Abstract
The title compound, C7H10O6, was obtained from a regioselective enzyme-catalysed acylation of d-ribono-1,4-lactone. The five-membered ring of the acylated sugar shows an envelope conformation. In the crystal, the molecules are linked by intermolecular O—H⋯O hydrogen-bonds, forming a one-dimensional polymeric structure parallel to [010]. In addition, packing analysis shows stacking along the b axis.
Related literature
For general background to carbohydrates, see: Corma et al. (2007 ▶); Han et al. (1993 ▶); Simone et al. (2005 ▶). For biocatalysed acylation reactions, see: Díaz-Rodríguez et al. (2005 ▶); Wu et al. (2008 ▶). For related structures, see: Shalaby et al. (1994 ▶); Bye (1979 ▶); Amador et al. (2004 ▶); Sá et al. (2008 ▶); Gress & Jeffrey (1976 ▶).
Experimental
Crystal data
C7H10O6
M r = 190.15
Monoclinic,
a = 6.1409 (4) Å
b = 5.1952 (15) Å
c = 13.1844 (18) Å
β = 95.118 (12)°
V = 418.95 (14) Å3
Z = 2
Mo Kα radiation
μ = 0.13 mm−1
T = 293 K
0.50 × 0.30 × 0.13 mm
Data collection
Enraf–Nonius CAD-4 diffractometer
2164 measured reflections
1346 independent reflections
1015 reflections with I > 2σ(I)
R int = 0.046
3 standard reflections every 200 reflections intensity decay: 1%
Refinement
R[F 2 > 2σ(F 2)] = 0.047
wR(F 2) = 0.135
S = 1.07
1346 reflections
127 parameters
1 restraint
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.29 e Å−3
Δρmin = −0.18 e Å−3
Data collection: CAD-4 Software (Enraf–Nonius, 1989 ▶); cell refinement: SET4 in CAD-4 Software; data reduction: HELENA (Spek, 1996 ▶); program(s) used to solve structure: SIR97 (Altomare et al., 1999 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: PLATON (Spek, 2009 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811038670/lr2026sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038670/lr2026Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536811038670/lr2026Isup3.mol
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O3—H3⋯O4i | 0.85 (5) | 1.95 (5) | 2.781 (3) | 164 (3) |
| O4—H4⋯O2i | 0.85 (5) | 2.15 (5) | 2.910 (3) | 148 (5) |
| O4—H4⋯O3i | 0.85 (5) | 2.41 (6) | 3.086 (4) | 136 (4) |
Symmetry code: (i)
.
Acknowledgments
The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Financiadora de Estudos e Projetos (FINEP) for financial support.
supplementary crystallographic information
Comment
Carbohydrates are valuable sources for the production of synthetic compounds of general relevance (Corma et al., 2007). D-Ribono-1,4-lactone (1) is an inexpensive and abundant sugar derivative that is commercially available from renewable resources (Han et al., 1993, Simone et al., 2005). Many synthetic transformations involving 1 lead to unexpected processes ranging from rearrangements to functional group migrations. In such cases, single-crystal X-ray analysis is the only reliable method for the correct structural and conformational assignments (Sá et al., 2008). Enzyme-catalyzed acylation of sugars is, in general, regioselective. Lipases (EC 3.1.1.3) are the most used biocatalyst for this purpose, especially Candida antarctica lipase B - CAL-B (Díaz-Rodríguez et al., 2005; Wu et al., 2008). We describe herein the crystal structure of 5-O-acetyl-D-ribono-1,4-lactone (2), synthesized from the regioselective acetylation of 1 using CAL-B (Fig. 1).
The molecular structure of the title compound exhibits its 1,4-lactone ring with envelope conformation, which is enveloped on C3 (Fig. 2). Hydroxyl groups are involved in different types of intermolecular O—H···O hydrogen-bonds (Table 1). Hydroxyl group (O3) is the donor for linear hydrogen-bond (O3—H3···O4), whereas hydroxyl group (O4) is the donor for bifurcated interactions (O4—H4···O2 and O4—H4···O3). These interactions link molecules forming one-dimensional zigzag infinite chain parallel to [010] direction. Also, packing analysis shows stack along the b crystallographic axis (Fig. 3).
Experimental
The reaction was initiated by dissolving D-ribono-1,4-lactone (74.0 mg, 0.5 mmol) and vinyl acetate (0.14 ml, 1.5 mmol) in anhydrous acetonitrile (10.0 ml) followed by the addition of CAL-B (10.0 mg, Novozym 435, 10,000 PLU/g). The mixture was shaken at 308 K and 150 rpm for 24 h. The reaction was stopped by filtering off the lipase. Finally, solvent was evaporated and the product 5-O-acetyl-D-ribono-1,4-lactone was obtained as a white solid (94% yield). Careful recrystallization from acetone provided the crystals (413–414 K) suitable for X-ray diffraction analysis.
Refinement
H atoms attached to carbon atoms were placed at their idealized positions with distances of 0.98, 0.97 and 0.96 Å and Ueq fixed at 1.2 and 1.5 times Uiso of the preceding atom for CH, CH2 and CH3, respectively. H atoms of the hydroxyl groups were found from difference map and treated as free atoms. The final refinement of the structure was done averaging all equivalents.
Figures
Fig. 1.
Biocatalyzed acylation reaction.
Fig. 2.
The molecular structure of enantiomeric pair of the title compound showing the atom-labelling scheme. Ellipsoids are drawn at the 40% probability level.
Fig. 3.
Partial packing of the title compound showing hydrogen bonds.
Crystal data
| C7H10O6 | F(000) = 200 |
| Mr = 190.15 | Dx = 1.507 Mg m−3 |
| Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: P 2yb | Cell parameters from 25 reflections |
| a = 6.1409 (4) Å | θ = 3.5–20.5° |
| b = 5.1952 (15) Å | µ = 0.13 mm−1 |
| c = 13.1844 (18) Å | T = 293 K |
| β = 95.118 (12)° | Prismatic, colorless |
| V = 418.95 (14) Å3 | 0.50 × 0.30 × 0.13 mm |
| Z = 2 |
Data collection
| Enraf–Nonius CAD-4 diffractometer | Rint = 0.046 |
| Radiation source: fine-focus sealed tube | θmax = 30.0°, θmin = 1.6° |
| graphite | h = −8→8 |
| ω–2θ scans | k = −7→2 |
| 2164 measured reflections | l = −18→2 |
| 1346 independent reflections | 3 standard reflections every 200 reflections |
| 1015 reflections with I > 2σ(I) | intensity decay: 1% |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.135 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.07 | w = 1/[σ2(Fo2) + (0.0807P)2 + 0.0065P] where P = (Fo2 + 2Fc2)/3 |
| 1346 reflections | (Δ/σ)max < 0.001 |
| 127 parameters | Δρmax = 0.29 e Å−3 |
| 1 restraint | Δρmin = −0.18 e Å−3 |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.4264 (4) | −0.0865 (5) | 0.32056 (19) | 0.0355 (5) | |
| C2 | 0.4464 (4) | 0.1808 (5) | 0.3674 (2) | 0.0344 (5) | |
| H2 | 0.4839 | 0.3062 | 0.3162 | 0.041* | |
| C3 | 0.2154 (4) | 0.2326 (5) | 0.3976 (2) | 0.0364 (6) | |
| H3A | 0.1774 | 0.4155 | 0.3913 | 0.044* | |
| C4 | 0.0742 (4) | 0.0687 (6) | 0.3213 (2) | 0.0405 (6) | |
| H4A | −0.0460 | −0.0050 | 0.3559 | 0.049* | |
| C5 | −0.0206 (5) | 0.2048 (8) | 0.2270 (2) | 0.0507 (8) | |
| H5A | −0.1029 | 0.0850 | 0.1820 | 0.061* | |
| H5B | −0.1181 | 0.3413 | 0.2448 | 0.061* | |
| C6 | 0.1100 (5) | 0.5012 (7) | 0.1095 (2) | 0.0482 (7) | |
| C7 | 0.3079 (6) | 0.5894 (10) | 0.0629 (3) | 0.0660 (11) | |
| H7A | 0.3294 | 0.4848 | 0.0046 | 0.099* | |
| H7B | 0.4329 | 0.5748 | 0.1118 | 0.099* | |
| H7C | 0.2895 | 0.7658 | 0.0422 | 0.099* | |
| O1 | 0.2157 (3) | −0.1406 (4) | 0.29314 (16) | 0.0433 (5) | |
| O2 | 0.5706 (3) | −0.2355 (4) | 0.30942 (17) | 0.0480 (5) | |
| O3 | 0.6139 (3) | 0.1709 (5) | 0.44808 (17) | 0.0449 (5) | |
| O4 | 0.1877 (3) | 0.1377 (5) | 0.49711 (16) | 0.0445 (5) | |
| O5 | 0.1590 (3) | 0.3103 (5) | 0.17745 (16) | 0.0482 (6) | |
| O6 | −0.0705 (4) | 0.5837 (6) | 0.0916 (2) | 0.0666 (8) | |
| H3 | 0.661 (6) | 0.325 (9) | 0.455 (3) | 0.047 (10)* | |
| H4 | 0.265 (7) | 0.229 (12) | 0.540 (4) | 0.070 (14)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0392 (12) | 0.0292 (12) | 0.0375 (12) | −0.0038 (11) | 0.0002 (10) | 0.0020 (11) |
| C2 | 0.0301 (10) | 0.0282 (12) | 0.0445 (13) | −0.0040 (10) | 0.0004 (9) | 0.0007 (11) |
| C3 | 0.0332 (11) | 0.0304 (14) | 0.0452 (13) | 0.0003 (10) | 0.0004 (9) | −0.0002 (11) |
| C4 | 0.0320 (11) | 0.0398 (16) | 0.0489 (14) | −0.0059 (12) | −0.0006 (10) | 0.0034 (13) |
| C5 | 0.0368 (12) | 0.060 (2) | 0.0535 (16) | −0.0001 (15) | −0.0068 (11) | 0.0076 (17) |
| C6 | 0.0556 (16) | 0.0446 (16) | 0.0417 (14) | 0.0035 (16) | −0.0107 (12) | −0.0012 (14) |
| C7 | 0.068 (2) | 0.078 (3) | 0.0513 (18) | −0.002 (2) | 0.0015 (16) | 0.015 (2) |
| O1 | 0.0416 (9) | 0.0331 (10) | 0.0535 (11) | −0.0079 (9) | −0.0054 (8) | −0.0032 (9) |
| O2 | 0.0480 (11) | 0.0389 (12) | 0.0566 (12) | 0.0027 (10) | 0.0018 (9) | −0.0052 (10) |
| O3 | 0.0371 (9) | 0.0401 (13) | 0.0555 (12) | −0.0052 (10) | −0.0078 (8) | −0.0051 (10) |
| O4 | 0.0411 (9) | 0.0487 (13) | 0.0438 (10) | 0.0013 (10) | 0.0033 (8) | −0.0021 (10) |
| O5 | 0.0429 (10) | 0.0534 (14) | 0.0478 (11) | 0.0049 (10) | 0.0014 (8) | 0.0081 (11) |
| O6 | 0.0569 (13) | 0.0666 (18) | 0.0728 (15) | 0.0090 (13) | −0.0140 (11) | 0.0155 (15) |
Geometric parameters (Å, °)
| C1—O2 | 1.195 (3) | C5—O5 | 1.439 (4) |
| C1—O1 | 1.342 (3) | C5—H5A | 0.9700 |
| C1—C2 | 1.521 (4) | C5—H5B | 0.9700 |
| C2—O3 | 1.413 (3) | C6—O6 | 1.192 (4) |
| C2—C3 | 1.531 (4) | C6—O5 | 1.352 (4) |
| C2—H2 | 0.9800 | C6—C7 | 1.482 (5) |
| C3—O4 | 1.425 (4) | C7—H7A | 0.9600 |
| C3—C4 | 1.528 (4) | C7—H7B | 0.9600 |
| C3—H3A | 0.9800 | C7—H7C | 0.9600 |
| C4—O1 | 1.460 (4) | O3—H3 | 0.85 (5) |
| C4—C5 | 1.502 (4) | O4—H4 | 0.85 (5) |
| C4—H4A | 0.9800 | ||
| O2—C1—O1 | 122.6 (3) | C3—C4—H4A | 108.5 |
| O2—C1—C2 | 127.4 (2) | O5—C5—C4 | 107.4 (2) |
| O1—C1—C2 | 110.0 (2) | O5—C5—H5A | 110.2 |
| O3—C2—C1 | 107.4 (2) | C4—C5—H5A | 110.2 |
| O3—C2—C3 | 116.1 (2) | O5—C5—H5B | 110.2 |
| C1—C2—C3 | 102.9 (2) | C4—C5—H5B | 110.2 |
| O3—C2—H2 | 110.0 | H5A—C5—H5B | 108.5 |
| C1—C2—H2 | 110.0 | O6—C6—O5 | 122.9 (3) |
| C3—C2—H2 | 110.0 | O6—C6—C7 | 126.1 (3) |
| O4—C3—C4 | 107.8 (2) | O5—C6—C7 | 111.0 (3) |
| O4—C3—C2 | 111.6 (2) | C6—C7—H7A | 109.5 |
| C4—C3—C2 | 102.4 (2) | C6—C7—H7B | 109.5 |
| O4—C3—H3A | 111.5 | H7A—C7—H7B | 109.5 |
| C4—C3—H3A | 111.5 | C6—C7—H7C | 109.5 |
| C2—C3—H3A | 111.5 | H7A—C7—H7C | 109.5 |
| O1—C4—C5 | 109.6 (3) | H7B—C7—H7C | 109.5 |
| O1—C4—C3 | 105.5 (2) | C1—O1—C4 | 110.9 (2) |
| C5—C4—C3 | 116.0 (3) | C2—O3—H3 | 105 (2) |
| O1—C4—H4A | 108.5 | C3—O4—H4 | 108 (3) |
| C5—C4—H4A | 108.5 | C6—O5—C5 | 116.4 (2) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O3—H3···O4i | 0.85 (5) | 1.95 (5) | 2.781 (3) | 164 (3) |
| O4—H4···O2i | 0.85 (5) | 2.15 (5) | 2.910 (3) | 148 (5) |
| O4—H4···O3i | 0.85 (5) | 2.41 (6) | 3.086 (4) | 136 (4) |
Symmetry codes: (i) −x+1, y+1/2, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LR2026).
References
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Amador, P., Flores, H. & Bernès, S. (2004). Acta Cryst. E60, o904–o906.
- Bye, E. (1979). Acta Chem. Scand. 33, 169–171.
- Corma, A., Iborra, S. & Velty, A. (2007). Chem. Rev. 107, 2411–2502. [DOI] [PubMed]
- Díaz-Rodríguez, A., Fernández, S., Lavandera, I., Ferrero, M. & Gotor, V. (2005). Tetrahedron Lett. 46, 5835–5838.
- Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
- Gress, M. E. & Jeffrey, G. A. (1976). Carbohydr. Res. 50, 159–168.
- Han, S.-Y., Joullié, M. M., Petasis, N. A., Bigorra, J., Corbera, J., Font, J. & Ortuño, R. M. (1993). Tetrahedron 49, 349–362.
- Sá, M. M., Silveira, G. P., Caro, M. S. B. & Ellena, J. (2008). J. Braz. Chem. Soc. 19, 18–23.
- Shalaby, M. A., Fronczek, F. R. & Younathan, E. S. (1994). Carbohydr. Res. 264, 181–190. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Simone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761–5765.
- Spek, A. L. (1996). HELENA University of Utrecht, The Netherlands.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Wu, Q., Xia, A. & Lin, X. (2008). J. Mol. Catal. B Enzym. 54, 76–82.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811038670/lr2026sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038670/lr2026Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536811038670/lr2026Isup3.mol
Additional supplementary materials: crystallographic information; 3D view; checkCIF report



