Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):o2594. doi: 10.1107/S1600536811035598

Hydrogen-bond inter­actions in morpholinium bromide

Kamentheren Padayachy a, Zolani Mgcima a, Manuel A Fernandes a, Helder M Marques a, Alvaro S de Sousa a,*
PMCID: PMC3201370  PMID: 22058749

Abstract

In the title compound, C4H10NO+·Br, which was synthesized by dehydration of diethano­lamine with HBr, morpholinium and bromide ions are linked into chains by N—H⋯Br hydrogen bonds describing a C 2 1(4) graph-set motif. Weaker bifurcated N—H⋯Br inter­actions join centrosymmetrically related chains through alternating binary graph-set R 4 2(8) and R 2 2(4) motifs, to form ladders along [100]. In addition, C—H⋯O inter­actions between centrosymmetric morpholinium cations link ladders, via Inline graphic(8) motifs, to yield sheets parallel to (101), which in turn are crosslinked by weak C—H⋯O inter­actions, related across a glide plane, to form a three-dimensional network.

Related literature

For the structures of related morpholinium salts, see: Loehlin & Okasako (2007); Mafud et al. (2011); Swaminathan et al. (1976); Koroniak et al. (2000); Turnbull (1997); Mazur et al. (2007); Yao (2010); Christensen et al. (1993). For the synthesis, see: Pettit et al. (1964). For the graph-set analysis, see: Bernstein et al. (1995).graphic file with name e-67-o2594-scheme1.jpg

Experimental

Crystal data

  • C4H10NO+·Br

  • M r = 168.04

  • Monoclinic, Inline graphic

  • a = 6.1247 (2) Å

  • b = 10.3063 (3) Å

  • c = 10.1141 (3) Å

  • β = 100.312 (2)°

  • V = 628.12 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.44 mm−1

  • T = 173 K

  • 0.40 × 0.20 × 0.09 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: integration (face indexed absorption corrections carried out with XPREP; Sheldrick, 2008) T min = 0.183, T max = 0.595

  • 11662 measured reflections

  • 1516 independent reflections

  • 1314 reflections with I > 2σ(I)

  • R int = 0.210

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.100

  • S = 1.03

  • 1516 reflections

  • 64 parameters

  • H-atom parameters constrained

  • Δρmax = 1.07 e Å−3

  • Δρmin = −1.38 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1997); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811035598/lr2027sup1.cif

e-67-o2594-sup1.cif (17.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035598/lr2027Isup2.hkl

e-67-o2594-Isup2.hkl (73.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811035598/lr2027Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br1 0.92 2.52 3.331 (2) 148
N1—H1A⋯Br1i 0.92 2.89 3.389 (2) 115
N1—H1B⋯Br1ii 0.92 2.40 3.292 (2) 164
C4—H4A⋯O1iii 0.99 2.52 3.366 (4) 143
C1—H1C⋯O1iv 0.99 2.59 3.498 (4) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by the National Research Foundation (South Africa).

supplementary crystallographic information

Comment

The structures and hydrogen bonding of several salts of morpholinium and its derivatives have been reported (Loehlin & Okasako, 2007; Mafud et al., 2011; Swaminathan et al., 1976; Koroniak et al., 2000 ; Turnbull, 1997; Mazur et al., 2007; Yao, 2010; Christensen et al., 1993). The title compound, morpholinium bromide, contains a single quaternary nitrogen donor (Figure1) and weak N-H···Br interactions are observable in the crystal structure. The morpholinium and bromide ions are joined into chains along the a-axis through N-H···Br hydrogen bonds in a motif of graph set C21(4). Chains are joined to form ladders by weak, bifurcated N-H···Br interactions at ammonium hydrogen, H1A, (Figure 2). Alternating ring motifs R42(8) and R22(4) describe the binary graph-set for ladders along [100]. Weak C4-H4A···O1 interactions between centrosymmetric morpholinium cations link ladders,via R22(8) motifs, to yield sheets parallel to the ac plane, which in turn are weakly joined by C1-H1C···O1 interactions (Figure 3) across a glide plane perpendicular to [010], glide component (0, 0, 0.5), to form a three dimensional network.

Experimental

Morpholinium Bromide was obtained as the minor product of the synthesis reported by Pettit et al. (1964). Diethanolamine (12 g, 0.114 mol) was added, with cooling, to 100 mL of 48% HBr. The reaction vessel was fitted with a Vigreaux column and Dean-Stark apparatus and the solution heated collecting approximately 70 mL of water through azeotropic distillation. The remaining HBr was removed under reduced pressure to yield viscous orange oil that crystallized upon cooling. The pure crystalline sample product was obtained by several recrystallisations from an ethanol-diethyl ether solution.

1H(D2O, 300 MHz) 3.667 (4H, t, CH2NH), 3.779 (4H, t, CH2O).

Refinement

Hydrogen atoms were visible in the difference map and those bonded to carbon atoms were positioned geometrically and allowed for as riding atoms with C—H = 0.99 Å (CH2) and N—H = 0.92 Å (NH2). The coordinates of hydrogen atoms involved in hydrogen bonding were refined freely. During the refinements the Uiso(H) values were set at 1.2Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (1), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Ring motifs (a) R22(4) and (b) R42(8) arising from intermolecular N-H···Br, and (c) R22(8) from C-H···O interactions, in sheets parallel to the ac plane. [symmetry codes: (i) 1-x,-y,-z; (ii) x-1,y,z; (iii) 1-x, -y,1-z;]

Fig. 3.

Fig. 3.

Intermolecular C1-H1C···O1 interactions linking sheets into a three dimensional network.

Crystal data

C4H10NO+·Br F(000) = 336
Mr = 168.04 Dx = 1.777 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5677 reflections
a = 6.1247 (2) Å θ = 2.9–28.3°
b = 10.3063 (3) Å µ = 6.44 mm1
c = 10.1141 (3) Å T = 173 K
β = 100.312 (2)° Needle, colourless
V = 628.12 (3) Å3 0.40 × 0.20 × 0.09 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 1516 independent reflections
Radiation source: fine-focus sealed tube 1314 reflections with I > 2σ(I)
graphite Rint = 0.210
φ and ω scans θmax = 28.0°, θmin = 2.9°
Absorption correction: integration (face indexed absorption corrections carried out with XPREP; Sheldrick, 2008) h = −8→8
Tmin = 0.183, Tmax = 0.595 k = −13→13
11662 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0518P)2] where P = (Fo2 + 2Fc2)/3
1516 reflections (Δ/σ)max = 0.002
64 parameters Δρmax = 1.07 e Å3
0 restraints Δρmin = −1.38 e Å3

Special details

Experimental. Intensity data were collected on a Bruker APEX II CCD area detector diffractometer with graphite monochromated Mo Kα radiation (50 kV, 30 mA) using the APEX 2 (Bruker, 2005) data collection software. The collection method involved ω-scans of width 0.5° and 512 x 512 bit data frames. Data reduction was carried out using the program SAINT-Plus (Bruker, 2005). The crystal structure was solved by direct methods using SHELXTL (Sheldrick, 2008). Non-hydrogen atoms were first refined isotropically followed by anisotropic refinement by full matrix least-squares calculations based on F2 using SHELXTL.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.74904 (4) 0.11971 (3) 0.07284 (3) 0.02454 (16)
O1 0.2489 (4) 0.10940 (17) 0.4694 (3) 0.0263 (5)
N1 0.2813 (4) 0.0830 (2) 0.1937 (2) 0.0199 (5)
H1A 0.3739 0.0758 0.1318 0.024*
H1B 0.1372 0.0808 0.1480 0.024*
C1 0.3228 (5) 0.2082 (3) 0.2657 (3) 0.0243 (6)
H1C 0.2788 0.2807 0.2024 0.029*
H1D 0.4831 0.2170 0.3026 0.029*
C4 0.3199 (5) −0.0280 (3) 0.2893 (3) 0.0246 (6)
H4A 0.4801 −0.0347 0.3272 0.029*
H4B 0.2732 −0.1098 0.2410 0.029*
C2 0.1926 (5) 0.2149 (3) 0.3781 (3) 0.0273 (6)
H2A 0.2241 0.2980 0.4268 0.033*
H2B 0.0319 0.2119 0.3404 0.033*
C3 0.1915 (5) −0.0094 (3) 0.4004 (3) 0.0272 (6)
H3A 0.0308 −0.0095 0.3628 0.033*
H3B 0.2221 −0.0824 0.4646 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0153 (2) 0.0332 (2) 0.0242 (2) −0.00109 (9) 0.00118 (14) −0.00764 (10)
O1 0.0358 (13) 0.0301 (11) 0.0127 (10) 0.0010 (8) 0.0031 (9) 0.0004 (7)
N1 0.0159 (11) 0.0289 (11) 0.0147 (11) 0.0018 (8) 0.0021 (9) −0.0013 (8)
C1 0.0259 (14) 0.0220 (13) 0.0238 (14) −0.0055 (10) 0.0014 (11) 0.0010 (10)
C4 0.0274 (14) 0.0238 (14) 0.0213 (14) 0.0042 (10) 0.0014 (11) −0.0004 (10)
C2 0.0336 (16) 0.0246 (14) 0.0225 (15) 0.0050 (11) 0.0018 (13) −0.0047 (11)
C3 0.0340 (15) 0.0245 (14) 0.0230 (14) −0.0033 (11) 0.0053 (12) 0.0037 (11)

Geometric parameters (Å, °)

O1—C3 1.422 (3) C1—H1D 0.9900
O1—C2 1.428 (3) C4—C3 1.495 (4)
N1—C1 1.481 (3) C4—H4A 0.9900
N1—C4 1.490 (3) C4—H4B 0.9900
N1—H1A 0.9200 C2—H2A 0.9900
N1—H1B 0.9200 C2—H2B 0.9900
C1—C2 1.502 (4) C3—H3A 0.9900
C1—H1C 0.9900 C3—H3B 0.9900
C3—O1—C2 109.1 (2) N1—C4—H4B 109.6
C1—N1—C4 110.9 (2) C3—C4—H4B 109.6
C1—N1—H1A 109.5 H4A—C4—H4B 108.1
C4—N1—H1A 109.5 O1—C2—C1 110.8 (2)
C1—N1—H1B 109.5 O1—C2—H2A 109.5
C4—N1—H1B 109.5 C1—C2—H2A 109.5
H1A—N1—H1B 108.1 O1—C2—H2B 109.5
N1—C1—C2 110.1 (2) C1—C2—H2B 109.5
N1—C1—H1C 109.6 H2A—C2—H2B 108.1
C2—C1—H1C 109.6 O1—C3—C4 111.3 (2)
N1—C1—H1D 109.6 O1—C3—H3A 109.4
C2—C1—H1D 109.6 C4—C3—H3A 109.4
H1C—C1—H1D 108.1 O1—C3—H3B 109.4
N1—C4—C3 110.2 (2) C4—C3—H3B 109.4
N1—C4—H4A 109.6 H3A—C3—H3B 108.0
C3—C4—H4A 109.6
C4—N1—C1—C2 −52.4 (3) N1—C1—C2—O1 57.9 (3)
C1—N1—C4—C3 52.1 (3) C2—O1—C3—C4 62.3 (3)
C3—O1—C2—C1 −62.4 (3) N1—C4—C3—O1 −57.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···Br1 0.92 2.52 3.331 (2) 148
N1—H1A···Br1i 0.92 2.89 3.389 (2) 115
N1—H1B···Br1ii 0.92 2.40 3.292 (2) 164
C4—H4A···O1iii 0.99 2.52 3.366 (4) 143
C1—H1C···O1iv 0.99 2.59 3.498 (4) 152

Symmetry codes: (i) −x+1, −y, −z; (ii) x−1, y, z; (iii) −x+1, −y, −z+1; (iv) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LR2027).

References

  1. Bernstein, J., Davis, R. E., Shinoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2005). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Christensen, A. N., Hazell, R. G., Lehmann, M. S. & Neilsen, M. (1993). Acta Chem. Scand. 47, 753–756.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Koroniak, H., Modzelewska, A. & Kosturkiewicz, Z. (2000). Pol. J. Chem. 74, 1031–1034.
  6. Loehlin, J. H. & Okasako, E. L. N. (2007). Acta Cryst. B63, 132–141. [DOI] [PubMed]
  7. Mafud, A. C., Sanches, E. A. & Gambardella, M. T. (2011). Acta Cryst. E67, o2008. [DOI] [PMC free article] [PubMed]
  8. Mazur, L., Pitucha, M. & Rzaczynska, Z. (2007). Acta Cryst. E63, o4576.
  9. Pettit, G. R., Chamberland, M. R., Blonda, D. S. & Vickers, M. A. (1964). Can. J. Chem. 42, 1699–1706.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Swaminathan, S., Murthy, G. S. & Lessinger, L. (1976). Acta Cryst. B32, 3140–3142.
  13. Turnbull, M. M. (1997). Acta Cryst. C53, 818–820.
  14. Yao, J.-Y. (2010). Acta Cryst. E66, o1375. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811035598/lr2027sup1.cif

e-67-o2594-sup1.cif (17.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035598/lr2027Isup2.hkl

e-67-o2594-Isup2.hkl (73.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811035598/lr2027Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES