Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2778. doi: 10.1107/S1600536811038670

5-O-Acetyl-d-ribono-1,4-lactone

Adailton J Bortoluzzi a,*, Damianni Sebrão a, Marcus M Sá a, M G Nascimento a
PMCID: PMC3201372  PMID: 22058818

Abstract

The title compound, C7H10O6, was obtained from a regioselective enzyme-catalysed acyl­ation of d-ribono-1,4-lactone. The five-membered ring of the acyl­ated sugar shows an envelope conformation. In the crystal, the mol­ecules are linked by inter­molecular O—H⋯O hydrogen-bonds, forming a one-dimensional polymeric structure parallel to [010]. In addition, packing analysis shows stacking along the b axis.

Related literature

For general background to carbohydrates, see: Corma et al. (2007); Han et al. (1993); Simone et al. (2005). For biocatalysed acyl­ation reactions, see: Díaz-Rodríguez et al. (2005); Wu et al. (2008). For related structures, see: Shalaby et al. (1994); Bye (1979); Amador et al. (2004); Sá et al. (2008); Gress & Jeffrey (1976).graphic file with name e-67-o2778-scheme1.jpg

Experimental

Crystal data

  • C7H10O6

  • M r = 190.15

  • Monoclinic, Inline graphic

  • a = 6.1409 (4) Å

  • b = 5.1952 (15) Å

  • c = 13.1844 (18) Å

  • β = 95.118 (12)°

  • V = 418.95 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.50 × 0.30 × 0.13 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • 2164 measured reflections

  • 1346 independent reflections

  • 1015 reflections with I > 2σ(I)

  • R int = 0.046

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.135

  • S = 1.07

  • 1346 reflections

  • 127 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: SET4 in CAD-4 Software; data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811038670/lr2026sup1.cif

e-67-o2778-sup1.cif (12.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038670/lr2026Isup2.hkl

e-67-o2778-Isup2.hkl (65.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811038670/lr2026Isup3.mol

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4i 0.85 (5) 1.95 (5) 2.781 (3) 164 (3)
O4—H4⋯O2i 0.85 (5) 2.15 (5) 2.910 (3) 148 (5)
O4—H4⋯O3i 0.85 (5) 2.41 (6) 3.086 (4) 136 (4)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Financiadora de Estudos e Projetos (FINEP) for financial support.

supplementary crystallographic information

Comment

Carbohydrates are valuable sources for the production of synthetic compounds of general relevance (Corma et al., 2007). D-Ribono-1,4-lactone (1) is an inexpensive and abundant sugar derivative that is commercially available from renewable resources (Han et al., 1993, Simone et al., 2005). Many synthetic transformations involving 1 lead to unexpected processes ranging from rearrangements to functional group migrations. In such cases, single-crystal X-ray analysis is the only reliable method for the correct structural and conformational assignments (Sá et al., 2008). Enzyme-catalyzed acylation of sugars is, in general, regioselective. Lipases (EC 3.1.1.3) are the most used biocatalyst for this purpose, especially Candida antarctica lipase B - CAL-B (Díaz-Rodríguez et al., 2005; Wu et al., 2008). We describe herein the crystal structure of 5-O-acetyl-D-ribono-1,4-lactone (2), synthesized from the regioselective acetylation of 1 using CAL-B (Fig. 1).

The molecular structure of the title compound exhibits its 1,4-lactone ring with envelope conformation, which is enveloped on C3 (Fig. 2). Hydroxyl groups are involved in different types of intermolecular O—H···O hydrogen-bonds (Table 1). Hydroxyl group (O3) is the donor for linear hydrogen-bond (O3—H3···O4), whereas hydroxyl group (O4) is the donor for bifurcated interactions (O4—H4···O2 and O4—H4···O3). These interactions link molecules forming one-dimensional zigzag infinite chain parallel to [010] direction. Also, packing analysis shows stack along the b crystallographic axis (Fig. 3).

Experimental

The reaction was initiated by dissolving D-ribono-1,4-lactone (74.0 mg, 0.5 mmol) and vinyl acetate (0.14 ml, 1.5 mmol) in anhydrous acetonitrile (10.0 ml) followed by the addition of CAL-B (10.0 mg, Novozym 435, 10,000 PLU/g). The mixture was shaken at 308 K and 150 rpm for 24 h. The reaction was stopped by filtering off the lipase. Finally, solvent was evaporated and the product 5-O-acetyl-D-ribono-1,4-lactone was obtained as a white solid (94% yield). Careful recrystallization from acetone provided the crystals (413–414 K) suitable for X-ray diffraction analysis.

Refinement

H atoms attached to carbon atoms were placed at their idealized positions with distances of 0.98, 0.97 and 0.96 Å and Ueq fixed at 1.2 and 1.5 times Uiso of the preceding atom for CH, CH2 and CH3, respectively. H atoms of the hydroxyl groups were found from difference map and treated as free atoms. The final refinement of the structure was done averaging all equivalents.

Figures

Fig. 1.

Fig. 1.

Biocatalyzed acylation reaction.

Fig. 2.

Fig. 2.

The molecular structure of enantiomeric pair of the title compound showing the atom-labelling scheme. Ellipsoids are drawn at the 40% probability level.

Fig. 3.

Fig. 3.

Partial packing of the title compound showing hydrogen bonds.

Crystal data

C7H10O6 F(000) = 200
Mr = 190.15 Dx = 1.507 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 25 reflections
a = 6.1409 (4) Å θ = 3.5–20.5°
b = 5.1952 (15) Å µ = 0.13 mm1
c = 13.1844 (18) Å T = 293 K
β = 95.118 (12)° Prismatic, colorless
V = 418.95 (14) Å3 0.50 × 0.30 × 0.13 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.046
Radiation source: fine-focus sealed tube θmax = 30.0°, θmin = 1.6°
graphite h = −8→8
ω–2θ scans k = −7→2
2164 measured reflections l = −18→2
1346 independent reflections 3 standard reflections every 200 reflections
1015 reflections with I > 2σ(I) intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0807P)2 + 0.0065P] where P = (Fo2 + 2Fc2)/3
1346 reflections (Δ/σ)max < 0.001
127 parameters Δρmax = 0.29 e Å3
1 restraint Δρmin = −0.18 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4264 (4) −0.0865 (5) 0.32056 (19) 0.0355 (5)
C2 0.4464 (4) 0.1808 (5) 0.3674 (2) 0.0344 (5)
H2 0.4839 0.3062 0.3162 0.041*
C3 0.2154 (4) 0.2326 (5) 0.3976 (2) 0.0364 (6)
H3A 0.1774 0.4155 0.3913 0.044*
C4 0.0742 (4) 0.0687 (6) 0.3213 (2) 0.0405 (6)
H4A −0.0460 −0.0050 0.3559 0.049*
C5 −0.0206 (5) 0.2048 (8) 0.2270 (2) 0.0507 (8)
H5A −0.1029 0.0850 0.1820 0.061*
H5B −0.1181 0.3413 0.2448 0.061*
C6 0.1100 (5) 0.5012 (7) 0.1095 (2) 0.0482 (7)
C7 0.3079 (6) 0.5894 (10) 0.0629 (3) 0.0660 (11)
H7A 0.3294 0.4848 0.0046 0.099*
H7B 0.4329 0.5748 0.1118 0.099*
H7C 0.2895 0.7658 0.0422 0.099*
O1 0.2157 (3) −0.1406 (4) 0.29314 (16) 0.0433 (5)
O2 0.5706 (3) −0.2355 (4) 0.30942 (17) 0.0480 (5)
O3 0.6139 (3) 0.1709 (5) 0.44808 (17) 0.0449 (5)
O4 0.1877 (3) 0.1377 (5) 0.49711 (16) 0.0445 (5)
O5 0.1590 (3) 0.3103 (5) 0.17745 (16) 0.0482 (6)
O6 −0.0705 (4) 0.5837 (6) 0.0916 (2) 0.0666 (8)
H3 0.661 (6) 0.325 (9) 0.455 (3) 0.047 (10)*
H4 0.265 (7) 0.229 (12) 0.540 (4) 0.070 (14)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0392 (12) 0.0292 (12) 0.0375 (12) −0.0038 (11) 0.0002 (10) 0.0020 (11)
C2 0.0301 (10) 0.0282 (12) 0.0445 (13) −0.0040 (10) 0.0004 (9) 0.0007 (11)
C3 0.0332 (11) 0.0304 (14) 0.0452 (13) 0.0003 (10) 0.0004 (9) −0.0002 (11)
C4 0.0320 (11) 0.0398 (16) 0.0489 (14) −0.0059 (12) −0.0006 (10) 0.0034 (13)
C5 0.0368 (12) 0.060 (2) 0.0535 (16) −0.0001 (15) −0.0068 (11) 0.0076 (17)
C6 0.0556 (16) 0.0446 (16) 0.0417 (14) 0.0035 (16) −0.0107 (12) −0.0012 (14)
C7 0.068 (2) 0.078 (3) 0.0513 (18) −0.002 (2) 0.0015 (16) 0.015 (2)
O1 0.0416 (9) 0.0331 (10) 0.0535 (11) −0.0079 (9) −0.0054 (8) −0.0032 (9)
O2 0.0480 (11) 0.0389 (12) 0.0566 (12) 0.0027 (10) 0.0018 (9) −0.0052 (10)
O3 0.0371 (9) 0.0401 (13) 0.0555 (12) −0.0052 (10) −0.0078 (8) −0.0051 (10)
O4 0.0411 (9) 0.0487 (13) 0.0438 (10) 0.0013 (10) 0.0033 (8) −0.0021 (10)
O5 0.0429 (10) 0.0534 (14) 0.0478 (11) 0.0049 (10) 0.0014 (8) 0.0081 (11)
O6 0.0569 (13) 0.0666 (18) 0.0728 (15) 0.0090 (13) −0.0140 (11) 0.0155 (15)

Geometric parameters (Å, °)

C1—O2 1.195 (3) C5—O5 1.439 (4)
C1—O1 1.342 (3) C5—H5A 0.9700
C1—C2 1.521 (4) C5—H5B 0.9700
C2—O3 1.413 (3) C6—O6 1.192 (4)
C2—C3 1.531 (4) C6—O5 1.352 (4)
C2—H2 0.9800 C6—C7 1.482 (5)
C3—O4 1.425 (4) C7—H7A 0.9600
C3—C4 1.528 (4) C7—H7B 0.9600
C3—H3A 0.9800 C7—H7C 0.9600
C4—O1 1.460 (4) O3—H3 0.85 (5)
C4—C5 1.502 (4) O4—H4 0.85 (5)
C4—H4A 0.9800
O2—C1—O1 122.6 (3) C3—C4—H4A 108.5
O2—C1—C2 127.4 (2) O5—C5—C4 107.4 (2)
O1—C1—C2 110.0 (2) O5—C5—H5A 110.2
O3—C2—C1 107.4 (2) C4—C5—H5A 110.2
O3—C2—C3 116.1 (2) O5—C5—H5B 110.2
C1—C2—C3 102.9 (2) C4—C5—H5B 110.2
O3—C2—H2 110.0 H5A—C5—H5B 108.5
C1—C2—H2 110.0 O6—C6—O5 122.9 (3)
C3—C2—H2 110.0 O6—C6—C7 126.1 (3)
O4—C3—C4 107.8 (2) O5—C6—C7 111.0 (3)
O4—C3—C2 111.6 (2) C6—C7—H7A 109.5
C4—C3—C2 102.4 (2) C6—C7—H7B 109.5
O4—C3—H3A 111.5 H7A—C7—H7B 109.5
C4—C3—H3A 111.5 C6—C7—H7C 109.5
C2—C3—H3A 111.5 H7A—C7—H7C 109.5
O1—C4—C5 109.6 (3) H7B—C7—H7C 109.5
O1—C4—C3 105.5 (2) C1—O1—C4 110.9 (2)
C5—C4—C3 116.0 (3) C2—O3—H3 105 (2)
O1—C4—H4A 108.5 C3—O4—H4 108 (3)
C5—C4—H4A 108.5 C6—O5—C5 116.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3···O4i 0.85 (5) 1.95 (5) 2.781 (3) 164 (3)
O4—H4···O2i 0.85 (5) 2.15 (5) 2.910 (3) 148 (5)
O4—H4···O3i 0.85 (5) 2.41 (6) 3.086 (4) 136 (4)

Symmetry codes: (i) −x+1, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LR2026).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Amador, P., Flores, H. & Bernès, S. (2004). Acta Cryst. E60, o904–o906.
  3. Bye, E. (1979). Acta Chem. Scand. 33, 169–171.
  4. Corma, A., Iborra, S. & Velty, A. (2007). Chem. Rev. 107, 2411–2502. [DOI] [PubMed]
  5. Díaz-Rodríguez, A., Fernández, S., Lavandera, I., Ferrero, M. & Gotor, V. (2005). Tetrahedron Lett. 46, 5835–5838.
  6. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  7. Gress, M. E. & Jeffrey, G. A. (1976). Carbohydr. Res. 50, 159–168.
  8. Han, S.-Y., Joullié, M. M., Petasis, N. A., Bigorra, J., Corbera, J., Font, J. & Ortuño, R. M. (1993). Tetrahedron 49, 349–362.
  9. Sá, M. M., Silveira, G. P., Caro, M. S. B. & Ellena, J. (2008). J. Braz. Chem. Soc. 19, 18–23.
  10. Shalaby, M. A., Fronczek, F. R. & Younathan, E. S. (1994). Carbohydr. Res. 264, 181–190. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Simone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761–5765.
  13. Spek, A. L. (1996). HELENA University of Utrecht, The Netherlands.
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Wu, Q., Xia, A. & Lin, X. (2008). J. Mol. Catal. B Enzym. 54, 76–82.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811038670/lr2026sup1.cif

e-67-o2778-sup1.cif (12.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038670/lr2026Isup2.hkl

e-67-o2778-Isup2.hkl (65.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811038670/lr2026Isup3.mol

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES