Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 17;67(Pt 10):o2650. doi: 10.1107/S1600536811036841

3-(4-Bromo­phen­yl)-1-phenyl-1H-pyrazole-4-carbaldehyde

R Prasath a, P Bhavana a,, Seik Weng Ng b,c, Edward R T Tiekink b,*
PMCID: PMC3201369  PMID: 22058775

Abstract

In the title compound, C16H11BrN2O, the phenyl and chloro­benzene rings are twisted out of the mean plane of the pyrazole ring, forming dihedral angles of 13.70 (10) and 36.48 (10)°, respectively. The carbaldehyde group is also twisted out of the pyrazole plane [the C—C—C—O torsion angle is 7.9 (3)°]. A helical supra­molecular chain along the b axis and mediated by C—H⋯O inter­actions is the most prominent feature of the crystal packing.

Related literature

For background details and biological applications of pyrazoles, see: Kaushik et al. (2010); Ali et al. (2007); Krishnamurthy et al. (2004). For a related structure, see: Asiri et al. (2011).graphic file with name e-67-o2650-scheme1.jpg

Experimental

Crystal data

  • C16H11BrN2O

  • M r = 327.18

  • Monoclinic, Inline graphic

  • a = 17.7233 (4) Å

  • b = 3.8630 (1) Å

  • c = 20.4224 (5) Å

  • β = 110.137 (3)°

  • V = 1312.75 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.23 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.15 mm

Data collection

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.418, T max = 0.569

  • 4619 measured reflections

  • 2593 independent reflections

  • 2542 reflections with I > 2σ(I)

  • R int = 0.012

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.069

  • S = 1.02

  • 2593 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.66 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811036841/hb6403sup1.cif

e-67-o2650-sup1.cif (17.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036841/hb6403Isup2.hkl

e-67-o2650-Isup2.hkl (124.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036841/hb6403Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.95 2.49 3.435 (2) 171
C16—H16⋯O1ii 0.95 2.46 3.288 (3) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

PB acknowledges the Department of Science and Technology (DST), India, for a research grant (SR/FTP/CS-57/2007). The authors also thank the University of Malaya for support of the crystallographic facility.

supplementary crystallographic information

Comment

A broad spectrum of biological activities [anti-bacterial, anti-depressant, anti-convulsive, anti-hypertensive, anti-oxidant anti-viral and anti-tumour] have been noted for pyrazoles and their derivatives (Kaushik et al., 2010; Ali et al., 2007; Krishnamurthy et al., 2004). In continuation of structural studies in this area (Asiri et al., 2011), the title compound, (I), was investigated.

The dihedral angles formed between the central pyrazole ring [r.m.s. deviation = 0.003 Å] and the N– and C-bound benzene rings of 13.70 (10) and 36.48 (10) °, respectively, indicate significant twists in the molecule of (I), Fig. 1. Similarly, the carbaldehyde group is twisted out of the plane of the five-membered ring as seen in the value of the C13—C14—C16—O1 torsion angle of 7.9 (3) °. The relative disposition of the benzene rings preclude close intermolecular association with the imine-N2 atom which, indeed, forms a close intramolecular C2—H···N2 contact, Table 1.

The crystal packing features C—H···O interactions involving a bifurcated carbonyl-O1 atom, Table 1. These result in the formation of a helical supramolecular chain along the b axis, Fig. 2.

Experimental

Phosphoryl chloride (5.6 ml) was added drop wise to cold N,N-dimethylformamide (22.5 ml) under continuous stirring at 273–278 K for about 30 min. 4-Bromoacetophenone phenylhydrazone (5 g, 17 mmol) was added to the above reaction mixture. The resulting mixture was further stirred at 333 K for 6 h. and cooled to room temperature. The crude product was poured into crushed ice which resulted in a white precipitate. The resultant solid was filtered, dried and purified by column chromatography using chloroform. Recrystallization was by slow evaporation of chloroform solution of (I) which yielded colourless prisms. M.pt. 413–415 K. Yield: 56%.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

Figures

Fig. 1.

Fig. 1.

The molecular structures of (I) showing displacement ellipsoids at the 70% probability level.

Fig. 2.

Fig. 2.

Helical supramolecular chain in (I) mediated by C—H···O (orange dashed lines) interactions.

Crystal data

C16H11BrN2O F(000) = 656
Mr = 327.18 Dx = 1.655 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2yn Cell parameters from 3680 reflections
a = 17.7233 (4) Å θ = 2.7–74.1°
b = 3.8630 (1) Å µ = 4.23 mm1
c = 20.4224 (5) Å T = 100 K
β = 110.137 (3)° Prism, colourless
V = 1312.75 (6) Å3 0.25 × 0.20 × 0.15 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 2593 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 2542 reflections with I > 2σ(I)
Mirror Rint = 0.012
Detector resolution: 10.4041 pixels mm-1 θmax = 74.3°, θmin = 2.9°
ω scans h = −21→21
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −4→4
Tmin = 0.418, Tmax = 0.569 l = −19→25
4619 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0432P)2 + 1.2934P] where P = (Fo2 + 2Fc2)/3
2593 reflections (Δ/σ)max = 0.004
181 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.66 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.979494 (11) 0.14952 (5) 1.111751 (9) 0.01554 (9)
O1 0.66107 (9) 0.4209 (4) 0.71084 (7) 0.0183 (3)
N1 0.54596 (9) 0.8378 (4) 0.84419 (8) 0.0106 (3)
N2 0.60504 (9) 0.7642 (4) 0.90629 (8) 0.0114 (3)
C1 0.47250 (10) 0.9916 (5) 0.84392 (9) 0.0112 (3)
C2 0.45581 (11) 0.9963 (5) 0.90561 (10) 0.0146 (4)
H2 0.4929 0.9008 0.9471 0.018*
C3 0.38437 (12) 1.1422 (5) 0.90583 (11) 0.0170 (4)
H3 0.3729 1.1496 0.9480 0.020*
C4 0.32952 (12) 1.2773 (5) 0.84520 (11) 0.0169 (4)
H4 0.2805 1.3744 0.8456 0.020*
C5 0.34673 (11) 1.2698 (5) 0.78370 (10) 0.0165 (4)
H5 0.3092 1.3617 0.7421 0.020*
C6 0.41865 (12) 1.1284 (5) 0.78272 (10) 0.0148 (4)
H6 0.4307 1.1255 0.7408 0.018*
C7 0.73867 (11) 0.5078 (5) 0.94282 (9) 0.0112 (4)
C8 0.73831 (12) 0.3647 (5) 1.00557 (10) 0.0128 (4)
H8 0.6888 0.3396 1.0135 0.015*
C9 0.80911 (12) 0.2589 (5) 1.05641 (9) 0.0141 (4)
H9 0.8085 0.1639 1.0991 0.017*
C10 0.88090 (11) 0.2942 (5) 1.04391 (10) 0.0135 (4)
C11 0.88296 (11) 0.4357 (5) 0.98216 (10) 0.0146 (4)
H11 0.9326 0.4580 0.9744 0.018*
C12 0.81210 (11) 0.5442 (5) 0.93190 (9) 0.0133 (4)
H12 0.8133 0.6440 0.8898 0.016*
C13 0.56590 (11) 0.7418 (5) 0.78887 (9) 0.0117 (3)
H13 0.5340 0.7694 0.7411 0.014*
C14 0.64162 (11) 0.5954 (5) 0.81478 (10) 0.0115 (4)
C15 0.66323 (11) 0.6177 (5) 0.88888 (9) 0.0105 (4)
C16 0.68436 (11) 0.4243 (5) 0.77447 (10) 0.0135 (4)
H16 0.7332 0.3085 0.7991 0.016*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.01392 (13) 0.01863 (13) 0.01135 (12) 0.00306 (7) 0.00088 (9) 0.00292 (7)
O1 0.0176 (7) 0.0277 (7) 0.0116 (6) −0.0046 (6) 0.0076 (5) −0.0054 (6)
N1 0.0085 (7) 0.0138 (8) 0.0094 (7) 0.0002 (6) 0.0029 (6) −0.0001 (5)
N2 0.0103 (7) 0.0144 (7) 0.0089 (7) 0.0004 (6) 0.0024 (6) 0.0000 (6)
C1 0.0089 (8) 0.0110 (9) 0.0143 (8) −0.0015 (7) 0.0048 (7) −0.0025 (7)
C2 0.0142 (9) 0.0164 (9) 0.0134 (8) 0.0000 (7) 0.0051 (7) −0.0003 (7)
C3 0.0168 (10) 0.0180 (10) 0.0195 (10) −0.0001 (7) 0.0103 (8) −0.0031 (7)
C4 0.0130 (9) 0.0141 (9) 0.0246 (10) −0.0002 (8) 0.0076 (8) −0.0026 (8)
C5 0.0113 (9) 0.0161 (9) 0.0192 (9) 0.0009 (8) 0.0014 (7) 0.0006 (8)
C6 0.0139 (9) 0.0172 (10) 0.0136 (9) −0.0002 (7) 0.0051 (8) 0.0002 (7)
C7 0.0107 (8) 0.0111 (9) 0.0113 (8) 0.0002 (7) 0.0032 (7) −0.0014 (7)
C8 0.0131 (9) 0.0150 (9) 0.0127 (9) −0.0004 (7) 0.0075 (7) −0.0008 (7)
C9 0.0190 (9) 0.0149 (9) 0.0097 (8) 0.0004 (8) 0.0067 (7) 0.0011 (7)
C10 0.0129 (9) 0.0141 (9) 0.0110 (8) 0.0007 (7) 0.0010 (7) −0.0009 (7)
C11 0.0106 (9) 0.0200 (9) 0.0138 (9) −0.0019 (7) 0.0049 (7) 0.0012 (8)
C12 0.0135 (9) 0.0167 (9) 0.0108 (8) −0.0006 (7) 0.0053 (7) 0.0018 (7)
C13 0.0123 (8) 0.0145 (9) 0.0082 (8) −0.0018 (7) 0.0034 (7) −0.0014 (7)
C14 0.0119 (8) 0.0132 (8) 0.0103 (8) −0.0016 (7) 0.0051 (7) −0.0010 (7)
C15 0.0114 (9) 0.0117 (8) 0.0094 (9) −0.0026 (6) 0.0048 (7) −0.0009 (6)
C16 0.0118 (8) 0.0168 (9) 0.0134 (9) −0.0020 (7) 0.0064 (7) −0.0031 (7)

Geometric parameters (Å, °)

Br1—C10 1.9023 (19) C7—C8 1.398 (3)
O1—C16 1.220 (2) C7—C12 1.401 (2)
N1—C13 1.347 (2) C7—C15 1.472 (3)
N1—N2 1.368 (2) C8—C9 1.387 (3)
N1—C1 1.429 (2) C8—H8 0.9500
N2—C15 1.328 (2) C9—C10 1.388 (3)
C1—C6 1.390 (3) C9—H9 0.9500
C1—C2 1.390 (3) C10—C11 1.386 (3)
C2—C3 1.387 (3) C11—C12 1.385 (3)
C2—H2 0.9500 C11—H11 0.9500
C3—C4 1.386 (3) C12—H12 0.9500
C3—H3 0.9500 C13—C14 1.383 (3)
C4—C5 1.391 (3) C13—H13 0.9500
C4—H4 0.9500 C14—C15 1.430 (2)
C5—C6 1.393 (3) C14—C16 1.455 (3)
C5—H5 0.9500 C16—H16 0.9500
C6—H6 0.9500
C13—N1—N2 112.47 (15) C9—C8—H8 119.5
C13—N1—C1 127.81 (16) C7—C8—H8 119.5
N2—N1—C1 119.70 (15) C8—C9—C10 118.95 (17)
C15—N2—N1 104.93 (14) C8—C9—H9 120.5
C6—C1—C2 121.05 (17) C10—C9—H9 120.5
C6—C1—N1 120.28 (16) C11—C10—C9 121.26 (17)
C2—C1—N1 118.67 (17) C11—C10—Br1 118.24 (14)
C3—C2—C1 119.17 (18) C9—C10—Br1 120.50 (14)
C3—C2—H2 120.4 C12—C11—C10 119.49 (17)
C1—C2—H2 120.4 C12—C11—H11 120.3
C2—C3—C4 120.68 (18) C10—C11—H11 120.3
C2—C3—H3 119.7 C11—C12—C7 120.44 (17)
C4—C3—H3 119.7 C11—C12—H12 119.8
C3—C4—C5 119.61 (18) C7—C12—H12 119.8
C3—C4—H4 120.2 N1—C13—C14 106.98 (16)
C5—C4—H4 120.2 N1—C13—H13 126.5
C4—C5—C6 120.48 (19) C14—C13—H13 126.5
C4—C5—H5 119.8 C13—C14—C15 104.56 (16)
C6—C5—H5 119.8 C13—C14—C16 126.51 (17)
C1—C6—C5 118.99 (18) C15—C14—C16 128.61 (17)
C1—C6—H6 120.5 N2—C15—C14 111.05 (16)
C5—C6—H6 120.5 N2—C15—C7 120.77 (16)
C8—C7—C12 118.90 (17) C14—C15—C7 128.17 (16)
C8—C7—C15 120.71 (16) O1—C16—C14 123.78 (18)
C12—C7—C15 120.40 (16) O1—C16—H16 118.1
C9—C8—C7 120.97 (17) C14—C16—H16 118.1
C13—N1—N2—C15 −0.1 (2) Br1—C10—C11—C12 −179.81 (15)
C1—N1—N2—C15 178.39 (16) C10—C11—C12—C7 −0.8 (3)
C13—N1—C1—C6 −14.2 (3) C8—C7—C12—C11 0.9 (3)
N2—N1—C1—C6 167.59 (17) C15—C7—C12—C11 −178.95 (18)
C13—N1—C1—C2 164.85 (18) N2—N1—C13—C14 0.3 (2)
N2—N1—C1—C2 −13.4 (3) C1—N1—C13—C14 −178.04 (17)
C6—C1—C2—C3 −0.4 (3) N1—C13—C14—C15 −0.3 (2)
N1—C1—C2—C3 −179.44 (17) N1—C13—C14—C16 173.58 (18)
C1—C2—C3—C4 1.0 (3) N1—N2—C15—C14 −0.1 (2)
C2—C3—C4—C5 −0.7 (3) N1—N2—C15—C7 178.76 (16)
C3—C4—C5—C6 −0.1 (3) C13—C14—C15—N2 0.3 (2)
C2—C1—C6—C5 −0.4 (3) C16—C14—C15—N2 −173.44 (19)
N1—C1—C6—C5 178.59 (18) C13—C14—C15—C7 −178.49 (18)
C4—C5—C6—C1 0.7 (3) C16—C14—C15—C7 7.8 (3)
C12—C7—C8—C9 −0.2 (3) C8—C7—C15—N2 37.3 (3)
C15—C7—C8—C9 179.64 (17) C12—C7—C15—N2 −142.86 (19)
C7—C8—C9—C10 −0.6 (3) C8—C7—C15—C14 −143.99 (19)
C8—C9—C10—C11 0.7 (3) C12—C7—C15—C14 35.8 (3)
C8—C9—C10—Br1 −179.51 (15) C13—C14—C16—O1 7.9 (3)
C9—C10—C11—C12 0.0 (3) C15—C14—C16—O1 −179.63 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C12—H12···O1i 0.95 2.49 3.435 (2) 171
C16—H16···O1ii 0.95 2.46 3.288 (3) 145

Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) −x+3/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6403).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Ali, M. A., Shaharyar, M., Siddiqui, A. A., Sriram, D., Yogeeswari, P. & Clercq, E. D. (2007). Acta Pol. Pharm. 63, 423–428. [PubMed]
  3. Asiri, A. M., Al-Youbi, A. O., Alamry, K. A., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2157. [DOI] [PMC free article] [PubMed]
  4. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Kaushik, D., Khan, S. A., Chawla, G. & Kumar, S. (2010). Eur. J. Med. Chem. 45, 3943–3949. [DOI] [PubMed]
  7. Krishnamurthy, M., Li, W. & Moore, B. M. (2004). Bioorg. Med. Chem. 12, 393–404. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811036841/hb6403sup1.cif

e-67-o2650-sup1.cif (17.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036841/hb6403Isup2.hkl

e-67-o2650-Isup2.hkl (124.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036841/hb6403Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES