Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2733. doi: 10.1107/S160053681103827X

5-Hy­droxy-3,4′,6,7-tetra­meth­oxy­flavone

Hua-Wei Geng a, Guo-Cai Wang a, Guo-Qiang Li a, Ren-Wang Jiang a, Yao-Lan Li a,*
PMCID: PMC3201397  PMID: 22065506

Abstract

The title compound, C19H18O7 [systematic name 5-hy­droxy-3,6,7-tri­meth­­oxy-2-(4-meth­oxy­phen­yl)-4H-1-benzopyran-4-one], is a flavonoid which was isolated from the traditional Chinese medicine Laggera alata. The benzene ring of the benzopyran­one unit forms dihedral angles of 1.72 (3) and 37.39 (5)° with the pyran ring and the substituent benzene ring, respectively. The mol­ecular conformation is stabilized by an intra­molecular phenol O—H⋯Oketone hydrogen bond.

Related literature

For general background to the synthesis and isolation of the title compound, see: Goldsworthy & Robert (1936); Sy & Brown (1998); Yang et al. (2007); Masateru et al. (2009). For its anti-hepatotoxic activity, see: Chhaya & Mishra (2007).graphic file with name e-67-o2733-scheme1.jpg

Experimental

Crystal data

  • C19H18O7

  • M r = 358.33

  • Monoclinic, Inline graphic

  • a = 16.6029 (3) Å

  • b = 7.40255 (12) Å

  • c = 14.8666 (3) Å

  • β = 110.487 (2)°

  • V = 1711.60 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.90 mm−1

  • T = 295 K

  • 0.26 × 0.21 × 0.18 mm

Data collection

  • Oxford Diffraction Xcalibur Sapphire3 Gemini Ultra CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.596, T max = 1.000

  • 5568 measured reflections

  • 2681 independent reflections

  • 2380 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.097

  • S = 1.03

  • 2681 reflections

  • 241 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681103827X/zs2143sup1.cif

e-67-o2733-sup1.cif (21.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103827X/zs2143Isup2.hkl

e-67-o2733-Isup2.hkl (131.7KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681103827X/zs2143Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O5 0.82 1.89 2.6157 (16) 147

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (No. 81072535) and the Team Project of the Natural Science Foundation of Guangdong Province (No. 8351063201000003).

supplementary crystallographic information

Comment

The title compound, the flavonoid C19H18O7 [systematic name 5-hydroxy-3,6,7-trimethoxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one], (Fig. 1) was originally sythesised from trimethoxyacetophenone (Goldsworthy & Robert, 1936). It was also isolated from Artemisia annua (Sy & Brown, 1998), Laggera pterodonta (Yang et al., 2007) and Aites agnus-castus (Masateru et al., 2009). The flavonoid was also proved to possess significant anti-hepatotoxic activity (Chhaya et al., 2007). The present compound was isolated from the traditional Chinese medicine Laggera alata. In the crystal structure, the dihedral angle between the plane of the benzene ring A and the pyran plane C is 1.72 (3)°, while that between the benzene ring A and the phenyl ring B is 37.39 (5)°. The molecular conformation is stabilized by an intramolecular phenol O—H···Oketone hydrogen-bonding interaction (Table 1).

Experimental

The title compound was isolated from the herbs of the traditional Chinese medicine Laggera alata. The herbs of Laggera alata (5 kg) was extracted with 95% ethanol at room temperature and the extracted solution was concentrated by rotary evaporator. The crude extract was suspended in distilled water and partitioned with petroleum ether, ethyl acetate and n-butanol. The title compound (50 mg) was isolated from the petroleum ether fraction using silica gel column chromatography and crystals were obtained after slow evaporation of an ethyl acetate solution at room temperature.

Refinement

The C-bound H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with C—H = 0.96 Å (CH3) ,0.93 Å (aryl H) and O—H = 0.82 Å and with Uiso(H) = 1.2Ueq(C) (aryl H) and = 1.5Ueq[C(methyl) and O].

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C19H18O7 F(000) = 752
Mr = 358.33 Dx = 1.391 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.5418 Å
a = 16.6029 (3) Å Cell parameters from 3031 reflections
b = 7.40255 (12) Å θ = 3.2–62.6°
c = 14.8666 (3) Å µ = 0.90 mm1
β = 110.487 (2)° T = 295 K
V = 1711.60 (6) Å3 Block, colourless
Z = 4 0.26 × 0.21 × 0.18 mm

Data collection

Oxford Diffraction Xcalibur Sapphire3 Gemini Ultra CCD diffractometer 2681 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source 2380 reflections with I > 2σ(I)
mirror Rint = 0.016
Detector resolution: 16.0288 pixels mm-1 θmax = 62.7°, θmin = 5.7°
ω scans h = −19→18
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −8→8
Tmin = 0.596, Tmax = 1.000 l = −12→17
5568 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.2624P] where P = (Fo2 + 2Fc2)/3
2681 reflections (Δ/σ)max = 0.001
241 parameters Δρmax = 0.14 e Å3
0 restraints Δρmin = −0.13 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.48173 (9) 0.62713 (18) 0.35189 (9) 0.0426 (3)
H1 0.4827 0.6247 0.4148 0.051*
C2 0.55652 (9) 0.65137 (18) 0.33208 (9) 0.0426 (3)
C3 0.55508 (9) 0.65911 (18) 0.23692 (10) 0.0437 (3)
C4 0.47856 (10) 0.63752 (18) 0.16217 (9) 0.0452 (4)
C5 0.40106 (9) 0.60851 (18) 0.18019 (9) 0.0425 (3)
C6 0.40584 (9) 0.60677 (17) 0.27555 (9) 0.0400 (3)
C7 0.31987 (10) 0.58282 (19) 0.10407 (10) 0.0470 (4)
C8 0.24726 (9) 0.55273 (19) 0.13451 (10) 0.0463 (4)
C9 0.25552 (9) 0.55542 (18) 0.22864 (9) 0.0426 (3)
C10 0.18754 (9) 0.54065 (19) 0.27030 (9) 0.0438 (3)
C11 0.19372 (9) 0.6426 (2) 0.35134 (10) 0.0471 (4)
H11 0.2413 0.7167 0.3786 0.057*
C12 0.13104 (9) 0.6358 (2) 0.39175 (10) 0.0512 (4)
H12 0.1363 0.7058 0.4455 0.061*
C13 0.05974 (9) 0.5249 (2) 0.35272 (10) 0.0502 (4)
C14 0.05317 (10) 0.4198 (2) 0.27362 (12) 0.0581 (4)
H14 0.0063 0.3432 0.2478 0.070*
C15 0.11659 (10) 0.4286 (2) 0.23276 (11) 0.0553 (4)
H15 0.1114 0.3581 0.1792 0.066*
C16 0.64117 (10) 0.6460 (3) 0.49839 (11) 0.0672 (5)
H16A 0.6228 0.5260 0.5065 0.101*
H16B 0.6050 0.7324 0.5140 0.101*
H16C 0.6996 0.6630 0.5402 0.101*
C17 0.67982 (12) 0.5470 (3) 0.21626 (15) 0.0744 (5)
H17A 0.6467 0.4644 0.1676 0.112*
H17B 0.6983 0.4879 0.2776 0.112*
H17C 0.7292 0.5860 0.2020 0.112*
C18 0.15121 (13) 0.3816 (3) 0.00626 (14) 0.0818 (6)
H18A 0.1759 0.4002 −0.0425 0.123*
H18B 0.0905 0.3617 −0.0234 0.123*
H18C 0.1773 0.2782 0.0442 0.123*
C19 −0.07302 (12) 0.4180 (3) 0.36159 (15) 0.0807 (6)
H19A −0.1054 0.4487 0.2961 0.121*
H19B −0.1084 0.4341 0.4001 0.121*
H19C −0.0549 0.2942 0.3650 0.121*
O1 0.33340 (6) 0.58608 (13) 0.29847 (6) 0.0426 (3)
O2 0.63532 (6) 0.67071 (15) 0.40059 (7) 0.0525 (3)
O3 0.62890 (7) 0.69783 (14) 0.21861 (7) 0.0529 (3)
O4 0.47794 (8) 0.64402 (17) 0.07088 (7) 0.0620 (3)
H4 0.4288 0.6281 0.0334 0.093*
O5 0.31225 (8) 0.58768 (17) 0.01722 (7) 0.0616 (3)
O6 0.16597 (7) 0.53866 (16) 0.06686 (7) 0.0587 (3)
O7 0.00047 (7) 0.53200 (18) 0.39654 (8) 0.0674 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0497 (8) 0.0430 (8) 0.0356 (7) −0.0008 (6) 0.0155 (6) 0.0017 (6)
C2 0.0492 (8) 0.0354 (7) 0.0431 (7) −0.0009 (6) 0.0160 (6) 0.0014 (6)
C3 0.0547 (8) 0.0332 (7) 0.0489 (8) −0.0023 (6) 0.0253 (7) 0.0009 (6)
C4 0.0654 (9) 0.0362 (7) 0.0389 (7) −0.0008 (6) 0.0243 (7) 0.0009 (6)
C5 0.0552 (8) 0.0343 (7) 0.0380 (7) 0.0016 (6) 0.0165 (6) 0.0008 (5)
C6 0.0486 (8) 0.0334 (7) 0.0396 (7) 0.0022 (6) 0.0175 (6) 0.0026 (5)
C7 0.0626 (9) 0.0394 (7) 0.0359 (7) 0.0056 (7) 0.0132 (6) 0.0033 (6)
C8 0.0513 (8) 0.0415 (8) 0.0394 (7) 0.0053 (6) 0.0074 (6) 0.0014 (6)
C9 0.0469 (8) 0.0343 (7) 0.0410 (7) 0.0030 (6) 0.0084 (6) −0.0001 (6)
C10 0.0448 (7) 0.0396 (7) 0.0418 (7) 0.0011 (6) 0.0086 (6) 0.0013 (6)
C11 0.0455 (8) 0.0488 (8) 0.0424 (7) −0.0076 (6) 0.0096 (6) −0.0027 (6)
C12 0.0533 (8) 0.0552 (9) 0.0432 (7) −0.0080 (7) 0.0143 (6) −0.0058 (7)
C13 0.0476 (8) 0.0517 (9) 0.0487 (8) −0.0052 (7) 0.0139 (6) 0.0020 (7)
C14 0.0525 (9) 0.0538 (9) 0.0633 (9) −0.0156 (7) 0.0143 (7) −0.0097 (8)
C15 0.0593 (9) 0.0490 (9) 0.0544 (8) −0.0080 (7) 0.0159 (7) −0.0123 (7)
C16 0.0522 (9) 0.0982 (14) 0.0450 (8) −0.0076 (9) 0.0092 (7) 0.0153 (9)
C17 0.0725 (12) 0.0621 (11) 0.1037 (14) 0.0102 (9) 0.0500 (11) 0.0093 (10)
C18 0.0770 (12) 0.0918 (15) 0.0642 (11) −0.0132 (11) 0.0088 (9) −0.0287 (10)
C19 0.0579 (10) 0.0963 (15) 0.0901 (13) −0.0257 (10) 0.0288 (9) −0.0111 (12)
O1 0.0438 (5) 0.0456 (5) 0.0367 (5) −0.0003 (4) 0.0121 (4) 0.0005 (4)
O2 0.0473 (6) 0.0639 (7) 0.0455 (5) −0.0059 (5) 0.0154 (4) 0.0045 (5)
O3 0.0624 (6) 0.0430 (6) 0.0640 (6) −0.0042 (5) 0.0357 (5) 0.0008 (5)
O4 0.0791 (8) 0.0728 (8) 0.0406 (5) −0.0097 (6) 0.0290 (5) −0.0025 (5)
O5 0.0754 (7) 0.0706 (8) 0.0348 (5) 0.0027 (6) 0.0141 (5) 0.0057 (5)
O6 0.0545 (6) 0.0664 (7) 0.0439 (6) 0.0046 (5) 0.0029 (5) −0.0018 (5)
O7 0.0587 (7) 0.0816 (9) 0.0676 (7) −0.0227 (6) 0.0294 (6) −0.0130 (6)

Geometric parameters (Å, °)

C1—H1 0.9300 C12—C13 1.390 (2)
C1—C2 1.3845 (19) C13—C14 1.382 (2)
C1—C6 1.3774 (19) C13—O7 1.3580 (18)
C2—C3 1.408 (2) C14—H14 0.9300
C2—O2 1.3552 (17) C14—C15 1.389 (2)
C3—C4 1.373 (2) C15—H15 0.9300
C3—O3 1.3755 (17) C16—H16A 0.9600
C4—C5 1.419 (2) C16—H16B 0.9600
C4—O4 1.3543 (17) C16—H16C 0.9600
C5—C6 1.3920 (19) C16—O2 1.4347 (18)
C5—C7 1.437 (2) C17—H17A 0.9600
C6—O1 1.3685 (16) C17—H17B 0.9600
C7—C8 1.446 (2) C17—H17C 0.9600
C7—O5 1.2531 (17) C17—O3 1.408 (2)
C8—C9 1.358 (2) C18—H18A 0.9600
C8—O6 1.3761 (17) C18—H18B 0.9600
C9—C10 1.469 (2) C18—H18C 0.9600
C9—O1 1.3644 (16) C18—O6 1.438 (2)
C10—C11 1.395 (2) C19—H19A 0.9600
C10—C15 1.388 (2) C19—H19B 0.9600
C11—H11 0.9300 C19—H19C 0.9600
C11—C12 1.373 (2) C19—O7 1.424 (2)
C12—H12 0.9300 O4—H4 0.8200
C2—C1—H1 121.0 O7—C13—C14 125.10 (14)
C6—C1—H1 121.0 C13—C14—H14 120.0
C6—C1—C2 117.96 (12) C13—C14—C15 119.95 (14)
C1—C2—C3 121.20 (13) C15—C14—H14 120.0
O2—C2—C1 123.76 (12) C10—C15—C14 121.25 (14)
O2—C2—C3 115.04 (12) C10—C15—H15 119.4
C4—C3—C2 119.61 (13) C14—C15—H15 119.4
C4—C3—O3 120.00 (12) H16A—C16—H16B 109.5
O3—C3—C2 120.30 (13) H16A—C16—H16C 109.5
C3—C4—C5 120.51 (12) H16B—C16—H16C 109.5
O4—C4—C3 119.16 (13) O2—C16—H16A 109.5
O4—C4—C5 120.33 (13) O2—C16—H16B 109.5
C4—C5—C7 122.26 (12) O2—C16—H16C 109.5
C6—C5—C4 117.47 (13) H17A—C17—H17B 109.5
C6—C5—C7 120.26 (13) H17A—C17—H17C 109.5
C1—C6—C5 123.22 (13) H17B—C17—H17C 109.5
O1—C6—C1 115.93 (11) O3—C17—H17A 109.5
O1—C6—C5 120.85 (12) O3—C17—H17B 109.5
C5—C7—C8 115.41 (12) O3—C17—H17C 109.5
O5—C7—C5 122.41 (14) H18A—C18—H18B 109.5
O5—C7—C8 122.18 (13) H18A—C18—H18C 109.5
C9—C8—C7 121.73 (13) H18B—C18—H18C 109.5
C9—C8—O6 118.29 (14) O6—C18—H18A 109.5
O6—C8—C7 119.66 (12) O6—C18—H18B 109.5
C8—C9—C10 128.17 (13) O6—C18—H18C 109.5
C8—C9—O1 120.90 (13) H19A—C19—H19B 109.5
O1—C9—C10 110.79 (11) H19A—C19—H19C 109.5
C11—C10—C9 119.26 (12) H19B—C19—H19C 109.5
C15—C10—C9 122.96 (13) O7—C19—H19A 109.5
C15—C10—C11 117.78 (14) O7—C19—H19B 109.5
C10—C11—H11 119.3 O7—C19—H19C 109.5
C12—C11—C10 121.36 (13) C9—O1—C6 120.71 (10)
C12—C11—H11 119.3 C2—O2—C16 116.96 (11)
C11—C12—H12 119.9 C3—O3—C17 115.09 (12)
C11—C12—C13 120.29 (14) C4—O4—H4 109.5
C13—C12—H12 119.9 C8—O6—C18 115.31 (13)
C14—C13—C12 119.34 (14) C13—O7—C19 118.32 (13)
O7—C13—C12 115.55 (13)
C1—C2—C3—C4 −1.7 (2) C8—C9—C10—C11 −142.84 (15)
C1—C2—C3—O3 174.72 (12) C8—C9—C10—C15 37.3 (2)
C1—C2—O2—C16 6.5 (2) C8—C9—O1—C6 −2.98 (19)
C1—C6—O1—C9 −176.54 (12) C9—C8—O6—C18 −119.21 (16)
C2—C1—C6—C5 0.3 (2) C9—C10—C11—C12 178.80 (13)
C2—C1—C6—O1 −178.99 (12) C9—C10—C15—C14 −179.31 (14)
C2—C3—C4—C5 0.3 (2) C10—C9—O1—C6 −179.13 (11)
C2—C3—C4—O4 −179.58 (13) C10—C11—C12—C13 0.5 (2)
C2—C3—O3—C17 88.51 (17) C11—C10—C15—C14 0.8 (2)
C3—C2—O2—C16 −174.02 (14) C11—C12—C13—C14 0.9 (2)
C3—C4—C5—C6 1.3 (2) C11—C12—C13—O7 −178.28 (14)
C3—C4—C5—C7 −179.12 (13) C12—C13—C14—C15 −1.4 (2)
C4—C3—O3—C17 −95.05 (17) C12—C13—O7—C19 −178.35 (16)
C4—C5—C6—C1 −1.7 (2) C13—C14—C15—C10 0.5 (3)
C4—C5—C6—O1 177.63 (11) C14—C13—O7—C19 2.6 (2)
C4—C5—C7—C8 179.28 (13) C15—C10—C11—C12 −1.3 (2)
C4—C5—C7—O5 −1.3 (2) O1—C9—C10—C11 32.96 (17)
C5—C6—O1—C9 4.11 (18) O1—C9—C10—C15 −146.90 (14)
C5—C7—C8—C9 2.3 (2) O2—C2—C3—C4 178.76 (12)
C5—C7—C8—O6 175.71 (12) O2—C2—C3—O3 −4.78 (19)
C6—C1—C2—C3 1.4 (2) O3—C3—C4—C5 −176.13 (12)
C6—C1—C2—O2 −179.15 (13) O3—C3—C4—O4 4.0 (2)
C6—C5—C7—C8 −1.2 (2) O4—C4—C5—C6 −178.79 (13)
C6—C5—C7—O5 178.25 (13) O4—C4—C5—C7 0.8 (2)
C7—C5—C6—C1 178.74 (12) O5—C7—C8—C9 −177.12 (14)
C7—C5—C6—O1 −2.0 (2) O5—C7—C8—O6 −3.7 (2)
C7—C8—C9—C10 175.13 (13) O6—C8—C9—C10 1.6 (2)
C7—C8—C9—O1 −0.3 (2) O6—C8—C9—O1 −173.81 (12)
C7—C8—O6—C18 67.14 (19) O7—C13—C14—C15 177.69 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4···O5 0.82 1.89 2.6157 (16) 147.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2143).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Chhaya, G. & Mishra, S. H. (2007). Pharmacologyonline 1, 391–399.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Goldsworthy, L. J. & Robert, R. (1936). J. Am. Chem. Soc. 58, 46–49.
  5. Masateru, O., Yumiko, N., Tsuyoshi, I., Ryota, T., Masafumi, O., Junei, K., Hitoshi, Y. & Toshihiro, N. (2009). Chem. Pharm. Bull. 10, 1132–1135. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Sy, L. K. & Brown, G. D. (1998). Phytochem. 7, 1207–1211.
  8. Yang, G. Z., Li, Y. F., Yu, X. & Mei, Z. N. (2007). Acta Pharm. Sin 5, 511–515.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681103827X/zs2143sup1.cif

e-67-o2733-sup1.cif (21.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103827X/zs2143Isup2.hkl

e-67-o2733-Isup2.hkl (131.7KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681103827X/zs2143Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES