Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2811. doi: 10.1107/S1600536811038955

Piperazine-1,4-diium naphthalene-1,5-disulfonate

Bin Wei a,*
PMCID: PMC3201365  PMID: 22065696

Abstract

The title molecular salt, C4H12N2 2+·C10H6O6S2 2−, consists of a piperazinium cation and a 1,5-naphthalene­disulfonate anion. Crystallographic inversion centers are situated at the center of the ring of the dication as well as at the midpoint of the central carbon–carbon bond in the dianion. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the cations and anions.

Related literature

The title compound was obtained during attempts to obtain dielectric-ferroelectric compounds. For general background to ferroelectric metal-organic frameworks, see: Wu et al. (2011); Ye et al. (2006); Zhang et al. (2008, 2010); Fu et al. (2009). graphic file with name e-67-o2811-scheme1.jpg

Experimental

Crystal data

  • C4H12N2 2+·C10H6O6S2 2−

  • M r = 374.42

  • Monoclinic, Inline graphic

  • a = 11.997 (2) Å

  • b = 7.2959 (15) Å

  • c = 9.1453 (18) Å

  • β = 96.00 (3)°

  • V = 796.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.955, T max = 0.955

  • 7956 measured reflections

  • 1827 independent reflections

  • 1629 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.088

  • S = 1.11

  • 1827 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811038955/vm2121sup1.cif

e-67-o2811-sup1.cif (13.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038955/vm2121Isup2.hkl

e-67-o2811-Isup2.hkl (90KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811038955/vm2121Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.90 1.91 2.7357 (19) 153
N1—H1B⋯O3ii 0.90 1.91 2.7670 (19) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The author is grateful to the starter fund of Southeast University for the purchase of the diffractometer.

supplementary crystallographic information

Comment

Dielectric-ferroelectrics are an interesting class of materials, comprising organic ligands,metal-organic coordination compounds and organic-inorganic hybrids (Fu et al., 2009; Zhang et al., 2010; Zhang et al., 2008; Ye et al., 2006). Unfortunately, the dielectric constant of the title compound as a function of temperature indicates that the permittivity is basically temperature-independent. Below the melting point (402-403K) of the compound, we have found that the title compound has no dielectric disuniformity from 80 K to 405 K. Here we descibe the crystal structure of this compound.

The asymmetric unit of the title compound consists of a half piperazinium cation and a half 1,5-naphthalenedisulfonate anion (Fig. 1). The complete complete molecular structures are generated by inversion centers at the center of the piperazinium ring and at the midpoint of the central carbon-carbon bond in the naphthalene ring. The best planes through the piperazinium ring and the naphthalene ring make a dihedral angle of 80.96 (8)°. The cations and anions are connected by intermolecular N—H···O hydrogen bonds, which contribute to the stability of the crystal structure (Fig. 2 and Table 1).

Experimental

The title compound was obtained by the addition of 1,5-naphthalenedisulfonate acid (3.62 g, 0.01 mol) to a solution of piperazine (0.88 g, 0.01 mol) in water, in the stoichiometric ratio 1: 1. Good quality single crystals were obtained by slow evaporation after two days (yield: 48%).

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93 Å-0.97 Å, N—H = 0.90 Å and with Uiso(H) = 1.2 Uiso(C, O) or 1.5 Uiso(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) -x + 2, -y, -z + 1.

Fig. 2.

Fig. 2.

A view of the packing of the title compound along the a axis. Dashed lines indicate hydrogen bonds.

Crystal data

C4H12N22+·C10H6O6S22 Z = 2
Mr = 374.42 F(000) = 392
Monoclinic, P21/c Dx = 1.562 Mg m3
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 11.997 (2) Å θ = 3.0–27.5°
b = 7.2959 (15) Å µ = 0.37 mm1
c = 9.1453 (18) Å T = 293 K
β = 96.00 (3)° Block, colorless
V = 796.1 (3) Å3 0.20 × 0.20 × 0.20 mm

Data collection

Rigaku SCXmini diffractometer 1827 independent reflections
Radiation source: fine-focus sealed tube 1629 reflections with I > 2σ(I)
graphite Rint = 0.031
CCD_Profile_fitting scans θmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) h = −15→15
Tmin = 0.955, Tmax = 0.955 k = −9→9
7956 measured reflections l = −11→11

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.038P)2 + 0.4026P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max = 0.001
1827 reflections Δρmax = 0.26 e Å3
109 parameters Δρmin = −0.36 e Å3
0 restraints Extinction correction: SHELXL
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.72018 (3) 0.02705 (6) 0.55200 (4) 0.02178 (13)
C11 0.94220 (13) −0.0264 (2) 0.49266 (17) 0.0209 (3)
C12 0.86385 (13) 0.0911 (2) 0.55496 (17) 0.0213 (3)
C7 0.89809 (14) 0.2508 (2) 0.6239 (2) 0.0291 (4)
H7 0.8460 0.3258 0.6632 0.035*
C16 0.91084 (14) −0.1936 (2) 0.4198 (2) 0.0287 (4)
H16 0.8360 −0.2294 0.4101 0.034*
C8 1.01178 (15) 0.3021 (3) 0.6358 (2) 0.0347 (4)
H8 1.0342 0.4115 0.6822 0.042*
N1 0.39695 (11) 0.03920 (19) 0.90988 (15) 0.0230 (3)
H1A 0.3451 0.1206 0.8730 0.028*
H1B 0.3762 −0.0722 0.8746 0.028*
C5 0.40092 (15) 0.0374 (3) 1.07288 (19) 0.0292 (4)
H5A 0.3293 −0.0036 1.1011 0.035*
H5B 0.4143 0.1607 1.1104 0.035*
C1 0.50731 (14) 0.0883 (3) 0.86030 (18) 0.0270 (4)
H1C 0.5256 0.2139 0.8882 0.032*
H1D 0.5027 0.0802 0.7540 0.032*
O1 0.67590 (11) 0.0023 (2) 0.39986 (15) 0.0384 (3)
O3 0.66605 (10) 0.17560 (17) 0.62410 (15) 0.0334 (3)
O2 0.72065 (10) −0.14134 (17) 0.63779 (14) 0.0312 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0183 (2) 0.0221 (2) 0.0249 (2) −0.00043 (14) 0.00176 (15) 0.00085 (15)
C11 0.0206 (8) 0.0213 (8) 0.0205 (8) −0.0020 (6) 0.0011 (6) −0.0019 (6)
C12 0.0196 (7) 0.0220 (8) 0.0221 (8) −0.0016 (6) 0.0015 (6) 0.0005 (6)
C7 0.0253 (8) 0.0261 (9) 0.0362 (10) 0.0007 (7) 0.0047 (7) −0.0093 (7)
C16 0.0225 (8) 0.0279 (9) 0.0357 (10) −0.0072 (7) 0.0024 (7) −0.0091 (8)
C8 0.0309 (9) 0.0290 (9) 0.0440 (11) −0.0080 (7) 0.0032 (8) −0.0176 (8)
N1 0.0229 (7) 0.0229 (7) 0.0221 (7) 0.0017 (5) −0.0022 (5) 0.0011 (5)
C5 0.0282 (9) 0.0363 (10) 0.0235 (8) 0.0051 (7) 0.0047 (7) 0.0003 (7)
C1 0.0275 (8) 0.0321 (9) 0.0212 (8) −0.0028 (7) 0.0012 (6) 0.0070 (7)
O1 0.0290 (7) 0.0556 (9) 0.0284 (7) −0.0015 (6) −0.0070 (5) −0.0012 (6)
O3 0.0273 (6) 0.0267 (7) 0.0478 (8) 0.0040 (5) 0.0120 (6) −0.0017 (6)
O2 0.0324 (7) 0.0230 (6) 0.0386 (7) −0.0042 (5) 0.0051 (5) 0.0053 (5)

Geometric parameters (Å, °)

S1—O1 1.4477 (14) C8—C16i 1.359 (3)
S1—O3 1.4562 (13) C8—H8 0.9300
S1—O2 1.4574 (13) N1—C5 1.486 (2)
S1—C12 1.7834 (16) N1—C1 1.487 (2)
C11—C16 1.422 (2) N1—H1A 0.9000
C11—C11i 1.432 (3) N1—H1B 0.9000
C11—C12 1.434 (2) C5—C1ii 1.512 (2)
C12—C7 1.367 (2) C5—H5A 0.9700
C7—C8 1.408 (2) C5—H5B 0.9700
C7—H7 0.9300 C1—C5ii 1.512 (2)
C16—C8i 1.359 (3) C1—H1C 0.9700
C16—H16 0.9300 C1—H1D 0.9700
O1—S1—O3 113.07 (8) C7—C8—H8 119.6
O1—S1—O2 113.12 (8) C5—N1—C1 111.82 (13)
O3—S1—O2 111.13 (8) C5—N1—H1A 109.3
O1—S1—C12 107.70 (8) C1—N1—H1A 109.3
O3—S1—C12 105.90 (8) C5—N1—H1B 109.3
O2—S1—C12 105.28 (8) C1—N1—H1B 109.3
C16—C11—C11i 118.75 (18) H1A—N1—H1B 107.9
C16—C11—C12 123.17 (15) N1—C5—C1ii 110.87 (14)
C11i—C11—C12 118.07 (18) N1—C5—H5A 109.5
C7—C12—C11 121.01 (15) C1ii—C5—H5A 109.5
C7—C12—S1 118.27 (13) N1—C5—H5B 109.5
C11—C12—S1 120.66 (12) C1ii—C5—H5B 109.5
C12—C7—C8 120.27 (16) H5A—C5—H5B 108.1
C12—C7—H7 119.9 N1—C1—C5ii 111.37 (14)
C8—C7—H7 119.9 N1—C1—H1C 109.4
C8i—C16—C11 121.18 (16) C5ii—C1—H1C 109.4
C8i—C16—H16 119.4 N1—C1—H1D 109.4
C11—C16—H16 119.4 C5ii—C1—H1D 109.4
C16i—C8—C7 120.71 (16) H1C—C1—H1D 108.0
C16i—C8—H8 119.6

Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+1, −y, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2iii 0.90 1.91 2.7357 (19) 153.
N1—H1B···O3iv 0.90 1.91 2.7670 (19) 159.

Symmetry codes: (iii) −x+1, y+1/2, −z+3/2; (iv) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2121).

References

  1. Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.
  2. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Wu, D.-H., Ge, J.-Z., Cai, H.-L., Zhang, W. & Xiong, R.-G. (2011). CrystEngComm, 13, 319–324.
  5. Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555. [DOI] [PubMed]
  6. Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469. [DOI] [PubMed]
  7. Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811038955/vm2121sup1.cif

e-67-o2811-sup1.cif (13.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038955/vm2121Isup2.hkl

e-67-o2811-Isup2.hkl (90KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811038955/vm2121Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES