6B—C1B—C2B 117.34 (10)
C3A—C2A—C1A 120.75 (12) C3B—C2B—C1B 121.28 (10)
C3A—C2A—H2AA 119.6 C3B—C2B—H2BA 119.4
C1A—C2A—H2AA 119.6 C1B—C2B—H2BA 119.4
C2A—C3A—C4A 120.91 (11) C2B—C3B—C4B 121.07 (10)
C2A—C3A—H3AA 119.5 C2B—C3B—H3BA 119.5
C4A—C3A—H3AA 119.5 C4B—C3B—H3BA 119.5
C5A—C4A—C3A 120.09 (11) C5B—C4B—C3B 119.82 (11)
C5A—C4A—H4AA 120.0 C5B—C4B—H4BA 120.1
C3A—C4A—H4AA 120.0 C3B—C4B—H4BA 120.1
C4A—C5A—C6A 120.94 (12) C4B—C5B—C6B 120.71 (10)
C4A—C5A—H5AA 119.5 C4B—C5B—H5BA 119.6
C6A—C5A—H5AA 119.5 C6B—C5B—H5BA 119.6
C7A—C6A—C5A 121.26 (11) C7B—C6B—C5B 120.89 (10)
C7A—C6A—C1A 119.48 (10) C7B—C6B—C1B 119.33 (10)
C5A—C6A—C1A 119.26 (10) C5B—C6B—C1B 119.77 (9)
C8A—C7A—C6A 121.55 (10) C8B—C7B—C6B 121.30 (10)
C8A—C7A—H7AA 119.2 C8B—C7B—H7BA 119.4
C6A—C7A—H7AA 119.2 C6B—C7B—H7BA 119.4
C7A—C8A—C9A 120.72 (10) C7B—C8B—C9B 120.55 (10)
C7A—C8A—C13A 119.85 (10) C7B—C8B—C13B 120.12 (9)
C9A—C8A—C13A 119.41 (10) C9B—C8B—C13B 119.33 (10)
C10A—C9A—C8A 120.95 (11) C10B—C9B—C8B 121.02 (11)
C10A—C9A—H9AA 119.5 C10B—C9B—H9BA 119.5
C8A—C9A—H9AA 119.5 C8B—C9B—H9BA 119.5
C9A—C10A—C11A 120.00 (10) C9B—C10B—C11B 119.96 (10)
C9A—C10A—H10A 120.0 C9B—C10B—H10B 120.0
C11A—C10A—H10A 120.0 C11B—C10B—H10B 120.0
C12A—C11A—C10A 120.98 (11) C12B—C11B—C10B 120.83 (11)
C12A—C11A—H11A 119.5 C12B—C11B—H11B 119.6
C10A—C11A—H11A 119.5 C10B—C11B—H11B 119.6
C11A—C12A—C13A 121.14 (10) C11B—C12B—C13B 121.21 (11)
C11A—C12A—H12A 119.4 C11B—C12B—H12B 119.4
C13A—C12A—H12A 119.4 C13B—C12B—H12B 119.4
C14A—C13A—C12A 123.25 (10) C14B—C13B—C12B 123.29 (10)
C14A—C13A—C8A 119.15 (9) C14B—C13B—C8B 119.16 (10)
C12A—C13A—C8A 117.51 (9) C12B—C13B—C8B 117.54 (9)
C13A—C14A—C1A 120.29 (10) C1B—C14B—C13B 119.97 (9)
C13A—C14A—C15A 121.33 (9) C1B—C14B—C15B 119.04 (9)
C1A—C14A—C15A 118.38 (9) C13B—C14B—C15B 120.98 (10)
C16A—C15A—C14A 124.87 (10) C16B—C15B—C14B 124.67 (10)
C16A—C15A—H15A 117.6 C16B—C15B—H15B 117.7
C14A—C15A—H15A 117.6 C14B—C15B—H15B 117.7
C15A—C16A—C17A 120.39 (10) C15B—C16B—C17B 121.49 (10)
C15A—C16A—H16A 119.8 C15B—C16B—H16B 119.3
C17A—C16A—H16A 119.8 C17B—C16B—H16B 119.3
O1A—C17A—C16A 119.67 (10) O1B—C17B—C18B 120.49 (10)
O1A—C17A—C18A 120.69 (10) O1B—C17B—C16B 119.92 (10)
C16A—C17A—C18A 119.62 (10) C18B—C17B—C16B 119.59 (10)
C23A—C18A—C19A 118.57 (10) C23B—C18B—C19B 117.98 (10)
C23A—C18A—C17A 122.35 (10) C23B—C18B—C17B 122.32 (10)
C19A—C18A—C17A 119.07 (10) C19B—C18B—C17B 119.70 (10)
O2A—C19A—C20A 117.85 (10) O2B—C19B—C20B 117.32 (10)
O2A—C19A—C18A 122.52 (10) O2B—C19B—C18B 122.50 (10)
C20A—C19A—C18A 119.63 (11) C20B—C19B—C18B 120.17 (10)
C21A—C20A—C19A 120.22 (11) C21B—C20B—C19B 120.36 (10)
C21A—C20A—H20A 119.9 C21B—C20B—H20B 119.8
C19A—C20A—H20A 119.9 C19B—C20B—H20B 119.8
C20A—C21A—C22A 121.06 (11) C20B—C21B—C22B 120.44 (11)
C20A—C21A—H21A 119.5 C20B—C21B—H21B 119.8
C22A—C21A—H21A 119.5 C22B—C21B—H21B 119.8
C23A—C22A—C21A 119.21 (11) C23B—C22B—C21B 119.57 (11)
C23A—C22A—H22A 120.4 C23B—C22B—H22B 120.2
C21A—C22A—H22A 120.4 C21B—C22B—H22B 120.2
C22A—C23A—C18A 121.27 (11) C22B—C23B—C18B 121.48 (10)
C22A—C23A—H23A 119.4 C22B—C23B—H23B 119.3
C18A—C23A—H23A 119.4 C18B—C23B—H23B 119.3
C14A—C1A—C2A—C3A 178.79 (11) C14B—C1B—C2B—C3B −179.47 (10)
C6A—C1A—C2A—C3A 0.37 (16) C6B—C1B—C2B—C3B −1.22 (16)
C1A—C2A—C3A—C4A −0.77 (18) C1B—C2B—C3B—C4B 0.83 (18)
C2A—C3A—C4A—C5A 0.78 (18) C2B—C3B—C4B—C5B −0.13 (18)
C3A—C4A—C5A—C6A −0.38 (17) C3B—C4B—C5B—C6B −0.13 (18)
C4A—C5A—C6A—C7A 179.27 (11) C4B—C5B—C6B—C7B 178.72 (11)
C4A—C5A—C6A—C1A −0.01 (16) C4B—C5B—C6B—C1B −0.31 (16)
C14A—C1A—C6A—C7A 2.27 (15) C14B—C1B—C6B—C7B 0.20 (15)
C2A—C1A—C6A—C7A −179.27 (10) C2B—C1B—C6B—C7B −178.10 (10)
C14A—C1A—C6A—C5A −178.44 (10) C14B—C1B—C6B—C5B 179.24 (10)
C2A—C1A—C6A—C5A 0.03 (15) C2B—C1B—C6B—C5B 0.95 (15)
C5A—C6A—C7A—C8A −179.69 (10) C5B—C6B—C7B—C8B −179.03 (10)
C1A—C6A—C7A—C8A −0.41 (16) C1B—C6B—C7B—C8B 0.01 (16)
C6A—C7A—C8A—C9A 177.12 (10) C6B—C7B—C8B—C9B 178.75 (10)
C6A—C7A—C8A—C13A −1.18 (16) C6B—C7B—C8B—C13B −1.40 (16)
C7A—C8A—C9A—C10A −178.48 (10) C7B—C8B—C9B—C10B 178.48 (11)
C13A—C8A—C9A—C10A −0.17 (16) C13B—C8B—C9B—C10B −1.37 (17)
C8A—C9A—C10A—C11A 0.81 (17) C8B—C9B—C10B—C11B −1.32 (19)
C9A—C10A—C11A—C12A −0.55 (17) C9B—C10B—C11B—C12B 1.74 (19)
C10A—C11A—C12A—C13A −0.37 (17) C10B—C11B—C12B—C13B 0.62 (18)
C11A—C12A—C13A—C14A 177.54 (10) C11B—C12B—C13B—C14B 177.98 (10)
C11A—C12A—C13A—C8A 0.98 (16) C11B—C12B—C13B—C8B −3.23 (16)
C7A—C8A—C13A—C14A 0.91 (15) C7B—C8B—C13B—C14B 2.56 (15)
C9A—C8A—C13A—C14A −177.41 (10) C9B—C8B—C13B—C14B −177.58 (10)
C7A—C8A—C13A—C12A 177.61 (10) C7B—C8B—C13B—C12B −176.28 (10)
C9A—C8A—C13A—C12A −0.71 (15) C9B—C8B—C13B—C12B 3.57 (15)
C12A—C13A—C14A—C1A −175.56 (10) C6B—C1B—C14B—C13B 1.00 (15)
C8A—C13A—C14A—C1A 0.95 (15) C2B—C1B—C14B—C13B 179.20 (10)
C12A—C13A—C14A—C15A 3.81 (16) C6B—C1B—C14B—C15B −178.15 (9)
C8A—C13A—C14A—C15A −179.68 (9) C2B—C1B—C14B—C15B 0.05 (16)
C2A—C1A—C14A—C13A 179.07 (10) C12B—C13B—C14B—C1B 176.41 (10)
C6A—C1A—C14A—C13A −2.53 (15) C8B—C13B—C14B—C1B −2.36 (15)
C2A—C1A—C14A—C15A −0.31 (15) C12B—C13B—C14B—C15B −4.45 (16)
C6A—C1A—C14A—C15A 178.08 (9) C8B—C13B—C14B—C15B 176.78 (10)
C13A—C14A—C15A—C16A 52.54 (15) C1B—C14B—C15B—C16B 125.91 (12)
C1A—C14A—C15A—C16A −128.08 (12) C13B—C14B—C15B—C16B −53.23 (16)
C14A—C15A—C16A—C17A 177.64 (10) C14B—C15B—C16B—C17B −179.49 (10)
C15A—C16A—C17A—O1A 18.56 (16) C15B—C16B—C17B—O1B −17.28 (17)
C15A—C16A—C17A—C18A −159.78 (10) C15B—C16B—C17B—C18B 162.91 (10)
O1A—C17A—C18A—C23A −178.62 (10) O1B—C17B—C18B—C23B 174.78 (10)
C16A—C17A—C18A—C23A −0.30 (15) C16B—C17B—C18B—C23B −5.41 (15)
O1A—C17A—C18A—C19A −0.13 (15) O1B—C17B—C18B—C19B −5.71 (16)
C16A—C17A—C18A—C19A 178.20 (9) C16B—C17B—C18B—C19B 174.10 (9)
C23A—C18A—C19A—O2A −177.65 (10) C23B—C18B—C19B—O2B 179.06 (9)
C17A—C18A—C19A—O2A 3.80 (15) C17B—C18B—C19B—O2B −0.47 (15)
C23A—C18A—C19A—C20A 1.96 (15) C23B—C18B—C19B—C20B 0.22 (15)
C17A—C18A—C19A—C20A −176.59 (10) C17B—C18B—C19B—C20B −179.31 (10)
O2A—C19A—C20A—C21A 177.39 (11) O2B—C19B—C20B—C21B −179.19 (10)
C18A—C19A—C20A—C21A −2.24 (17) C18B—C19B—C20B—C21B −0.28 (16)
C19A—C20A—C21A—C22A 0.64 (18) C19B—C20B—C21B—C22B −0.11 (17)
C20A—C21A—C22A—C23A 1.23 (18) C20B—C21B—C22B—C23B 0.56 (17)
C21A—C22A—C23A—C18A −1.48 (17) C21B—C22B—C23B—C18B −0.63 (16)
C19A—C18A—C23A—C22A −0.11 (16) C19B—C18B—C23B—C22B 0.24 (15)
C17A—C18A—C23A—C22A 178.39 (10) C17B—C18B—C23B—C22B 179.76 (10)

Hydrogen-bond geometry (Å, °)

Cg1, Cg3, Cg5, Cg6 and Cg7 are the centroids of the C1A–C6A, C8A–C13A, C1B–C6B, C1B/C6B–C8B/C13B–C14B and C8B–C13B rings, respectively.
D—H···A D—H H···A D···A D—H···A
O2A—H1OA···O1A 0.93 (2) 1.69 (2) 2.5459 (12) 152.2 (19)
O2B—H1OB···O1B 0.88 (2) 1.75 (2) 2.5725 (13) 154.2 (19)
C5A—H5AA···Cg5 0.93 2.84 3.6754 (13) 151
C7A—H7AA···Cg6 0.93 2.76 3.6440 (12) 158
C9A—H9AA···Cg7 0.93 2.73 3.6325 (12) 164
C9B—H9BA···Cg1i 0.93 2.76 3.4023 (12) 127
C23B—H23B···Cg3 0.93 2.91 3.7661 (11) 154

Symmetry codes: (i) x, −y+1/2, z−1/2.

Footnotes

1

This paper is dedicated to Her Royal Highness Princess Chulabhorn Walailak of Thailand for her contributions to science on the occasion of her 54th birthday, which fell on July 4th, 2011.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5945).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  4. Jasinski, J. P., Butcher, R. J., Musthafa Khaleel, V., Sarojini, B. K. & Yathirajan, H. S. (2011). Acta Cryst. E67, o795. [DOI] [PMC free article] [PubMed]
  5. Joothamongkhon, J., Chantrapromma, S., Kobkeatthawin, T. & Fun, H.-K. (2010). Acta Cryst. E66, o2669–o2670. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811034994/hb5945sup1.cif

e-67-o2554-sup1.cif (31.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811034994/hb5945Isup2.hkl

e-67-o2554-Isup2.hkl (458.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811034994/hb5945Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES