Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):o2605. doi: 10.1107/S1600536811035744

(3E,5E)-3,5-Dibenzyl­idene-1-phenethyl­piperidin-4-one

Mohamed Ashraf Ali a, Tan Soo Choon b, Abdulrahman I Almansour c, Tara Shahani d, Hoong-Kun Fun d,*,
PMCID: PMC3201386  PMID: 22058753

Abstract

In the title compound, C27H25NO, the piperidine ring adopts an envelope conformation with the N atom at the flap position. The two benzylidene-benzene rings are oriented at a dihedral angle of 8.5 (1)°. In the crystal, the mol­ecules are linked into centrosymmetric dimers by pairs of inter­molecular C—H⋯O hydrogen bonds. The dimers are connected via C—H⋯π inter­actions involving the phenyl rings.

Related literature

For the biological activity of piperidine compounds, see: Asano et al. (2000); Scriabine (1980); Watson et al. (2000); Risi (2008). For bond-length data, see: Allen et al. (1987). For ring puckering parameters, see: Cremer & Pople (1975).graphic file with name e-67-o2605-scheme1.jpg

Experimental

Crystal data

  • C27H25NO

  • M r = 379.48

  • Monoclinic, Inline graphic

  • a = 11.4785 (2) Å

  • b = 5.8396 (1) Å

  • c = 30.9591 (5) Å

  • β = 106.412 (1)°

  • V = 1990.63 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.36 × 0.30 × 0.11 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.973, T max = 0.992

  • 21942 measured reflections

  • 5877 independent reflections

  • 4370 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.070

  • wR(F 2) = 0.173

  • S = 1.08

  • 5877 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811035744/ci5200sup1.cif

e-67-o2605-sup1.cif (22.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035744/ci5200Isup2.hkl

e-67-o2605-Isup2.hkl (287.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811035744/ci5200Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg3 are centroids of the C1–C6, C14–C19 and C22–C27 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O1i 0.95 2.54 3.425 (3) 155
C15—H15A⋯O1i 0.95 2.49 3.345 (3) 150
C2—H2ACg3ii 0.95 2.88 3.579 (2) 131
C23—H23ACg1iii 0.95 2.99 3.640 (2) 127
C26—H26ACg2iv 0.95 2.89 3.556 (2) 128

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

HKF and TSH thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSH also thanks USM for the award of a research fellowship.

supplementary crystallographic information

Comment

Piperidines are very important compounds because of their presence in numerous alkaloids, pharmaceuticals, agrochemical and as synthetic intermediates. Biologically active alkaloids of the substituted piperidine ring system have been targeted for their total or partial synthesis. During a fairly recent 10-year period, several thousand piperidine compounds have been mentioned in clinical and preclinical studies (Watson et al., 2000). Selective inhibition of a number of enzymes involved in the binding and processing of glycoproteins has rendered piperidine alkaloids as important tools in the study of biochemical pathways (Asano et al., 2000). Piperidine derivatives are found to possess pharmacological activity and form an essential part of the molecular structures of important drugs such as raloxifene and minoxidil (Risi, 2008). A new neuroleptics has found that the piperidine derivatives have high affinity for CNS (Scriabine, 1980).

In the title compound (Fig. 1), the piperidine (N1/C8–C12) ring is attached to three benzene (C1–C6), (C14–C19) and (C22–C27) rings via butane (C6–C8) and prop-1-ene (C20–C22) groups. The piperidine ring adopts an envelope conformation (Cremer & Pople, 1975) with puckering parameters of Q = 0.556 (2) Å, Θ = 60.3 (2)° and φ = 357.5 (2)°. Atom N1 deviates from the C8-C12 plane by 0.738 (2) Å. The two benzyl phenyl rings are oriented at a dihedral angle of 8.5 (1)°. The bond lengths (Allen et al.,1987) and angles are within normal ranges.

In the crystal structure (Fig. 2), intermolecular C15—H15A···O1 and C13—H13A···O1 hydrogen bonds link the molecules into centrosymmetric dimers each containing two R12(6) ring motifs. In addition, the crystal structure is stabilized by C—H···π interactions (Table 1).

Experimental

A mixture of 1-phenethyl-4-piperonidone (0.001 mmol) and benzaldehyde (0.002 mmol) were dissolved in methanol (10 ml) and 30% sodium hydroxide solution (5 ml) was added. The mixture was stirred for 5 h. After completion of the reaction as evident from TLC, the mixture was poured into crushed ice and then was neutralized with conentrated HCl. The precipitated solid was filtered, washed with water and recrystallized from ethanol to obtain the title compound as light yellow crystals.

Refinement

H atoms were positioned geometrically [C–H = 0.95 or 0.99 Å] and refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C27H25NO F(000) = 808
Mr = 379.48 Dx = 1.266 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5149 reflections
a = 11.4785 (2) Å θ = 2.7–30.1°
b = 5.8396 (1) Å µ = 0.08 mm1
c = 30.9591 (5) Å T = 296 K
β = 106.412 (1)° Plate, light yellow
V = 1990.63 (6) Å3 0.36 × 0.30 × 0.11 mm
Z = 4

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 5877 independent reflections
Radiation source: fine-focus sealed tube 4370 reflections with I > 2σ(I)
graphite Rint = 0.048
φ and ω scans θmax = 30.2°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −16→16
Tmin = 0.973, Tmax = 0.992 k = −8→8
21942 measured reflections l = −43→43

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0585P)2 + 1.7928P] where P = (Fo2 + 2Fc2)/3
5877 reflections (Δ/σ)max = 0.001
262 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.94565 (15) 0.2948 (3) 0.03565 (5) 0.0356 (4)
N1 0.66007 (14) −0.1134 (3) −0.01094 (5) 0.0206 (3)
C1 0.82777 (17) −0.3600 (4) 0.13159 (7) 0.0236 (4)
H1A 0.8069 −0.4400 0.1037 0.028*
C2 0.80770 (18) −0.4622 (4) 0.16937 (7) 0.0279 (4)
H2A 0.7710 −0.6092 0.1670 0.033*
C3 0.84119 (18) −0.3500 (4) 0.21060 (7) 0.0293 (5)
H3A 0.8261 −0.4188 0.2363 0.035*
C4 0.89693 (18) −0.1369 (4) 0.21413 (7) 0.0272 (4)
H4A 0.9221 −0.0614 0.2424 0.033*
C5 0.91570 (17) −0.0350 (4) 0.17640 (6) 0.0235 (4)
H5A 0.9548 0.1099 0.1793 0.028*
C6 0.87861 (16) −0.1397 (3) 0.13407 (6) 0.0204 (4)
C7 0.89514 (16) −0.0098 (3) 0.09573 (6) 0.0205 (4)
H7A 0.9543 0.1083 0.1035 0.025*
C8 0.84016 (16) −0.0302 (3) 0.05124 (6) 0.0196 (4)
C9 0.87531 (17) 0.1378 (4) 0.02060 (6) 0.0222 (4)
C10 0.82163 (16) 0.1054 (3) −0.02901 (6) 0.0195 (4)
C11 0.72482 (17) −0.0742 (3) −0.04479 (6) 0.0212 (4)
H11A 0.6666 −0.0240 −0.0733 0.025*
H11B 0.7626 −0.2191 −0.0506 0.025*
C12 0.74518 (17) −0.2049 (3) 0.03011 (6) 0.0210 (4)
H12A 0.7849 −0.3440 0.0226 0.025*
H12B 0.7001 −0.2486 0.0518 0.025*
C13 0.86363 (16) 0.2420 (3) −0.05619 (6) 0.0207 (4)
H13A 0.9225 0.3511 −0.0411 0.025*
C14 0.83292 (16) 0.2494 (3) −0.10568 (6) 0.0196 (4)
C15 0.86569 (17) 0.4483 (4) −0.12484 (6) 0.0215 (4)
H15A 0.9045 0.5699 −0.1058 0.026*
C16 0.84249 (17) 0.4707 (4) −0.17115 (6) 0.0236 (4)
H16A 0.8645 0.6075 −0.1835 0.028*
C17 0.78731 (17) 0.2938 (4) −0.19943 (6) 0.0236 (4)
H17A 0.7717 0.3088 −0.2311 0.028*
C18 0.75506 (17) 0.0949 (4) −0.18125 (7) 0.0238 (4)
H18A 0.7174 −0.0266 −0.2006 0.029*
C19 0.77752 (16) 0.0719 (3) −0.13486 (6) 0.0213 (4)
H19A 0.7551 −0.0654 −0.1228 0.026*
C20 0.55955 (17) −0.2752 (4) −0.02625 (6) 0.0257 (4)
H20A 0.5255 −0.3081 −0.0009 0.031*
H20B 0.5918 −0.4207 −0.0346 0.031*
C21 0.45702 (17) −0.1920 (4) −0.06630 (6) 0.0279 (5)
H21A 0.3815 −0.2703 −0.0651 0.034*
H21B 0.4454 −0.0264 −0.0620 0.034*
C22 0.47052 (16) −0.2249 (4) −0.11326 (6) 0.0219 (4)
C23 0.42776 (17) −0.0546 (4) −0.14575 (7) 0.0250 (4)
H23A 0.3951 0.0829 −0.1376 0.030*
C24 0.43255 (18) −0.0842 (4) −0.18977 (7) 0.0301 (5)
H24A 0.4027 0.0320 −0.2116 0.036*
C25 0.48105 (19) −0.2839 (4) −0.20181 (7) 0.0321 (5)
H25A 0.4844 −0.3046 −0.2319 0.039*
C26 0.52451 (18) −0.4527 (4) −0.17005 (7) 0.0297 (5)
H26A 0.5584 −0.5888 −0.1782 0.036*
C27 0.51871 (17) −0.4237 (4) −0.12612 (7) 0.0254 (4)
H27A 0.5481 −0.5413 −0.1046 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0454 (9) 0.0320 (9) 0.0238 (7) −0.0209 (8) 0.0005 (6) 0.0003 (7)
N1 0.0206 (7) 0.0229 (8) 0.0171 (7) −0.0057 (7) 0.0032 (6) 0.0018 (6)
C1 0.0203 (8) 0.0207 (10) 0.0258 (9) 0.0000 (8) −0.0002 (7) 0.0029 (8)
C2 0.0223 (9) 0.0249 (10) 0.0328 (10) −0.0009 (8) 0.0017 (8) 0.0097 (9)
C3 0.0247 (9) 0.0348 (12) 0.0289 (10) 0.0011 (9) 0.0083 (8) 0.0088 (9)
C4 0.0256 (9) 0.0329 (12) 0.0231 (9) 0.0019 (9) 0.0068 (8) 0.0004 (9)
C5 0.0209 (8) 0.0227 (10) 0.0261 (9) 0.0000 (8) 0.0053 (7) −0.0011 (8)
C6 0.0164 (8) 0.0202 (9) 0.0230 (9) 0.0015 (7) 0.0030 (7) 0.0027 (8)
C7 0.0203 (8) 0.0175 (9) 0.0230 (9) −0.0006 (7) 0.0050 (7) 0.0022 (7)
C8 0.0202 (8) 0.0152 (9) 0.0222 (8) −0.0015 (7) 0.0038 (7) 0.0004 (7)
C9 0.0221 (8) 0.0213 (10) 0.0210 (9) −0.0039 (8) 0.0027 (7) −0.0001 (8)
C10 0.0189 (8) 0.0195 (9) 0.0190 (8) −0.0022 (7) 0.0034 (6) −0.0019 (7)
C11 0.0213 (8) 0.0213 (10) 0.0206 (8) −0.0056 (7) 0.0054 (7) −0.0017 (7)
C12 0.0222 (8) 0.0197 (9) 0.0195 (8) −0.0019 (7) 0.0032 (7) 0.0004 (7)
C13 0.0204 (8) 0.0197 (9) 0.0210 (8) −0.0035 (7) 0.0039 (7) −0.0024 (7)
C14 0.0169 (8) 0.0211 (9) 0.0215 (8) −0.0014 (7) 0.0066 (6) 0.0001 (7)
C15 0.0212 (8) 0.0208 (9) 0.0226 (9) −0.0043 (7) 0.0061 (7) −0.0012 (8)
C16 0.0240 (9) 0.0224 (10) 0.0253 (9) −0.0009 (8) 0.0085 (7) 0.0027 (8)
C17 0.0218 (8) 0.0286 (11) 0.0212 (8) 0.0009 (8) 0.0076 (7) −0.0009 (8)
C18 0.0235 (9) 0.0231 (10) 0.0258 (9) −0.0011 (8) 0.0082 (7) −0.0052 (8)
C19 0.0221 (8) 0.0186 (9) 0.0246 (9) −0.0023 (7) 0.0089 (7) −0.0013 (8)
C20 0.0242 (9) 0.0311 (11) 0.0215 (9) −0.0114 (9) 0.0056 (7) −0.0004 (8)
C21 0.0216 (9) 0.0379 (12) 0.0242 (9) −0.0059 (9) 0.0062 (7) −0.0072 (9)
C22 0.0156 (8) 0.0251 (10) 0.0232 (9) −0.0034 (7) 0.0026 (7) −0.0033 (8)
C23 0.0189 (8) 0.0236 (10) 0.0309 (10) −0.0015 (8) 0.0045 (7) −0.0038 (8)
C24 0.0257 (9) 0.0349 (13) 0.0272 (10) −0.0036 (9) 0.0034 (8) 0.0050 (9)
C25 0.0258 (10) 0.0464 (14) 0.0246 (10) −0.0071 (10) 0.0079 (8) −0.0083 (10)
C26 0.0216 (9) 0.0324 (12) 0.0347 (11) −0.0006 (9) 0.0073 (8) −0.0113 (10)
C27 0.0204 (8) 0.0242 (10) 0.0287 (10) 0.0007 (8) 0.0022 (7) −0.0020 (8)

Geometric parameters (Å, °)

O1—C9 1.223 (2) C14—C15 1.403 (3)
N1—C20 1.463 (2) C14—C19 1.404 (3)
N1—C11 1.464 (2) C15—C16 1.388 (3)
N1—C12 1.467 (2) C15—H15A 0.95
C1—C2 1.389 (3) C16—C17 1.386 (3)
C1—C6 1.406 (3) C16—H16A 0.95
C1—H1A 0.95 C17—C18 1.386 (3)
C2—C3 1.389 (3) C17—H17A 0.95
C2—H2A 0.95 C18—C19 1.392 (3)
C3—C4 1.390 (3) C18—H18A 0.95
C3—H3A 0.95 C19—H19A 0.95
C4—C5 1.381 (3) C20—C21 1.528 (3)
C4—H4A 0.95 C20—H20A 0.99
C5—C6 1.399 (3) C20—H20B 0.99
C5—H5A 0.95 C21—C22 1.517 (3)
C6—C7 1.466 (3) C21—H21A 0.99
C7—C8 1.348 (2) C21—H21B 0.99
C7—H7A 0.95 C22—C27 1.392 (3)
C8—C9 1.497 (3) C22—C23 1.401 (3)
C8—C12 1.501 (3) C23—C24 1.390 (3)
C9—C10 1.497 (3) C23—H23A 0.95
C10—C13 1.344 (3) C24—C25 1.388 (3)
C10—C11 1.506 (3) C24—H24A 0.95
C11—H11A 0.99 C25—C26 1.382 (3)
C11—H11B 0.99 C25—H25A 0.95
C12—H12A 0.99 C26—C27 1.391 (3)
C12—H12B 0.99 C26—H26A 0.95
C13—C14 1.473 (3) C27—H27A 0.95
C13—H13A 0.95
C20—N1—C11 112.49 (15) C15—C14—C19 117.78 (17)
C20—N1—C12 108.47 (15) C15—C14—C13 116.76 (17)
C11—N1—C12 109.18 (14) C19—C14—C13 125.42 (18)
C2—C1—C6 120.81 (19) C16—C15—C14 121.22 (18)
C2—C1—H1A 119.6 C16—C15—H15A 119.4
C6—C1—H1A 119.6 C14—C15—H15A 119.4
C3—C2—C1 120.2 (2) C17—C16—C15 120.15 (19)
C3—C2—H2A 119.9 C17—C16—H16A 119.9
C1—C2—H2A 119.9 C15—C16—H16A 119.9
C2—C3—C4 119.76 (19) C18—C17—C16 119.66 (18)
C2—C3—H3A 120.1 C18—C17—H17A 120.2
C4—C3—H3A 120.1 C16—C17—H17A 120.2
C5—C4—C3 119.9 (2) C17—C18—C19 120.45 (19)
C5—C4—H4A 120.1 C17—C18—H18A 119.8
C3—C4—H4A 120.1 C19—C18—H18A 119.8
C4—C5—C6 121.7 (2) C18—C19—C14 120.73 (18)
C4—C5—H5A 119.2 C18—C19—H19A 119.6
C6—C5—H5A 119.2 C14—C19—H19A 119.6
C5—C6—C1 117.59 (18) N1—C20—C21 114.45 (18)
C5—C6—C7 117.23 (18) N1—C20—H20A 108.6
C1—C6—C7 125.18 (18) C21—C20—H20A 108.6
C8—C7—C6 130.63 (18) N1—C20—H20B 108.6
C8—C7—H7A 114.7 C21—C20—H20B 108.6
C6—C7—H7A 114.7 H20A—C20—H20B 107.6
C7—C8—C9 117.20 (17) C22—C21—C20 118.26 (17)
C7—C8—C12 125.30 (17) C22—C21—H21A 107.7
C9—C8—C12 117.49 (16) C20—C21—H21A 107.7
O1—C9—C10 121.46 (17) C22—C21—H21B 107.7
O1—C9—C8 121.10 (17) C20—C21—H21B 107.7
C10—C9—C8 117.44 (16) H21A—C21—H21B 107.1
C13—C10—C9 116.80 (17) C27—C22—C23 118.27 (18)
C13—C10—C11 124.95 (17) C27—C22—C21 122.41 (19)
C9—C10—C11 118.25 (16) C23—C22—C21 119.24 (19)
N1—C11—C10 110.74 (15) C24—C23—C22 120.8 (2)
N1—C11—H11A 109.5 C24—C23—H23A 119.6
C10—C11—H11A 109.5 C22—C23—H23A 119.6
N1—C11—H11B 109.5 C25—C24—C23 119.9 (2)
C10—C11—H11B 109.5 C25—C24—H24A 120.1
H11A—C11—H11B 108.1 C23—C24—H24A 120.1
N1—C12—C8 110.72 (16) C26—C25—C24 119.97 (19)
N1—C12—H12A 109.5 C26—C25—H25A 120.0
C8—C12—H12A 109.5 C24—C25—H25A 120.0
N1—C12—H12B 109.5 C25—C26—C27 120.1 (2)
C8—C12—H12B 109.5 C25—C26—H26A 119.9
H12A—C12—H12B 108.1 C27—C26—H26A 119.9
C10—C13—C14 130.25 (18) C26—C27—C22 120.9 (2)
C10—C13—H13A 114.9 C26—C27—H27A 119.5
C14—C13—H13A 114.9 C22—C27—H27A 119.5
C6—C1—C2—C3 −1.9 (3) C9—C8—C12—N1 −30.1 (2)
C1—C2—C3—C4 −1.2 (3) C9—C10—C13—C14 178.07 (19)
C2—C3—C4—C5 1.8 (3) C11—C10—C13—C14 −2.5 (3)
C3—C4—C5—C6 0.8 (3) C10—C13—C14—C15 163.0 (2)
C4—C5—C6—C1 −3.8 (3) C10—C13—C14—C19 −19.2 (3)
C4—C5—C6—C7 175.79 (18) C19—C14—C15—C16 1.0 (3)
C2—C1—C6—C5 4.3 (3) C13—C14—C15—C16 178.98 (17)
C2—C1—C6—C7 −175.19 (18) C14—C15—C16—C17 −0.8 (3)
C5—C6—C7—C8 −158.6 (2) C15—C16—C17—C18 0.2 (3)
C1—C6—C7—C8 20.9 (3) C16—C17—C18—C19 0.1 (3)
C6—C7—C8—C9 177.81 (19) C17—C18—C19—C14 0.1 (3)
C6—C7—C8—C12 −1.1 (3) C15—C14—C19—C18 −0.6 (3)
C7—C8—C9—O1 −4.1 (3) C13—C14—C19—C18 −178.45 (18)
C12—C8—C9—O1 174.81 (19) C11—N1—C20—C21 −64.8 (2)
C7—C8—C9—C10 175.55 (17) C12—N1—C20—C21 174.35 (16)
C12—C8—C9—C10 −5.5 (3) N1—C20—C21—C22 83.7 (2)
O1—C9—C10—C13 6.6 (3) C20—C21—C22—C27 40.6 (3)
C8—C9—C10—C13 −173.14 (17) C20—C21—C22—C23 −142.6 (2)
O1—C9—C10—C11 −172.94 (19) C27—C22—C23—C24 0.5 (3)
C8—C9—C10—C11 7.4 (3) C21—C22—C23—C24 −176.47 (18)
C20—N1—C11—C10 175.99 (16) C22—C23—C24—C25 −0.5 (3)
C12—N1—C11—C10 −63.6 (2) C23—C24—C25—C26 0.0 (3)
C13—C10—C11—N1 −152.95 (19) C24—C25—C26—C27 0.6 (3)
C9—C10—C11—N1 26.5 (2) C25—C26—C27—C22 −0.6 (3)
C20—N1—C12—C8 −171.40 (16) C23—C22—C27—C26 0.1 (3)
C11—N1—C12—C8 65.7 (2) C21—C22—C27—C26 176.92 (18)
C7—C8—C12—N1 148.79 (19)

Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are centroids of the C1–C6, C14–C19 and C22–C27 phenyl rings, respectively.
D—H···A D—H H···A D···A D—H···A
C13—H13A···O1i 0.95 2.54 3.425 (3) 155
C15—H15A···O1i 0.95 2.49 3.345 (3) 150
C2—H2A···Cg3ii 0.95 2.88 3.579 (2) 131
C23—H23A···Cg1iii 0.95 2.99 3.640 (2) 127
C26—H26A···Cg2iv 0.95 2.89 3.556 (2) 128

Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+1, −y−1, −z; (iii) −x+1, −y, −z; (iv) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5200).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680.
  3. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Risi, C. D. (2008). Tetrahedron Asymmetry, 19, 131–155.
  6. Scriabine, A. P. (1980). Editor. Pharmacology of Antihypertensive Drugs, p. 43. New York: Raven Press.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Watson, P. S., Jiang, B. & Scott, B. A. (2000). Org. Lett. 2, 3679–3681. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811035744/ci5200sup1.cif

e-67-o2605-sup1.cif (22.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035744/ci5200Isup2.hkl

e-67-o2605-Isup2.hkl (287.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811035744/ci5200Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES