Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2700. doi: 10.1107/S1600536811037652

4-(1,3-Benzothia­zol-2-yl)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one

Imane Chakib a, Abdelfettah Zerzouf a, Youssef Kandri Rodi b, El Mokhtar Essassi a, Seik Weng Ng c,d,*
PMCID: PMC3201387  PMID: 22064705

Abstract

The central five-membered ring of the title compound, C18H15N3OS, is almost planar (r.m.s. deviation = 0.028 Å) and the benzothia­zole fused-ring system is close to coplanar with this ring [dihedral angle = 6.1 (1)°]. The phenyl substituent is twisted by 62.5 (1)°.

Related literature

For the structure of the reactant 4-(2,3-dihydro-1,3-benzothiazol-2-ylidene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one, see: Chakibe et al. (2010).graphic file with name e-67-o2700-scheme1.jpg

Experimental

Crystal data

  • C18H15N3OS

  • M r = 321.39

  • Monoclinic, Inline graphic

  • a = 8.7428 (2) Å

  • b = 25.7551 (5) Å

  • c = 6.9660 (1) Å

  • β = 97.460 (1)°

  • V = 1555.27 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.50 × 0.10 × 0.10 mm

Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.900, T max = 0.979

  • 18953 measured reflections

  • 3569 independent reflections

  • 2418 reflections with I > 2σ(I)

  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.131

  • S = 1.01

  • 3569 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037652/jh2331sup1.cif

e-67-o2700-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037652/jh2331Isup2.hkl

e-67-o2700-Isup2.hkl (175KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037652/jh2331Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Université Sidi Mohamed Ben Abdallah, Université Mohammed V-Agdal and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

In the study, the tertiary nitrogen atom of the five-membered ring of 4-(2,3-dihydro-1,3-benzothiazol-2-ylidene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one (Chakibe et al., 2010) is used to displace iodine from methyl iode to give the title compound; the carbon-carbon double-bond in the reactant is consequently converted to a double bond (Scheme I, Fig. 1). The central five-membered ring and the benzothiazolyl fused-ring is nearly co-planar (dihedral angle 6.1 (1) °). The phenyl substituent is twisted by 62.5 (1) ° with respect to the five-membered ring.

Experimental

To a solution of (E)-4-(2,3-dihydro-1,3-benzothiazol-2-ylidene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one (1 g, 3.25 mmol) in DMF (50 ml) was added sodium carbonate (2.5 g, 23 mmol), tetra-n-butylammonium bromide (0.15 g, 1 mmol) and methyl iodide (7.1 g, 50 mmol). The mixture was stirred for 24 h. The solid material was removed b filtration and the solution was evaporated. The residue was washed with dichloromethane and hexane, and was recrystallized from ethanol to afford the title compound as colorless crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C). Omitted from the refinement was the (0 2 0) reflection.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of C18H15N3OS at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C18H15N3OS F(000) = 672
Mr = 321.39 Dx = 1.373 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3894 reflections
a = 8.7428 (2) Å θ = 2.5–24.6°
b = 25.7551 (5) Å µ = 0.22 mm1
c = 6.9660 (1) Å T = 293 K
β = 97.460 (1)° Prism, colorless
V = 1555.27 (5) Å3 0.50 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker APEXII diffractometer 3569 independent reflections
Radiation source: fine-focus sealed tube 2418 reflections with I > 2σ(I)
graphite Rint = 0.053
φ and ω scans θmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −11→11
Tmin = 0.900, Tmax = 0.979 k = −29→33
18953 measured reflections l = −9→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0644P)2 + 0.296P] where P = (Fo2 + 2Fc2)/3
3569 reflections (Δ/σ)max = 0.001
210 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.27 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.92125 (7) 0.46686 (2) 0.19736 (8) 0.04602 (18)
N1 0.8107 (2) 0.43170 (7) 0.5013 (3) 0.0485 (5)
N2 0.6696 (2) 0.60559 (6) 0.3813 (2) 0.0450 (4)
N3 0.6087 (2) 0.58549 (6) 0.5419 (2) 0.0436 (4)
O1 0.80712 (19) 0.57089 (6) 0.1499 (2) 0.0555 (4)
C1 0.9552 (2) 0.40265 (8) 0.2603 (3) 0.0435 (5)
C2 1.0365 (3) 0.36554 (8) 0.1694 (3) 0.0531 (6)
H2 1.0832 0.3740 0.0609 0.064*
C3 1.0459 (3) 0.31630 (9) 0.2442 (4) 0.0611 (7)
H3 1.1003 0.2910 0.1862 0.073*
C4 0.9756 (3) 0.30371 (9) 0.4045 (4) 0.0682 (7)
H4 0.9818 0.2698 0.4510 0.082*
C5 0.8967 (3) 0.34025 (9) 0.4969 (4) 0.0657 (7)
H5 0.8506 0.3313 0.6053 0.079*
C6 0.8869 (2) 0.39090 (8) 0.4253 (3) 0.0462 (5)
C7 0.8201 (2) 0.47347 (7) 0.3978 (3) 0.0399 (5)
C8 0.7531 (2) 0.56620 (8) 0.3030 (3) 0.0417 (5)
C9 0.7516 (2) 0.52318 (7) 0.4329 (3) 0.0387 (5)
C10 0.6676 (2) 0.53751 (7) 0.5781 (3) 0.0398 (5)
C11 0.6421 (3) 0.50940 (9) 0.7570 (3) 0.0514 (6)
H11A 0.5334 0.5064 0.7630 0.077*
H11B 0.6897 0.5282 0.8679 0.077*
H11C 0.6868 0.4754 0.7559 0.077*
C12 0.5534 (3) 0.62109 (9) 0.6788 (3) 0.0527 (6)
H12A 0.5437 0.6031 0.7972 0.079*
H12B 0.4546 0.6346 0.6253 0.079*
H12C 0.6252 0.6492 0.7045 0.079*
C13 0.5892 (3) 0.64466 (7) 0.2625 (3) 0.0414 (5)
C14 0.4314 (3) 0.64253 (9) 0.2115 (3) 0.0532 (6)
H14 0.3732 0.6167 0.2606 0.064*
C15 0.3615 (3) 0.67960 (10) 0.0859 (4) 0.0657 (7)
H15 0.2553 0.6787 0.0497 0.079*
C16 0.4484 (4) 0.71801 (10) 0.0139 (4) 0.0673 (8)
H16 0.4007 0.7428 −0.0705 0.081*
C17 0.6046 (4) 0.71958 (9) 0.0666 (4) 0.0627 (7)
H17 0.6629 0.7454 0.0175 0.075*
C18 0.6759 (3) 0.68310 (8) 0.1916 (3) 0.0508 (5)
H18 0.7820 0.6844 0.2281 0.061*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0543 (3) 0.0407 (3) 0.0427 (3) 0.0044 (2) 0.0050 (2) 0.0038 (2)
N1 0.0525 (11) 0.0414 (10) 0.0524 (11) 0.0046 (8) 0.0100 (9) 0.0068 (8)
N2 0.0576 (11) 0.0379 (9) 0.0397 (9) 0.0063 (8) 0.0079 (8) 0.0048 (7)
N3 0.0568 (11) 0.0403 (10) 0.0334 (9) 0.0041 (8) 0.0047 (8) −0.0002 (7)
O1 0.0732 (11) 0.0503 (9) 0.0456 (9) 0.0109 (8) 0.0180 (8) 0.0067 (7)
C1 0.0397 (11) 0.0404 (11) 0.0480 (12) −0.0006 (9) −0.0033 (9) 0.0008 (9)
C2 0.0500 (13) 0.0493 (13) 0.0590 (14) 0.0057 (11) 0.0036 (11) −0.0051 (11)
C3 0.0572 (15) 0.0471 (14) 0.0778 (17) 0.0078 (11) 0.0044 (13) −0.0065 (12)
C4 0.0668 (17) 0.0390 (13) 0.099 (2) 0.0085 (12) 0.0103 (15) 0.0110 (13)
C5 0.0698 (16) 0.0469 (14) 0.0841 (18) 0.0074 (12) 0.0240 (14) 0.0183 (13)
C6 0.0429 (12) 0.0386 (11) 0.0560 (13) 0.0005 (9) 0.0026 (10) 0.0061 (9)
C7 0.0398 (11) 0.0391 (11) 0.0383 (10) −0.0017 (9) −0.0043 (8) 0.0018 (8)
C8 0.0485 (12) 0.0376 (11) 0.0381 (11) 0.0028 (9) 0.0016 (9) −0.0011 (8)
C9 0.0424 (11) 0.0360 (10) 0.0353 (10) 0.0003 (9) −0.0036 (8) −0.0004 (8)
C10 0.0433 (11) 0.0389 (11) 0.0342 (10) −0.0014 (9) −0.0067 (8) −0.0005 (8)
C11 0.0613 (14) 0.0524 (13) 0.0392 (11) 0.0003 (11) 0.0020 (10) 0.0049 (10)
C12 0.0629 (15) 0.0518 (13) 0.0438 (12) 0.0052 (11) 0.0077 (11) −0.0078 (10)
C13 0.0561 (13) 0.0316 (10) 0.0365 (10) 0.0055 (9) 0.0052 (9) −0.0033 (8)
C14 0.0567 (14) 0.0439 (12) 0.0582 (14) 0.0007 (11) 0.0043 (11) 0.0035 (10)
C15 0.0643 (16) 0.0681 (17) 0.0617 (16) 0.0190 (13) −0.0025 (13) 0.0022 (13)
C16 0.098 (2) 0.0560 (15) 0.0487 (14) 0.0268 (15) 0.0123 (14) 0.0137 (11)
C17 0.094 (2) 0.0384 (13) 0.0596 (15) 0.0055 (13) 0.0241 (14) 0.0075 (11)
C18 0.0626 (14) 0.0399 (12) 0.0506 (13) −0.0025 (11) 0.0100 (11) −0.0024 (10)

Geometric parameters (Å, °)

S1—C1 1.727 (2) C8—C9 1.432 (3)
S1—C7 1.755 (2) C9—C10 1.376 (3)
N1—C7 1.304 (2) C10—C11 1.483 (3)
N1—C6 1.386 (3) C11—H11A 0.9600
N2—C8 1.401 (3) C11—H11B 0.9600
N2—N3 1.399 (2) C11—H11C 0.9600
N2—C13 1.428 (2) C12—H12A 0.9600
N3—C10 1.350 (2) C12—H12B 0.9600
N3—C12 1.451 (3) C12—H12C 0.9600
O1—C8 1.227 (2) C13—C18 1.377 (3)
C1—C2 1.392 (3) C13—C14 1.381 (3)
C1—C6 1.395 (3) C14—C15 1.382 (3)
C2—C3 1.369 (3) C14—H14 0.9300
C2—H2 0.9300 C15—C16 1.381 (4)
C3—C4 1.382 (4) C15—H15 0.9300
C3—H3 0.9300 C16—C17 1.368 (4)
C4—C5 1.375 (4) C16—H16 0.9300
C4—H4 0.9300 C17—C18 1.374 (3)
C5—C6 1.395 (3) C17—H17 0.9300
C5—H5 0.9300 C18—H18 0.9300
C7—C9 1.448 (3)
C1—S1—C7 88.78 (10) C8—C9—C7 122.65 (19)
C7—N1—C6 110.27 (18) N3—C10—C9 109.58 (17)
C8—N2—N3 108.35 (15) N3—C10—C11 120.60 (19)
C8—N2—C13 121.79 (16) C9—C10—C11 129.77 (19)
N3—N2—C13 120.94 (17) C10—C11—H11A 109.5
C10—N3—N2 108.24 (16) C10—C11—H11B 109.5
C10—N3—C12 127.40 (17) H11A—C11—H11B 109.5
N2—N3—C12 119.07 (16) C10—C11—H11C 109.5
C2—C1—C6 121.6 (2) H11A—C11—H11C 109.5
C2—C1—S1 128.56 (18) H11B—C11—H11C 109.5
C6—C1—S1 109.83 (16) N3—C12—H12A 109.5
C3—C2—C1 118.1 (2) N3—C12—H12B 109.5
C3—C2—H2 120.9 H12A—C12—H12B 109.5
C1—C2—H2 120.9 N3—C12—H12C 109.5
C2—C3—C4 120.9 (2) H12A—C12—H12C 109.5
C2—C3—H3 119.5 H12B—C12—H12C 109.5
C4—C3—H3 119.5 C18—C13—C14 121.0 (2)
C5—C4—C3 121.4 (2) C18—C13—N2 117.5 (2)
C5—C4—H4 119.3 C14—C13—N2 121.43 (19)
C3—C4—H4 119.3 C15—C14—C13 118.7 (2)
C4—C5—C6 119.0 (2) C15—C14—H14 120.7
C4—C5—H5 120.5 C13—C14—H14 120.7
C6—C5—H5 120.5 C14—C15—C16 120.4 (3)
N1—C6—C5 125.6 (2) C14—C15—H15 119.8
N1—C6—C1 115.37 (18) C16—C15—H15 119.8
C5—C6—C1 119.0 (2) C17—C16—C15 120.1 (2)
N1—C7—C9 125.38 (19) C17—C16—H16 120.0
N1—C7—S1 115.75 (15) C15—C16—H16 120.0
C9—C7—S1 118.85 (15) C16—C17—C18 120.3 (2)
O1—C8—N2 123.08 (18) C16—C17—H17 119.9
O1—C8—C9 131.43 (19) C18—C17—H17 119.9
N2—C8—C9 105.45 (17) C17—C18—C13 119.6 (2)
C10—C9—C8 107.86 (17) C17—C18—H18 120.2
C10—C9—C7 129.34 (18) C13—C18—H18 120.2
C8—N2—N3—C10 7.4 (2) N2—C8—C9—C10 1.0 (2)
C13—N2—N3—C10 155.18 (17) O1—C8—C9—C7 −0.5 (4)
C8—N2—N3—C12 163.59 (18) N2—C8—C9—C7 176.98 (18)
C13—N2—N3—C12 −48.6 (3) N1—C7—C9—C10 1.4 (3)
C7—S1—C1—C2 −179.4 (2) S1—C7—C9—C10 179.71 (16)
C7—S1—C1—C6 0.61 (15) N1—C7—C9—C8 −173.65 (19)
C6—C1—C2—C3 1.2 (3) S1—C7—C9—C8 4.7 (3)
S1—C1—C2—C3 −178.77 (17) N2—N3—C10—C9 −6.8 (2)
C1—C2—C3—C4 0.4 (4) C12—N3—C10—C9 −160.4 (2)
C2—C3—C4—C5 −1.3 (4) N2—N3—C10—C11 171.05 (18)
C3—C4—C5—C6 0.5 (4) C12—N3—C10—C11 17.4 (3)
C7—N1—C6—C5 −178.3 (2) C8—C9—C10—N3 3.6 (2)
C7—N1—C6—C1 0.0 (3) C7—C9—C10—N3 −172.02 (19)
C4—C5—C6—N1 179.4 (2) C8—C9—C10—C11 −174.0 (2)
C4—C5—C6—C1 1.1 (4) C7—C9—C10—C11 10.4 (4)
C2—C1—C6—N1 179.51 (19) C8—N2—C13—C18 −74.5 (2)
S1—C1—C6—N1 −0.5 (2) N3—N2—C13—C18 142.02 (19)
C2—C1—C6—C5 −2.0 (3) C8—N2—C13—C14 101.9 (2)
S1—C1—C6—C5 177.98 (18) N3—N2—C13—C14 −41.5 (3)
C6—N1—C7—C9 178.88 (19) C18—C13—C14—C15 0.5 (3)
C6—N1—C7—S1 0.5 (2) N2—C13—C14—C15 −175.8 (2)
C1—S1—C7—N1 −0.67 (16) C13—C14—C15—C16 −0.2 (4)
C1—S1—C7—C9 −179.16 (17) C14—C15—C16—C17 0.0 (4)
N3—N2—C8—O1 172.67 (19) C15—C16—C17—C18 −0.2 (4)
C13—N2—C8—O1 25.2 (3) C16—C17—C18—C13 0.5 (3)
N3—N2—C8—C9 −5.1 (2) C14—C13—C18—C17 −0.7 (3)
C13—N2—C8—C9 −152.51 (18) N2—C13—C18—C17 175.78 (19)
O1—C8—C9—C10 −176.5 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2331).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  2. Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chakibe, I., Zerzouf, A., Essassi, E. M., Reichelt, M. & Reuter, H. (2010). Acta Cryst. E66, o1096. [DOI] [PMC free article] [PubMed]
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037652/jh2331sup1.cif

e-67-o2700-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037652/jh2331Isup2.hkl

e-67-o2700-Isup2.hkl (175KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037652/jh2331Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES