Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 17;67(Pt 10):o2679–o2680. doi: 10.1107/S160053681103755X

2-Amino-4,6-dimeth­oxy­pyrimidin-1-ium p-toluene­sulfonate

Sundaramoorthy Gomathi a, Packianathan Thomas Muthiah a,*
PMCID: PMC3201388  PMID: 22064770

Abstract

In the title salt, C6H10N3O2 +·C7H7O3S, the 2-amino-4,6-dimeth­oxy­pyrimidinium cation inter­acts with the sulfonate group of the p-toluene­sulfonate anion via a pair of N—H⋯O hydrogen bonds, forming a cyclic hydrogen-bonded R 2 2(8) motif, which in the crystal is linked by further intemolecular N—H⋯O hydrogen bonds, forming supra­molecular chains along the c axis. Furthermore, neighboring chains are inter­linked via weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming layers.

Related literature

For background to crystal engineering and supra­molecular chemistry, see: Desiraju (1989). For the role of amino­pyrimidine–carboxyl­ate inter­actions in protein-nuleic acid recognition and protein-drug binding, see: Hunt et al. (1980); Baker & Santi (1965). For the role of sulfate–protein inter­actions, see: Pflugrath & Quiocho (1985); Jacobson & Quiocho (1988). For information on carb­oxy­lic acid inter­actions with a 2-amino heterocyclic ring system, see: Etter & Adsmond (1990); Lynch & Jones (2004); Allen et al. (1998). For a survey of hydrogen-bonding patterns involving sulfonate salts, see: Haynes et al. (2004). For hydrogen-bonding patterns involving sulfonate groups in biological systems and metal complexes, see: Russell et al. (1994); Cai et al. (2001). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter (1990). For related structures, see: Low et al. (2002); Arora & Sundaralingam (1971); Balasubramani et al. (2007); Hemamalini et al. (2005); Thanigaimani et al. (2007, 2008); Ebenezer & Muthiah (2010).graphic file with name e-67-o2679-scheme1.jpg

Experimental

Crystal data

  • C6H10N3O2 +·C7H7O3S

  • M r = 327.37

  • Orthorhombic, Inline graphic

  • a = 15.2116 (2) Å

  • b = 12.1422 (2) Å

  • c = 8.3497 (1) Å

  • V = 1542.21 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.15 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.954, T max = 0.965

  • 35029 measured reflections

  • 5264 independent reflections

  • 4257 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.098

  • S = 1.04

  • 5264 reflections

  • 202 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983) 2449, Friedel pairs

  • Flack parameter: −0.01 (6)

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and POV-RAY (Cason, 2004); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681103755X/lh5333sup1.cif

e-67-o2679-sup1.cif (28.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103755X/lh5333Isup2.hkl

e-67-o2679-Isup2.hkl (252.6KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681103755X/lh5333Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.86 1.90 2.7441 (16) 169
N2—H2A⋯O3i 0.86 2.20 3.0233 (19) 161
N2—H2B⋯O3 0.86 2.12 2.9398 (18) 159
C8—H8B⋯O5ii 0.96 2.37 3.248 (2) 152
C7—H7ACgiii 0.96 2.96 3.7815 (18) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the DST-India (FIST programme) for the use ofthe diffractometer at the School of Chemistry, Bharathidasan University. Tiruchirappalli, Tamilnadu, India

supplementary crystallographic information

Comment

A study of non-covalent interactions, such as hydrogen bonding, plays a key role in molecular recognition and crystal engineering (Desiraju, 1989). Pyrimidines and aminopyrimidine derivatives are biologically important compounds and they manifest themselves in nature as components of nucleic acids. Some aminopyrimidine derivatives are used as antifolate drugs (Hunt et al., 1980; Baker & Santi, 1965). Their interactions with carboxylic acids are of utmost importance since they are involved in protein-nucleic acid recognition and drug-protein recognition processes, where the pyrimidine moiety of a drug forms hydrogen bonding with the carboxyl group of the protein. Aminopyrimidines readily pair up with carboxylic acids to form a wide variety of 1:1 adducts with mono and dicarboxylic acids (Etter & Adsmond, 1990). The R22(8) motif is a robust synthon which is frequently observed when a carboxylic acid interacts with a 2-amino heterocyclic ring system (Lynch & Jones, 2004). This motif is also recognized to be one of the top 5 motifs among the 24 commonly occurring motifs in crystal structures (Allen et al., 1998). In a sulfate-binding protein, the sulfate anion is bound mainly by seven hydrogen bonds, five of which are from the main chain peptide NH groups (Pflugrath & Quiocho, 1985; Jacobson & Quiocho, 1988). Hydrogen bonding patterns involving sulfonate groups in biological systems and metal complexes are of current interest (Russell et al., 1994; Cai et al., 2001). Such interactions can be used for designing supramolecular architectures.

The crystal structures of 2-amino-4, 6-dimethoxy pyrimidine (Low et al., 2002) and p-toluene sulfonic acid monohydrate (Arora & Sundaralingam, 1971) have already been reported. Investigations of a fairly large number of crystal structure of 2-amino-4,6-dimethoxy/dimethyl pyrimidine salts and co crystals involving carboxylates (Thanigaimani et al., 2007; Thanigaimani et al., 2008; Ebenezer & Muthiah, 2010) and a few sulfonates (Balasubramani et al., 2007; Hemamalini et al., 2005) have already been reported from our laboratory. They reveal the formation of certain robust motifs and a variety of supramolecular architectures. A survey by Haynes et al. (2004) on the sulfonate salts, revealed various hydrogen bonding patterns and their preferences with specific functional groups. As part of our investigation to gain more insight into hydrogen bonding interactions involving aminopyrimidine and sulfonates, the crystal structure of title compound is presented herein.

The asymmetric unit of the title compound (I) (Fig. 1) contains one 2-amino-4,6-dimethoxypyrimidinium cation and one p-toluenesulfonate anion. The 2- amino-4,6-dimethoxy pyrimidinium cation is protonated at N1. Protonation of the pyrimidine base on the N1 site is reflected by an increase in bond angle. The C2—N3—C4 angle of the unprotonated atom N3 is 116.52 (12)° while for protonated atom N1, the C2—N1—C6 angle is 120.64 (11)°. The sulfonate group of the p-toluenesulfonate anion interacts with 2-amino-4,6-dimethoxypyrimidinium cation via a pair of N—H···O hydrogen bonds, forming a hydrogen bonded ring motif with graph-set notation R22(8) (Etter, 1990; Bernstein et al., 1995). The sulfonate group mimics the carboxylate anion's mode of association, which is more commonly seen when binding with 2-aminopyrimidines. The R22(8) motif links O3 and O4 atoms of sulfonate anion with the protonated atom N1 and the 2- amino group of the pyrimidinium cation.

This motif is further interlinked by an N—H···O hydrogen bond, involving 2- amino group of the 2-amino-4,6-dimethoxy pyrimidinium cation and O3i (symmetry code: i - x,-y,-1/2 + z)) atom of p-toluenesulfonate anion to form a supramolecular chain along the c axis (Fig. 2). The neighboring supramolecular chain is further interlinked via C—H···O hydrogen bond involving a methoxy group (C8) of cation and O5ii (symmetry code: 1/2 - x, y, -1/2 + z) atom of sulfonate anion. Thus intermolecular hydrogen bonds generate a 2-D supramolecular network. The crystal structure is further stabilized by C—H··· π interaction. The C—H···π interaction is observed between the methoxy group (C7—H7A) of pyrimidinium cation with phenyl ring of p-toluenesulfonate anion (C—H···π = 3.7815 (18) Å, 145°). The identification of such supramolecular patterns will help us design and construct preferred hydrogen bonding patterns on drug like molecules.

Experimental

A hot ethanolic solution (20 ml) of 2-amino-4,6-dimethoxypyrimidine (38 mg, Aldrich) and p-toluene sulfonic acid (47 mg, Loba Chemie) was warmed for half an hour over a water bath. The mixture was cooled slowly and kept at room temperature; after a few days, colorless prismatic crystals were obtained.

Refinement

All hydrogen atoms were positioned geometrically and were refined using a riding model. The N—H and C—H bond lengths are 0.86 and 0.93–0.96 Å, respectively [Uiso(H)=1.2-1.5Ueq (parent atom)].

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), showing 30% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.

Fig. 2.

Fig. 2.

A view of supramolecular chain running along the c axis. [symmetry code: (i)1 - x,-y,-1/2 + z]

Crystal data

C6H10N3O2+·C7H7O3S F(000) = 688
Mr = 327.37 Dx = 1.410 Mg m3
Orthorhombic, Pca21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 5264 reflections
a = 15.2116 (2) Å θ = 1.7–31.9°
b = 12.1422 (2) Å µ = 0.24 mm1
c = 8.3497 (1) Å T = 296 K
V = 1542.21 (4) Å3 Prism, colourless
Z = 4 0.20 × 0.18 × 0.15 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 5264 independent reflections
Radiation source: fine-focus sealed tube 4257 reflections with I > 2σ(I)
graphite Rint = 0.032
φ and ω scans θmax = 31.9°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −21→22
Tmin = 0.954, Tmax = 0.965 k = −17→18
35029 measured reflections l = −12→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.0019P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
5264 reflections Δρmax = 0.21 e Å3
202 parameters Δρmin = −0.23 e Å3
1 restraint Absolute structure: Flack (1983) 2449, Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.01 (6)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.19507 (6) 0.22303 (9) 0.38465 (14) 0.0511 (3)
O2 0.11421 (6) −0.06832 (9) 0.04130 (13) 0.0501 (3)
N1 0.29344 (7) 0.11712 (9) 0.26107 (13) 0.0402 (3)
N2 0.40346 (7) 0.01635 (11) 0.14147 (18) 0.0496 (4)
N3 0.25982 (7) −0.03173 (10) 0.08987 (14) 0.0404 (3)
C2 0.31858 (9) 0.03320 (10) 0.16420 (17) 0.0390 (3)
C4 0.17567 (9) −0.00833 (12) 0.11384 (17) 0.0403 (4)
C5 0.14437 (8) 0.07733 (12) 0.21022 (17) 0.0428 (3)
C6 0.20693 (8) 0.13947 (11) 0.28454 (15) 0.0400 (4)
C7 0.14081 (10) −0.16405 (13) −0.0479 (2) 0.0540 (4)
C8 0.10582 (10) 0.25880 (15) 0.4142 (2) 0.0563 (5)
S1 0.50030 (2) 0.23323 (3) 0.42863 (6) 0.0428 (1)
O3 0.52077 (8) 0.12267 (9) 0.37468 (16) 0.0570 (4)
O4 0.41176 (7) 0.26565 (10) 0.3831 (2) 0.0647 (5)
O5 0.51823 (10) 0.24747 (13) 0.59809 (18) 0.0739 (5)
C9 0.57224 (9) 0.32344 (11) 0.32795 (17) 0.0422 (3)
C10 0.66162 (10) 0.30482 (15) 0.3425 (2) 0.0591 (5)
C11 0.72049 (13) 0.37635 (17) 0.2707 (3) 0.0705 (6)
C12 0.69171 (15) 0.46724 (14) 0.1854 (2) 0.0648 (6)
C13 0.60373 (15) 0.48291 (15) 0.1698 (3) 0.0698 (6)
C14 0.54237 (12) 0.41230 (13) 0.2414 (2) 0.0601 (5)
C15 0.7578 (2) 0.54823 (18) 0.1173 (3) 0.0919 (9)
H1 0.33270 0.15660 0.30810 0.0480*
H2A 0.42080 −0.03590 0.07950 0.0600*
H2B 0.44140 0.05760 0.18870 0.0600*
H5 0.08460 0.09110 0.22280 0.0510*
H7A 0.16740 −0.21650 0.02330 0.0810*
H7B 0.18250 −0.14290 −0.12860 0.0810*
H7C 0.09030 −0.19660 −0.09800 0.0810*
H8A 0.07310 0.19980 0.46210 0.0840*
H8B 0.07880 0.27950 0.31480 0.0840*
H8C 0.10640 0.32090 0.48540 0.0840*
H10 0.68200 0.24450 0.40020 0.0710*
H11 0.78050 0.36310 0.27980 0.0850*
H13 0.58360 0.54230 0.10970 0.0840*
H14 0.48240 0.42530 0.23060 0.0720*
H15A 0.72930 0.59500 0.04060 0.1380*
H15B 0.80450 0.50860 0.06570 0.1380*
H15C 0.78160 0.59230 0.20230 0.1380*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0369 (5) 0.0605 (6) 0.0559 (6) 0.0002 (4) −0.0028 (4) −0.0136 (5)
O2 0.0340 (4) 0.0573 (6) 0.0589 (6) −0.0034 (4) −0.0075 (4) −0.0086 (5)
N1 0.0323 (5) 0.0477 (6) 0.0407 (5) −0.0051 (4) −0.0035 (4) 0.0014 (4)
N2 0.0311 (5) 0.0558 (7) 0.0619 (8) −0.0011 (5) −0.0030 (5) −0.0073 (6)
N3 0.0325 (5) 0.0456 (5) 0.0431 (5) −0.0023 (4) −0.0030 (4) 0.0026 (4)
C2 0.0337 (5) 0.0427 (6) 0.0405 (6) −0.0006 (4) −0.0012 (5) 0.0067 (5)
C4 0.0327 (6) 0.0474 (7) 0.0409 (6) −0.0038 (5) −0.0056 (5) 0.0060 (5)
C5 0.0299 (5) 0.0512 (7) 0.0473 (6) −0.0002 (5) −0.0042 (5) 0.0005 (6)
C6 0.0363 (6) 0.0466 (7) 0.0370 (6) −0.0005 (5) −0.0020 (5) 0.0043 (5)
C7 0.0480 (7) 0.0532 (7) 0.0609 (9) −0.0052 (6) −0.0075 (7) −0.0063 (7)
C8 0.0427 (7) 0.0624 (9) 0.0638 (9) 0.0085 (6) −0.0062 (7) −0.0131 (8)
S1 0.0333 (1) 0.0475 (2) 0.0477 (2) −0.0056 (1) −0.0002 (1) −0.0003 (2)
O3 0.0512 (5) 0.0429 (5) 0.0770 (8) −0.0034 (4) −0.0008 (5) 0.0019 (5)
O4 0.0348 (5) 0.0570 (7) 0.1024 (11) −0.0026 (4) −0.0073 (6) −0.0052 (6)
O5 0.0665 (8) 0.1106 (12) 0.0446 (6) −0.0298 (7) 0.0061 (6) 0.0007 (6)
C9 0.0424 (6) 0.0414 (6) 0.0427 (6) −0.0060 (5) −0.0025 (5) −0.0021 (5)
C10 0.0417 (7) 0.0613 (9) 0.0742 (11) −0.0056 (6) 0.0011 (7) 0.0173 (9)
C11 0.0507 (9) 0.0794 (12) 0.0814 (12) −0.0191 (8) 0.0087 (9) 0.0105 (10)
C12 0.0847 (13) 0.0603 (9) 0.0493 (8) −0.0265 (8) 0.0092 (8) 0.0011 (8)
C13 0.0933 (14) 0.0511 (9) 0.0649 (10) −0.0095 (8) −0.0067 (10) 0.0150 (8)
C14 0.0591 (10) 0.0530 (8) 0.0682 (10) 0.0010 (7) −0.0086 (8) 0.0096 (8)
C15 0.123 (2) 0.0774 (13) 0.0754 (13) −0.0454 (14) 0.0247 (14) 0.0022 (11)

Geometric parameters (Å, °)

S1—O4 1.4538 (12) C7—H7B 0.9600
S1—O5 1.4513 (16) C7—H7C 0.9600
S1—C9 1.7618 (14) C8—H8B 0.9600
S1—O3 1.4498 (12) C8—H8C 0.9600
O1—C6 1.3269 (17) C8—H8A 0.9600
O1—C8 1.4466 (18) C9—C10 1.384 (2)
O2—C7 1.4386 (19) C9—C14 1.376 (2)
O2—C4 1.3310 (17) C10—C11 1.384 (3)
N1—C2 1.3560 (17) C11—C12 1.385 (3)
N1—C6 1.3579 (16) C12—C13 1.358 (3)
N2—C2 1.3210 (17) C12—C15 1.517 (3)
N3—C4 1.3264 (17) C13—C14 1.401 (3)
N3—C2 1.3438 (18) C10—H10 0.9300
N1—H1 0.8600 C11—H11 0.9300
N2—H2B 0.8600 C13—H13 0.9300
N2—H2A 0.8600 C14—H14 0.9300
C4—C5 1.399 (2) C15—H15A 0.9600
C5—C6 1.3638 (18) C15—H15B 0.9600
C5—H5 0.9300 C15—H15C 0.9600
C7—H7A 0.9600
S1···H2B 3.0600 C10···H7Aiv 2.8700
S1···H2Ai 2.9600 C10···H7Bi 3.0900
S1···H1 2.8900 C11···H7Aiv 2.9500
O1···C2ii 3.2870 (17) C11···H15Bix 2.9600
O2···O3iii 3.1944 (17) C15···H8Cx 2.8300
O3···C5iv 3.3642 (18) H1···O4 1.9000
O3···N2 2.9398 (18) H1···S1 2.8900
O3···N2i 3.0233 (19) H1···H2B 2.2700
O3···O2iv 3.1944 (17) H2A···O5vii 2.7400
O4···N1 2.7441 (16) H2A···O3vii 2.2000
O5···C5ii 3.356 (2) H2A···S1vii 2.9600
O5···C8ii 3.248 (2) H2B···O2iv 2.9100
O1···H15Av 2.8100 H2B···O3 2.1200
O2···H2Biii 2.9100 H2B···H1 2.2700
O3···H10 2.8700 H2B···S1 3.0600
O3···H2B 2.1200 H2B···H8Aviii 2.5700
O3···H2Ai 2.2000 H5···C8 2.6100
O4···H14 2.5600 H5···H8A 2.4000
O4···H1 1.9000 H5···H8B 2.4100
O5···H5ii 2.6700 H5···O5viii 2.6700
O5···H8Bii 2.3700 H7A···N3 2.7100
O5···H2Ai 2.7400 H7A···C11iii 2.9500
O5···H7Cvi 2.8300 H7A···C10iii 2.8700
N1···O4 2.7441 (16) H7A···H10vii 2.5300
N1···C4ii 3.3492 (18) H7B···C10vii 3.0900
N2···O3vii 3.0233 (19) H7B···N3 2.5600
N2···O3 2.9398 (18) H7B···H10vii 2.4100
N3···C6viii 3.3281 (17) H7B···N3viii 2.8500
N2···H8Aviii 2.7100 H7B···C2viii 2.7500
N3···H7B 2.5600 H7C···H8Axiii 2.5400
N3···H7A 2.7100 H7C···O5xiv 2.8300
N3···H7Bii 2.8500 H7C···C8xiii 3.0800
C2···O1viii 3.2870 (17) H8A···C5 2.7900
C2···C7ii 3.449 (2) H8A···H5 2.4000
C2···C6viii 3.4445 (19) H8A···H7Cxii 2.5400
C4···N1viii 3.3492 (18) H8A···N2ii 2.7100
C5···O5viii 3.356 (2) H8A···H2Bii 2.5700
C5···O3iii 3.3642 (18) H8B···H5 2.4100
C6···C2ii 3.4445 (19) H8B···O5viii 2.3700
C6···N3ii 3.3281 (17) H8B···C5 2.7900
C7···C2viii 3.449 (2) H8C···H15Bv 2.5600
C7···C10vii 3.577 (2) H8C···C15v 2.8300
C8···C15v 3.559 (3) H10···O3 2.8700
C8···O5viii 3.248 (2) H10···C7i 2.9000
C10···C7i 3.577 (2) H10···H7Ai 2.5300
C11···C15ix 3.583 (3) H10···H7Bi 2.4100
C15···C8x 3.559 (3) H11···H15B 2.5400
C15···C11xi 3.583 (3) H11···C7i 3.0600
C2···H7Bii 2.7500 H13···H15A 2.3800
C5···H8A 2.7900 H14···O4 2.5600
C5···H8B 2.7900 H15A···H13 2.3800
C7···H11vii 3.0600 H15A···O1x 2.8100
C7···H10vii 2.9000 H15B···H11 2.5400
C8···H7Cxii 3.0800 H15B···H8Cx 2.5600
C8···H5 2.6100 H15B···C11xi 2.9600
O5—S1—C9 105.93 (8) H7B—C7—H7C 109.00
O3—S1—C9 107.10 (7) H8B—C8—H8C 109.00
O3—S1—O4 111.62 (8) O1—C8—H8A 109.00
O3—S1—O5 111.89 (9) O1—C8—H8B 109.00
O4—S1—O5 113.38 (9) O1—C8—H8C 109.00
O4—S1—C9 106.40 (7) H8A—C8—H8B 110.00
C6—O1—C8 117.69 (11) H8A—C8—H8C 109.00
C4—O2—C7 118.70 (11) S1—C9—C10 117.83 (11)
C2—N1—C6 120.64 (11) S1—C9—C14 122.21 (12)
C2—N3—C4 116.52 (12) C10—C9—C14 119.92 (14)
C6—N1—H1 120.00 C9—C10—C11 119.68 (16)
C2—N1—H1 120.00 C10—C11—C12 121.23 (18)
C2—N2—H2B 120.00 C11—C12—C13 118.21 (18)
C2—N2—H2A 120.00 C11—C12—C15 120.0 (2)
H2A—N2—H2B 120.00 C13—C12—C15 121.76 (18)
N2—C2—N3 119.53 (12) C12—C13—C14 121.99 (18)
N1—C2—N2 118.54 (12) C9—C14—C13 118.94 (17)
N1—C2—N3 121.92 (12) C9—C10—H10 120.00
O2—C4—N3 119.47 (13) C11—C10—H10 120.00
N3—C4—C5 125.08 (13) C10—C11—H11 119.00
O2—C4—C5 115.45 (12) C12—C11—H11 119.00
C4—C5—C6 115.83 (12) C12—C13—H13 119.00
O1—C6—N1 112.06 (11) C14—C13—H13 119.00
N1—C6—C5 120.00 (12) C9—C14—H14 121.00
O1—C6—C5 127.94 (12) C13—C14—H14 121.00
C4—C5—H5 122.00 C12—C15—H15A 110.00
C6—C5—H5 122.00 C12—C15—H15B 109.00
H7A—C7—H7B 109.00 C12—C15—H15C 110.00
H7A—C7—H7C 109.00 H15A—C15—H15B 109.00
O2—C7—H7A 109.00 H15A—C15—H15C 110.00
O2—C7—H7B 109.00 H15B—C15—H15C 109.00
O2—C7—H7C 109.00
O4—S1—C9—C10 −175.52 (13) C4—N3—C2—N2 −177.98 (13)
O3—S1—C9—C10 −56.03 (14) C2—N3—C4—O2 178.80 (12)
O3—S1—C9—C14 126.16 (13) O2—C4—C5—C6 −179.77 (12)
O5—S1—C9—C14 −114.27 (14) N3—C4—C5—C6 −0.5 (2)
O4—S1—C9—C14 6.66 (15) C4—C5—C6—N1 0.8 (2)
O5—S1—C9—C10 63.54 (14) C4—C5—C6—O1 −178.16 (13)
C8—O1—C6—N1 177.13 (12) S1—C9—C10—C11 −177.39 (15)
C8—O1—C6—C5 −3.9 (2) C14—C9—C10—C11 0.5 (3)
C7—O2—C4—N3 6.4 (2) S1—C9—C14—C13 177.50 (14)
C7—O2—C4—C5 −174.33 (13) C10—C9—C14—C13 −0.3 (2)
C2—N1—C6—C5 −0.07 (18) C9—C10—C11—C12 0.6 (3)
C2—N1—C6—O1 179.01 (12) C10—C11—C12—C13 −1.9 (3)
C6—N1—C2—N2 178.19 (13) C10—C11—C12—C15 175.99 (19)
C6—N1—C2—N3 −1.0 (2) C11—C12—C13—C14 2.1 (3)
C4—N3—C2—N1 1.2 (2) C15—C12—C13—C14 −175.73 (19)
C2—N3—C4—C5 −0.4 (2) C12—C13—C14—C9 −1.1 (3)

Symmetry codes: (i) −x+1, −y, z+1/2; (ii) −x+1/2, y, z+1/2; (iii) x−1/2, −y, z; (iv) x+1/2, −y, z; (v) −x+1, −y+1, z+1/2; (vi) x+1/2, −y, z+1; (vii) −x+1, −y, z−1/2; (viii) −x+1/2, y, z−1/2; (ix) −x+3/2, y, z+1/2; (x) −x+1, −y+1, z−1/2; (xi) −x+3/2, y, z−1/2; (xii) −x, −y, z+1/2; (xiii) −x, −y, z−1/2; (xiv) x−1/2, −y, z−1.

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C9–C14 ring.
D—H···A D—H H···A D···A D—H···A
N1—H1···O4 0.86 1.90 2.7441 (16) 169
N2—H2A···O3vii 0.86 2.20 3.0233 (19) 161
N2—H2B···O3 0.86 2.12 2.9398 (18) 159
C8—H8B···O5viii 0.96 2.37 3.248 (2) 152
C7—H7A···Cgiii 0.96 2.96 3.7815 (18) 145

Symmetry codes: (vii) −x+1, −y, z−1/2; (viii) −x+1/2, y, z−1/2; (iii) x−1/2, −y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5333).

References

  1. Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043–1044.
  2. Arora, S. K. & Sundaralingam, M. (1971). Acta Cryst. B27, 1293–1298.
  3. Baker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252–1257. [DOI] [PubMed]
  4. Balasubramani, K., Muthiah, P. T. & Lynch, D. E. (2007). Chem. Cent. J. 1, article number 28. [DOI] [PMC free article] [PubMed]
  5. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  6. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Cai, J., Chen, C. H., Liao, C. Z., Yao, J. H., Hu, X. P. & Chen, X. M. (2001). J. Chem. Soc. Dalton Trans pp. 1137–1142.
  8. Cason, C. J. (2004). POV-RAY for Windows Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. URL: http://www.povray.org.
  9. Desiraju, G. R. (1989). in Crystal Engineering: The Design of Organic Solids Amsterdam: Elsevier.
  10. Ebenezer, S. & Muthiah, P. T. (2010). Acta Cryst. E66, o2634–o2635. [DOI] [PMC free article] [PubMed]
  11. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  12. Etter, M. C. & Adsmond, D. A. (1990). J. Chem. Soc. Chem. Commun. pp. 589–591.
  13. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  14. Haynes, D. A., Chisholm, J. A., Jones, W. & Motherwell, W. D. S. (2004). CrystEngComm, 6, 584–588.
  15. Hemamalini, M., Mu­thiah, P. T., Rychlewska, U. & Plutecka, A. (2005). Acta Cryst. C61, o95–o97. [DOI] [PubMed]
  16. Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). Biochem. J. 187, 533–536. [DOI] [PMC free article] [PubMed]
  17. Jacobson, B. L. & Quiocho, F. A. (1988). J. Mol. Biol. 204, 783–787. [DOI] [PubMed]
  18. Low, J. N., Quesada, A., Marchal, A., Melguizo, M., Nogueras, M. & Glidewell, C. (2002). Acta Cryst. C58, o289–o294. [DOI] [PubMed]
  19. Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754. [DOI] [PubMed]
  20. Pflugrath, J. W. & Quiocho, F. A. (1985). Nature (London), 314, 257–260. [DOI] [PubMed]
  21. Russell, V. A., Etter, M. C. & &Ward, M. D. (1994). J. Am. Chem. Soc. 116, 1941–1952.
  22. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  23. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  24. Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. C63, o295–o300. [DOI] [PubMed]
  25. Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2008). Acta Cryst. E64, o107–o108. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681103755X/lh5333sup1.cif

e-67-o2679-sup1.cif (28.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103755X/lh5333Isup2.hkl

e-67-o2679-Isup2.hkl (252.6KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681103755X/lh5333Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES