Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2706. doi: 10.1107/S1600536811037706

3-Benzyl-2-phenyl-1,3-thia­zolidin-4-one

Hoong-Kun Fun a,*,, Madhukar Hemamalini a, Poovan Shanmugavelan b, Alagusundaram Ponnuswamy b, Rathinavel Jagatheesan c
PMCID: PMC3201390  PMID: 22064819

Abstract

In the title compound, C16H15NOS, the thia­zolidine ring, which is essentially planar [maximum deviation = 0.071 (2) Å], makes dihedral angles of 88.01 (8) and 87.21 (8)° with the terminal phenyl rings. The dihedral angle between the phenyl rings is 49.45 (5)°. In the crystal, mol­ecules are linked by a weak inter­molecular C—H⋯O hydrogen bond, forming a supra­molecular chain along the b axis. Furthermore, the crystal packing is stabilized by a weak C—H⋯π inter­action.

Related literature

For details and applications of thia­zolidine-4-ones, see: Dutta et al. (1990); Jadhav & Ingle (1978); Gursoy & Terzioglu (2005); Rawal et al. (2007); Shrivastava et al. (2005); Look et al. (1996); Anders et al. (2001); Barreca et al. (2001); Diurno et al. (1992).graphic file with name e-67-o2706-scheme1.jpg

Experimental

Crystal data

  • C16H15NOS

  • M r = 269.35

  • Monoclinic, Inline graphic

  • a = 13.5734 (15) Å

  • b = 10.1402 (11) Å

  • c = 10.1496 (11) Å

  • β = 104.305 (2)°

  • V = 1353.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.41 × 0.19 × 0.06 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.913, T max = 0.985

  • 21164 measured reflections

  • 3990 independent reflections

  • 2813 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.112

  • S = 1.05

  • 3990 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037706/is2778sup1.cif

e-67-o2706-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037706/is2778Isup2.hkl

e-67-o2706-Isup2.hkl (191.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037706/is2778Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O1i 0.93 2.47 3.323 (2) 153
C2—H2ACg1ii 0.93 2.99 3.705 (3) 134

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

One of the main objectives of organic and medicinal chemistry is the design, synthesis and production of molecules having value as human therapeutic agents. During the past decade, combinatorial chemistry has provided access to chemical libraries based on privileged structures with heterocyclic moiety receiving special attention as they belong to a class of compounds with proven utility in medicinal chemistry. There are numerous biologically active molecules with five-membered rings, containing two hetero atoms. Among them, thiazolidin-4-ones are the most extensively investigated class of compounds, which have many interesting activity profiles namely bactericidal (Dutta et al., 1990), antifungal (Jadhav & Ingle, 1978), anticonvulsant (Gursoy & Terzioglu, 2005), anti-HIV (Rawal et al., 2007), antituberculotic (Shrivastava et al., 2005), COX-1 inhibitors (Look et al., 1996), inhibitors of the bacterial enzyme MurB (Anders et al., 2001), non-nucleoside inhibitors of HIV-RT (Barreca et al., 2001) and anti-histaminic agents (Diurno et al., 1992).

The asymmetric unit of the title compound is shown in Fig. 1. The thiazolidine (S1/N1/C8–C10) ring is essentially planar, with a maximum deviation of 0.071 (2) Å for atom C10. The central thiazolidine (S1/N1/C8–C10) ring makes dihedral angles of 88.01 (8) and 87.21 (8)° with the terminal phenyl (C1–C6) and (C11–C16) rings, respectively. The dihedral angle between the phenyl (C1–C6) and (C11–C16) rings is 49.45 (5)°.

In the crystal structure, (Fig. 2), the molecules are linked by intermolecular weak C—H···O hydrogen bonds forming supramolecular chains along the b-axis. Furthermore, the crystal packing is stabilized by weak C—H···π interactions involving the C11–C16 ring.

Experimental

To a well ground intimate mixture of triphenyl phosphine (0.43 g, 1.6 mmol) and benzaldehyde, (0.15 g, 1.5 mmol) in a microwave vial (10 ml) equipped with a magnetic stirring bar, benzylazide, (0.2 g, 1.5 mmol) was added in drop with stirring. Stirring was continued until liberation of nitrogen ceased and then mercaptoacetic acid, (0.15 g, 1.6 mmol) was added to the above mixture and the reaction vessel was sealed with a septum. It was then placed into the cavity of a focused monomode microwave reactor (CEM Discover, benchmate) and operated at 150°C (temperature monitored by a built-in IR sensor), power 80W for 10 minutes. The reaction temperature was maintained by modulating the power level of the reactor. The reaction mixture was allowed to stand at room temperature. Then the residue was purified by column chromatography on silica (petrolium ether–ethyl acetate, 94:6) to afford the 3-benzyl-2-phenylthiazolidin-4-one. Yield: 0.38g (95%); m.p. 152–155°C.

Refinement

All hydrogen atoms were positioned geometrically (C—H = 0.93–0.98 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

An ORTEP view of the title compound, showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the a axis.

Crystal data

C16H15NOS F(000) = 568
Mr = 269.35 Dx = 1.322 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4044 reflections
a = 13.5734 (15) Å θ = 2.9–24.9°
b = 10.1402 (11) Å µ = 0.23 mm1
c = 10.1496 (11) Å T = 296 K
β = 104.305 (2)° Plate, colourless
V = 1353.6 (3) Å3 0.41 × 0.19 × 0.06 mm
Z = 4

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 3990 independent reflections
Radiation source: fine-focus sealed tube 2813 reflections with I > 2σ(I)
graphite Rint = 0.041
φ and ω scans θmax = 30.2°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −19→19
Tmin = 0.913, Tmax = 0.985 k = −14→14
21164 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.2789P] where P = (Fo2 + 2Fc2)/3
3990 reflections (Δ/σ)max = 0.001
172 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.04954 (3) 0.22379 (4) 0.22886 (4) 0.04505 (12)
O1 0.16669 (11) 0.46692 (11) 0.51751 (13) 0.0650 (4)
N1 0.21308 (9) 0.28385 (11) 0.41853 (12) 0.0389 (3)
C1 0.34627 (12) 0.44309 (17) 0.30014 (17) 0.0510 (4)
H1A 0.2783 0.4676 0.2838 0.061*
C2 0.40708 (14) 0.49962 (19) 0.22451 (19) 0.0582 (4)
H2A 0.3798 0.5617 0.1580 0.070*
C3 0.50706 (14) 0.4646 (2) 0.2471 (2) 0.0637 (5)
H3A 0.5481 0.5024 0.1963 0.076*
C4 0.54623 (15) 0.3732 (2) 0.3454 (3) 0.0810 (7)
H4A 0.6143 0.3492 0.3613 0.097*
C5 0.48589 (14) 0.3161 (2) 0.4212 (2) 0.0650 (5)
H5A 0.5136 0.2538 0.4873 0.078*
C6 0.38484 (11) 0.35067 (14) 0.39972 (15) 0.0410 (3)
C7 0.32037 (12) 0.29270 (17) 0.48752 (16) 0.0479 (4)
H7A 0.3454 0.2052 0.5166 0.057*
H7B 0.3278 0.3467 0.5683 0.057*
C8 0.14552 (12) 0.37589 (14) 0.43636 (15) 0.0434 (3)
C9 0.04128 (13) 0.35455 (17) 0.34511 (19) 0.0533 (4)
H9A 0.0173 0.4347 0.2953 0.064*
H9B −0.0061 0.3309 0.3987 0.064*
C10 0.17936 (10) 0.17886 (13) 0.32051 (14) 0.0358 (3)
H10A 0.2225 0.1788 0.2560 0.043*
C11 0.18426 (10) 0.04347 (13) 0.38516 (13) 0.0350 (3)
C12 0.14070 (11) 0.02045 (14) 0.49347 (15) 0.0420 (3)
H12A 0.1104 0.0896 0.5291 0.050*
C13 0.14219 (12) −0.10439 (16) 0.54857 (17) 0.0499 (4)
H13A 0.1127 −0.1188 0.6209 0.060*
C14 0.18706 (13) −0.20754 (16) 0.49698 (19) 0.0547 (4)
H14A 0.1879 −0.2915 0.5342 0.066*
C15 0.23077 (14) −0.18557 (16) 0.38958 (19) 0.0561 (4)
H15A 0.2611 −0.2550 0.3544 0.067*
C16 0.22959 (12) −0.06032 (15) 0.33392 (16) 0.0455 (4)
H16A 0.2594 −0.0461 0.2619 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0441 (2) 0.0416 (2) 0.0451 (2) −0.00081 (16) 0.00278 (16) 0.00479 (16)
O1 0.0919 (10) 0.0400 (6) 0.0633 (7) −0.0033 (6) 0.0195 (7) −0.0119 (6)
N1 0.0399 (6) 0.0325 (6) 0.0436 (6) −0.0060 (5) 0.0088 (5) −0.0002 (5)
C1 0.0404 (8) 0.0553 (10) 0.0561 (9) 0.0005 (7) 0.0099 (7) 0.0130 (7)
C2 0.0548 (10) 0.0599 (11) 0.0594 (10) −0.0048 (8) 0.0132 (8) 0.0154 (8)
C3 0.0508 (10) 0.0721 (13) 0.0721 (12) −0.0090 (9) 0.0225 (9) 0.0089 (10)
C4 0.0441 (10) 0.0872 (16) 0.1158 (18) 0.0105 (10) 0.0273 (11) 0.0296 (14)
C5 0.0480 (10) 0.0596 (11) 0.0852 (13) 0.0083 (8) 0.0119 (9) 0.0229 (10)
C6 0.0383 (7) 0.0363 (7) 0.0452 (8) −0.0057 (6) 0.0041 (6) −0.0011 (6)
C7 0.0456 (8) 0.0481 (9) 0.0450 (8) −0.0090 (7) 0.0020 (7) 0.0074 (7)
C8 0.0561 (9) 0.0309 (7) 0.0462 (8) −0.0036 (6) 0.0185 (7) 0.0023 (6)
C9 0.0496 (9) 0.0456 (9) 0.0662 (10) 0.0059 (7) 0.0173 (8) −0.0016 (8)
C10 0.0372 (7) 0.0346 (7) 0.0369 (7) −0.0029 (5) 0.0117 (5) −0.0001 (5)
C11 0.0339 (7) 0.0319 (6) 0.0382 (7) −0.0008 (5) 0.0069 (5) −0.0012 (5)
C12 0.0450 (8) 0.0365 (7) 0.0472 (8) −0.0005 (6) 0.0165 (6) 0.0010 (6)
C13 0.0495 (9) 0.0448 (9) 0.0555 (9) −0.0074 (7) 0.0130 (7) 0.0118 (7)
C14 0.0547 (10) 0.0337 (8) 0.0667 (11) −0.0038 (7) −0.0020 (8) 0.0079 (7)
C15 0.0611 (11) 0.0368 (8) 0.0649 (11) 0.0126 (7) 0.0050 (9) −0.0067 (7)
C16 0.0471 (8) 0.0443 (8) 0.0451 (8) 0.0074 (7) 0.0111 (7) −0.0034 (6)

Geometric parameters (Å, °)

S1—C9 1.7967 (17) C7—H7A 0.9700
S1—C10 1.8352 (14) C7—H7B 0.9700
O1—C8 1.2231 (18) C8—C9 1.503 (2)
N1—C8 1.3515 (19) C9—H9A 0.9700
N1—C10 1.4518 (18) C9—H9B 0.9700
N1—C7 1.4544 (19) C10—C11 1.5160 (19)
C1—C2 1.383 (2) C10—H10A 0.9800
C1—C6 1.383 (2) C11—C16 1.3838 (19)
C1—H1A 0.9300 C11—C12 1.391 (2)
C2—C3 1.366 (3) C12—C13 1.382 (2)
C2—H2A 0.9300 C12—H12A 0.9300
C3—C4 1.369 (3) C13—C14 1.377 (2)
C3—H3A 0.9300 C13—H13A 0.9300
C4—C5 1.382 (3) C14—C15 1.382 (3)
C4—H4A 0.9300 C14—H14A 0.9300
C5—C6 1.380 (2) C15—C16 1.389 (2)
C5—H5A 0.9300 C15—H15A 0.9300
C6—C7 1.513 (2) C16—H16A 0.9300
C9—S1—C10 93.34 (7) C8—C9—S1 107.99 (11)
C8—N1—C10 119.26 (12) C8—C9—H9A 110.1
C8—N1—C7 121.65 (13) S1—C9—H9A 110.1
C10—N1—C7 118.93 (12) C8—C9—H9B 110.1
C2—C1—C6 121.10 (15) S1—C9—H9B 110.1
C2—C1—H1A 119.4 H9A—C9—H9B 108.4
C6—C1—H1A 119.4 N1—C10—C11 113.25 (11)
C3—C2—C1 120.23 (17) N1—C10—S1 105.43 (9)
C3—C2—H2A 119.9 C11—C10—S1 112.22 (9)
C1—C2—H2A 119.9 N1—C10—H10A 108.6
C2—C3—C4 119.27 (17) C11—C10—H10A 108.6
C2—C3—H3A 120.4 S1—C10—H10A 108.6
C4—C3—H3A 120.4 C16—C11—C12 119.00 (13)
C3—C4—C5 120.83 (18) C16—C11—C10 120.14 (13)
C3—C4—H4A 119.6 C12—C11—C10 120.83 (12)
C5—C4—H4A 119.6 C13—C12—C11 120.47 (14)
C6—C5—C4 120.54 (17) C13—C12—H12A 119.8
C6—C5—H5A 119.7 C11—C12—H12A 119.8
C4—C5—H5A 119.7 C14—C13—C12 120.36 (16)
C5—C6—C1 118.02 (15) C14—C13—H13A 119.8
C5—C6—C7 120.33 (14) C12—C13—H13A 119.8
C1—C6—C7 121.60 (14) C13—C14—C15 119.60 (15)
N1—C7—C6 113.35 (12) C13—C14—H14A 120.2
N1—C7—H7A 108.9 C15—C14—H14A 120.2
C6—C7—H7A 108.9 C14—C15—C16 120.29 (15)
N1—C7—H7B 108.9 C14—C15—H15A 119.9
C6—C7—H7B 108.9 C16—C15—H15A 119.9
H7A—C7—H7B 107.7 C11—C16—C15 120.28 (15)
O1—C8—N1 123.85 (15) C11—C16—H16A 119.9
O1—C8—C9 123.53 (15) C15—C16—H16A 119.9
N1—C8—C9 112.62 (13)
C6—C1—C2—C3 0.1 (3) C8—N1—C10—C11 −114.56 (14)
C1—C2—C3—C4 −0.1 (3) C7—N1—C10—C11 69.99 (16)
C2—C3—C4—C5 0.2 (4) C8—N1—C10—S1 8.50 (15)
C3—C4—C5—C6 −0.3 (4) C7—N1—C10—S1 −166.95 (10)
C4—C5—C6—C1 0.3 (3) C9—S1—C10—N1 −10.43 (10)
C4—C5—C6—C7 −177.10 (19) C9—S1—C10—C11 113.28 (11)
C2—C1—C6—C5 −0.2 (3) N1—C10—C11—C16 −131.16 (14)
C2—C1—C6—C7 177.17 (16) S1—C10—C11—C16 109.62 (13)
C8—N1—C7—C6 −98.30 (17) N1—C10—C11—C12 50.93 (18)
C10—N1—C7—C6 77.04 (17) S1—C10—C11—C12 −68.30 (15)
C5—C6—C7—N1 −151.78 (16) C16—C11—C12—C13 −0.4 (2)
C1—C6—C7—N1 30.9 (2) C10—C11—C12—C13 177.59 (13)
C10—N1—C8—O1 179.17 (14) C11—C12—C13—C14 0.1 (2)
C7—N1—C8—O1 −5.5 (2) C12—C13—C14—C15 0.0 (3)
C10—N1—C8—C9 −1.01 (18) C13—C14—C15—C16 0.0 (3)
C7—N1—C8—C9 174.31 (13) C12—C11—C16—C15 0.4 (2)
O1—C8—C9—S1 172.54 (13) C10—C11—C16—C15 −177.53 (14)
N1—C8—C9—S1 −7.28 (16) C14—C15—C16—C11 −0.3 (2)
C10—S1—C9—C8 10.22 (12)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C11–C16 ring.
D—H···A D—H H···A D···A D—H···A
C14—H14A···O1i 0.93 2.47 3.323 (2) 153
C2—H2A···Cg1ii 0.93 2.99 3.705 (3) 134

Symmetry codes: (i) x, y−1, z; (ii) x, −y−1/2, z−3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2778).

References

  1. Anders, C. J., Bronson, J. J., Andrea, D. S. V., Deshpande, S. M., Falk, P. J., Grant-Young, K. A., Harte, W. E., Ho, H., Misco, P. F., Robertson, J. G., Stock, D., Sun, Y. & Walsh, A. W. (2001). Bioorg. Med. Chem. Lett. pp. 715–717. [DOI] [PubMed]
  2. Barreca, M. L., Chimirri, A., Luca, L. D., Monforte, A., Monforte, P., Rao, A., Zappala, M., Balzarini, J., De Clercq, E., Pannecouque, C. & Witvrouw, M. (2001). Bioorg. Med. Chem. Lett. pp. 1793–1796. [DOI] [PubMed]
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Diurno, M. V., Mazzoni, O., Calignano, P. E., Giordano, F. & Bolognese, A. (1992). J. Med. Chem. 35, 2910–2912. [DOI] [PubMed]
  5. Dutta, M. M., Goswami, B. N. & Kataky, J. C. (1990). J. Indian Chem. Soc. 67, 332–334.
  6. Gursoy, A. & Terzioglu, N. (2005). Turk. J. Chem. 29, 247–254.
  7. Jadhav, K. P. & Ingle, D. B. (1978). J. Indian Chem. Soc. 4, 424–426.
  8. Look, G. C., Schullek, J. R., Homes, C. P., Chinn, J. P., Gordon, E. M. & Gallop, M. A. (1996). Bioorg. Med. Chem. Lett. 6, 707–712.
  9. Rawal, R. K., Tripathi, R., Katti, S. B., Pannecouque, C. & Clercq, E. D. (2007). Bioorg. Med. Chem. 15, 1725–1731. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Shrivastava, T., Gaikwad, A. K., Haq, W., Sinha, S. & Katti, S. B. (2005). Arkivoc, 2, 120–130.
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037706/is2778sup1.cif

e-67-o2706-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037706/is2778Isup2.hkl

e-67-o2706-Isup2.hkl (191.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037706/is2778Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES