Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):m1354. doi: 10.1107/S1600536811035355

Dicaesium diaqua­bis­(methyl­ene­diphospho­nato-κ2 O,O′)cobaltate(II)

Kina van Merwe a,*, Hendrik G Visser a, Johan A Venter a
PMCID: PMC3201400  PMID: 22065711

Abstract

The asymmetric unit of the title compound, Cs2[Co(CH4O6P2)2(H2O)2], is comprised of one bidentate methyl­enediphospho­nate ligand and one water mol­ecule which are coordinated to the CoII atom, as well as a caesium counter-cation. The Co atom occupies a special position on a crystallographic inversion center. The caesium ion is octa­hedrally coordinated by six O atoms with Cs—O distances ranging from 3.119 (2) to 3.296 (2) Å. A three-dimensional network is formed through O—H⋯O hydrogen bonds.

Related literature

For related structures, see: Fleisch (1991); Neville-Webbe et al. (2002); Van der Merwe et al. (2010). For bond lengths and bond angles in related structures, see: Bao et al. (2003); Cao et al. (2007); Gong et al. (2006); Van der Merwe et al. (2009); Visser et al. (2010); Yin et al. (2003).graphic file with name e-67-m1354-scheme1.jpg

Experimental

Crystal data

  • Cs2[Co(CH4O6P2)2(H2O)2]

  • M r = 708.75

  • Triclinic, Inline graphic

  • a = 7.333 (5) Å

  • b = 7.412 (5) Å

  • c = 7.666 (5) Å

  • α = 74.621 (5)°

  • β = 83.064 (5)°

  • γ = 86.496 (5)°

  • V = 398.6 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 5.96 mm−1

  • T = 293 K

  • 0.38 × 0.07 × 0.05 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.210, T max = 0.755

  • 4203 measured reflections

  • 1904 independent reflections

  • 1827 reflections with I > 2σ(I)

  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.015

  • wR(F 2) = 0.044

  • S = 0.75

  • 1904 reflections

  • 132 parameters

  • 11 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811035355/jh2322sup1.cif

e-67-m1354-sup1.cif (22.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035355/jh2322Isup2.hkl

e-67-m1354-Isup2.hkl (91.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O4i 0.92 (2) 1.94 (2) 2.860 (3) 173 (3)
O5—H5B⋯O4ii 0.85 (2) 1.69 (3) 2.518 (3) 164 (7)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The University of the Free State and Professor A. Roodt are gratefully acknowledged for financial support.

supplementary crystallographic information

Comment

This work is part of an ongoing investigation aimed at synthesizing and characterizing new methylene diphosphonate complexes and expanding on our knowledge of the interactions of the methylene diphosphonate ligand with various metal centers. (Van der Merwe et al. (2009) & Van der Merwe et al. (2010)).

Methylene diphosphonates (O3PCH2PO3) has a diversified coordination capability with metal ions, due to the single methyl group which divides the two phosphonate groups. The formation of a stable six-membered ring comprised of M—O—P—C—P—O is favoured (Bao et al. (2003). Bisphosphonates adhere strongly to hydroxyapatite crystals and constrain their formation and dissolution (Fleisch (1991)). This physicochemical in vivo effect may result in the prevention of soft tissue calcification or even prevent normal calcification. The bis(phosphonic acid) has a high affinity for bone surfaces and it is also non-hydrolyzable (Neville-Webbe et al. (2002).

The asymmetric unit of the title compound, Cs2[Co(CH4O6P2)2(H2O)2], is comprised of one bidentate methylene diphosphonate ligand and one water molecule which are coordinated to the CoII atom, as well as a non-coordinated caesium cation. The Co atom occupies a special position on a crystallographic inversion center. The caesium ion is octahedrally coordinated to six oxygen atoms with Cs—O distances ranging from 3.119 (2) to 3.296 (2) Å. The two methylene diphosphonate ligands chelate to the central cobalt metal via four oxygen atoms (O2/O2' and O7/O7') from the phosphonate groups. This leads to the formation of two six-membered rings.

The CoII metal center has a slightly distorted octahedral geometry with O—Co—O angles ranging between 85.35 (8) ° and 94.65 (8) °. The Co—O bond lengths vary between 2.0761 (18) and 2.1272 (19) Å. These distances correspond to literature values (Bao et al. (2003); Cao et al. (2007); Gong et al. (2006); Van der Merwe et al. (2009); Visser et al. (2010); Yin et al. (2003).

A three-dimensional network is provided by O—H–O hydrogen bonds (Table 2).

Experimental

[Co(NH3)6]Cl3(0,1700 g, 0,714 mmol) was dissolved in distilled water (10 cm3) and the pH of the solution was lowered to 1.87 using hydrochloric acid. The solution was heated for 30 minutes at 313.15 K. Methylene diphosphonate (0.251 g, 1.43 mmol) was dissolved in distilled water (7 cm3) and the pH of the solution was elevated to 1.93 using caesium chloride. Both solutions were combined and the pH was adjusted to 2.04, the pink solution was heated for 3 h at 353.15 K. Pink crystals, suitable for X-ray diffraction, was obtained. (Yield: 7.2%)

Refinement

All H atoms were located from difference Fourier maps and were refined isotropically without further restraints. The highest residual electron density was located 0.88 Å from P1.

Figures

Fig. 1.

Fig. 1.

Representation of the title compound, showing the numbering scheme and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) 1 - x, -y, 1 - z].

Crystal data

Cs2[Co(CH4O6P2)2(H2O)2] Z = 1
Mr = 708.75 F(000) = 253
Triclinic, P1 Dx = 2.953 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.333 (5) Å Cell parameters from 3160 reflections
b = 7.412 (5) Å θ = 2.8–28.4°
c = 7.666 (5) Å µ = 5.96 mm1
α = 74.621 (5)° T = 293 K
β = 83.064 (5)° Needle, pink
γ = 86.496 (5)° 0.38 × 0.07 × 0.05 mm
V = 398.6 (5) Å3

Data collection

Bruker APEXII CCD diffractometer 1827 reflections with I > 2σ(I)
φ and ω scans Rint = 0.015
Absorption correction: multi-scan (SADABS; Bruker, 2001) θmax = 28°, θmin = 3.7°
Tmin = 0.210, Tmax = 0.755 h = −9→9
4203 measured reflections k = −9→9
1904 independent reflections l = −10→10

Refinement

Refinement on F2 11 restraints
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.015 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.4899P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.044 (Δ/σ)max = 0.002
S = 0.75 Δρmax = 0.47 e Å3
1904 reflections Δρmin = −0.48 e Å3
132 parameters

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cs1 0.284577 (17) 0.954858 (18) 0.692901 (17) 0.00965 (6)
Co1 0.5 0.5 0.5 0.00595 (9)
P1 0.26392 (7) 0.34252 (8) 0.22866 (8) 0.00590 (11)
P2 0.19616 (7) 0.74778 (8) 0.25147 (8) 0.00589 (11)
O1 0.2886 (2) 0.4437 (2) 0.7201 (2) 0.0112 (3)
O2 0.3857 (2) 0.3210 (2) 0.3786 (2) 0.0088 (3)
O3 0.0667 (2) 0.2706 (2) 0.3122 (2) 0.0086 (3)
O4 0.3336 (2) 0.2396 (2) 0.0861 (2) 0.0086 (3)
O5 0.1822 (2) 0.9384 (2) 0.1036 (2) 0.0109 (3)
O6 0.0107 (2) 0.7058 (2) 0.3621 (2) 0.0102 (3)
O7 0.3541 (2) 0.7427 (2) 0.3623 (2) 0.0086 (3)
C1 0.2397 (3) 0.5858 (3) 0.1121 (3) 0.0071 (4)
H1A 0.313 (4) 0.383 (4) 0.837 (3) 0.023 (9)*
H1B 0.185 (4) 0.410 (6) 0.704 (6) 0.063 (15)*
H2 0.048 (5) 0.287 (5) 0.417 (3) 0.035 (10)*
H3 0.145 (3) 0.599 (4) 0.033 (4) 0.018 (8)*
H4 0.357 (3) 0.616 (4) 0.046 (4) 0.015 (8)*
H5A 0.156 (9) 0.935 (9) 0.002 (5) 0.022* 0.5
H5B 0.239 (8) 1.030 (7) 0.116 (9) 0.022* 0.5

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cs1 0.01010 (9) 0.00910 (9) 0.00854 (9) 0.00056 (5) −0.00040 (5) −0.00068 (6)
Co1 0.00540 (19) 0.00593 (19) 0.0067 (2) −0.00035 (15) −0.00109 (15) −0.00174 (16)
P1 0.0061 (2) 0.0053 (2) 0.0063 (3) −0.00119 (19) −0.0007 (2) −0.0015 (2)
P2 0.0060 (2) 0.0060 (3) 0.0057 (3) −0.00059 (19) −0.0006 (2) −0.0014 (2)
O1 0.0084 (8) 0.0160 (9) 0.0088 (8) −0.0027 (7) −0.0002 (6) −0.0019 (7)
O2 0.0097 (7) 0.0077 (7) 0.0092 (8) −0.0008 (6) −0.0028 (6) −0.0015 (6)
O3 0.0076 (7) 0.0110 (8) 0.0077 (8) −0.0033 (6) 0.0007 (6) −0.0032 (6)
O4 0.0098 (7) 0.0072 (7) 0.0096 (8) −0.0012 (6) 0.0008 (6) −0.0040 (6)
O5 0.0173 (8) 0.0063 (7) 0.0093 (8) −0.0012 (6) −0.0063 (7) −0.0002 (6)
O6 0.0072 (7) 0.0139 (8) 0.0096 (8) −0.0017 (6) 0.0012 (6) −0.0040 (6)
O7 0.0096 (7) 0.0067 (7) 0.0098 (8) −0.0003 (6) −0.0032 (6) −0.0016 (6)
C1 0.0087 (9) 0.0066 (10) 0.0056 (10) −0.0009 (8) −0.0011 (8) −0.0005 (8)

Geometric parameters (Å, °)

Cs1—O5i 3.119 (3) P2—O6 1.5158 (18)
Cs1—O3ii 3.165 (2) P2—O5 1.5663 (19)
Cs1—O2iii 3.162 (2) P2—C1 1.799 (2)
Cs1—O2iv 3.173 (2) O1—H1A 0.922 (17)
Cs1—O6v 3.192 (2) O1—H1B 0.846 (19)
Cs1—O4iii 3.485 (2) O2—Cs1iii 3.162 (2)
Cs1—O7vi 3.490 (2) O2—Cs1vii 3.173 (2)
Co1—O2iii 2.0761 (18) O3—Cs1ii 3.165 (2)
Co1—O2 2.0761 (18) O3—H2 0.840 (19)
Co1—O1iii 2.1209 (19) O4—Cs1iii 3.485 (2)
Co1—O1 2.1209 (19) O5—Cs1viii 3.119 (3)
Co1—O7iii 2.1272 (19) O5—H5A 0.83 (2)
Co1—O7 2.1272 (19) O5—H5B 0.85 (2)
P1—O2 1.5087 (18) O6—Cs1v 3.192 (2)
P1—O4 1.5158 (18) O7—Cs1vi 3.490 (2)
P1—O3 1.5732 (18) C1—H3 0.963 (14)
P1—C1 1.796 (3) C1—H4 0.951 (14)
P2—O7 1.5099 (18)
O5i—Cs1—O3ii 91.51 (5) O7—Co1—Cs1iii 128.78 (6)
O5i—Cs1—O2iii 113.53 (4) O2iii—Co1—Cs1vi 45.80 (6)
O3ii—Cs1—O2iii 103.25 (7) O2—Co1—Cs1vi 134.20 (6)
O5i—Cs1—O2iv 125.59 (5) O1iii—Co1—Cs1vi 60.18 (5)
O3ii—Cs1—O2iv 120.31 (5) O1—Co1—Cs1vi 119.82 (5)
O2iii—Cs1—O2iv 101.31 (5) O7iii—Co1—Cs1vi 125.13 (6)
O5i—Cs1—O6v 82.95 (5) O7—Co1—Cs1vi 54.87 (6)
O3ii—Cs1—O6v 81.36 (7) Cs1iii—Co1—Cs1vi 123.10 (4)
O2iii—Cs1—O6v 162.47 (4) O2iii—Co1—Cs1vii 134.20 (6)
O2iv—Cs1—O6v 62.52 (5) O2—Co1—Cs1vii 45.80 (6)
O5i—Cs1—O4iii 73.40 (5) O1iii—Co1—Cs1vii 119.82 (5)
O3ii—Cs1—O4iii 124.24 (6) O1—Co1—Cs1vii 60.18 (5)
O2iii—Cs1—O4iii 44.75 (5) O7iii—Co1—Cs1vii 54.87 (6)
O2iv—Cs1—O4iii 111.44 (5) O7—Co1—Cs1vii 125.13 (6)
O6v—Cs1—O4iii 144.68 (4) Cs1iii—Co1—Cs1vii 56.90 (4)
O5i—Cs1—O7vi 94.14 (4) Cs1vi—Co1—Cs1vii 180
O3ii—Cs1—O7vi 170.61 (4) O2—P1—O4 114.76 (10)
O2iii—Cs1—O7vi 81.34 (7) O2—P1—O3 109.86 (10)
O2iv—Cs1—O7vi 50.37 (5) O4—P1—O3 107.73 (9)
O6v—Cs1—O7vi 91.89 (7) O2—P1—C1 109.55 (10)
O4iii—Cs1—O7vi 64.74 (6) O4—P1—C1 107.05 (11)
O5i—Cs1—C1i 44.75 (6) O3—P1—C1 107.62 (10)
O3ii—Cs1—C1i 72.92 (5) O2—P1—Cs1iii 51.16 (7)
O2iii—Cs1—C1i 78.47 (6) O4—P1—Cs1iii 63.66 (7)
O2iv—Cs1—C1i 165.97 (5) O3—P1—Cs1iii 124.40 (8)
O6v—Cs1—C1i 118.91 (5) C1—P1—Cs1iii 127.77 (8)
O4iii—Cs1—C1i 58.52 (5) O2—P1—Cs1vii 49.06 (7)
O7vi—Cs1—C1i 116.25 (5) O4—P1—Cs1vii 103.57 (8)
O5i—Cs1—O1iv 74.68 (4) O3—P1—Cs1vii 68.88 (7)
O3ii—Cs1—O1iv 126.32 (5) C1—P1—Cs1vii 148.54 (8)
O2iii—Cs1—O1iv 130.04 (5) Cs1iii—P1—Cs1vii 61.70 (2)
O2iv—Cs1—O1iv 50.97 (5) O7—P2—O6 114.83 (11)
O6v—Cs1—O1iv 46.06 (5) O7—P2—O5 111.69 (10)
O4iii—Cs1—O1iv 101.41 (4) O6—P2—O5 109.44 (10)
O7vi—Cs1—O1iv 48.72 (4) O7—P2—C1 110.57 (10)
C1i—Cs1—O1iv 118.60 (6) O6—P2—C1 108.09 (10)
O5i—Cs1—O3iv 125.42 (5) O5—P2—C1 101.32 (11)
O3ii—Cs1—O3iv 78.65 (6) O7—P2—Cs1v 124.05 (8)
O2iii—Cs1—O3iv 121.02 (5) O5—P2—Cs1v 65.52 (7)
O2iv—Cs1—O3iv 42.33 (5) C1—P2—Cs1v 125.05 (8)
O6v—Cs1—O3iv 42.63 (4) O7—P2—Cs1viii 118.54 (7)
O4iii—Cs1—O3iv 152.49 (4) O6—P2—Cs1viii 125.77 (7)
O7vi—Cs1—O3iv 91.97 (5) C1—P2—Cs1viii 61.03 (8)
C1i—Cs1—O3iv 148.87 (5) Cs1v—P2—Cs1viii 94.916 (19)
O1iv—Cs1—O3iv 69.55 (5) Co1—O1—Cs1vii 89.88 (6)
O5i—Cs1—O5v 55.64 (5) Co1—O1—H1A 122 (2)
O3ii—Cs1—O5v 56.50 (6) Cs1vii—O1—H1A 81 (2)
O2iii—Cs1—O5v 153.15 (4) Co1—O1—H1B 120 (3)
O2iv—Cs1—O5v 104.38 (5) Cs1vii—O1—H1B 66 (3)
O6v—Cs1—O5v 41.87 (4) H1A—O1—H1B 108 (3)
O4iii—Cs1—O5v 128.47 (5) P1—O2—Co1 135.98 (10)
O7vi—Cs1—O5v 121.54 (5) P1—O2—Cs1iii 107.03 (9)
C1i—Cs1—O5v 78.50 (5) Co1—O2—Cs1iii 103.97 (7)
O1iv—Cs1—O5v 73.92 (4) P1—O2—Cs1vii 109.88 (8)
O3iv—Cs1—O5v 75.37 (5) Co1—O2—Cs1vii 106.22 (8)
O5i—Cs1—P1iii 94.28 (4) Cs1iii—O2—Cs1vii 78.69 (5)
O3ii—Cs1—P1iii 115.59 (6) P1—O3—Cs1ii 150.94 (9)
O2iii—Cs1—P1iii 21.82 (3) P1—O3—Cs1vii 87.66 (8)
O2iv—Cs1—P1iii 106.97 (4) Cs1ii—O3—Cs1vii 101.35 (6)
O6v—Cs1—P1iii 162.96 (3) P1—O3—H2 108 (3)
O4iii—Cs1—P1iii 22.94 (3) Cs1ii—O3—H2 101 (3)
O7vi—Cs1—P1iii 71.49 (6) Cs1vii—O3—H2 59 (3)
C1i—Cs1—P1iii 67.80 (4) P1—O4—Cs1iii 93.39 (8)
O1iv—Cs1—P1iii 116.98 (4) P2—O5—Cs1viii 120.07 (9)
O3iv—Cs1—P1iii 138.50 (3) P2—O5—Cs1v 91.93 (8)
O5v—Cs1—P1iii 145.78 (4) Cs1viii—O5—Cs1v 124.36 (5)
O2iii—Co1—O2 180 P2—O5—H5A 118 (5)
O2iii—Co1—O1iii 90.76 (8) Cs1v—O5—H5A 99 (5)
O2—Co1—O1iii 89.24 (8) P2—O5—H5B 117 (5)
O2iii—Co1—O1 89.24 (8) Cs1viii—O5—H5B 103 (5)
O2—Co1—O1 90.76 (8) Cs1v—O5—H5B 100 (5)
O1iii—Co1—O1 180 H5A—O5—H5B 121 (6)
O2iii—Co1—O7iii 94.65 (8) P2—O6—Cs1v 115.52 (9)
O2—Co1—O7iii 85.35 (8) P2—O7—Co1 126.62 (10)
O1iii—Co1—O7iii 91.47 (7) P2—O7—Cs1vi 131.62 (9)
O1—Co1—O7iii 88.53 (7) Co1—O7—Cs1vi 95.23 (7)
O2iii—Co1—O7 85.35 (8) P1—C1—P2 116.79 (13)
O2—Co1—O7 94.65 (8) P1—C1—Cs1viii 149.47 (11)
O1iii—Co1—O7 88.53 (7) P2—C1—Cs1viii 93.21 (10)
O1—Co1—O7 91.47 (7) P1—C1—H3 108.1 (19)
O7iii—Co1—O7 180.00 (9) P2—C1—H3 110.1 (19)
O2iii—Co1—Cs1iii 132.78 (6) Cs1viii—C1—H3 62.8 (19)
O2—Co1—Cs1iii 47.22 (6) P1—C1—H4 104.3 (19)
O1iii—Co1—Cs1iii 63.15 (5) P2—C1—H4 105.3 (19)
O1—Co1—Cs1iii 116.85 (5) Cs1viii—C1—H4 59.3 (18)
O7iii—Co1—Cs1iii 51.22 (6) H3—C1—H4 112 (3)
O2iii—Co1—O1—Cs1vii −144.21 (6) C1—P2—O5—Cs1viii −8.70 (12)
O2—Co1—O1—Cs1vii 35.79 (6) Cs1v—P2—O5—Cs1viii −132.22 (9)
O7iii—Co1—O1—Cs1vii −49.55 (6) O7—P2—O5—Cs1v −118.75 (9)
O7—Co1—O1—Cs1vii 130.45 (6) O6—P2—O5—Cs1v 9.54 (9)
Cs1iii—Co1—O1—Cs1vii −5.22 (5) C1—P2—O5—Cs1v 123.53 (8)
Cs1vi—Co1—O1—Cs1vii 180 Cs1viii—P2—O5—Cs1v 132.22 (9)
O4—P1—O2—Co1 130.04 (13) O7—P2—O6—Cs1v 114.18 (10)
O3—P1—O2—Co1 −108.42 (14) O5—P2—O6—Cs1v −12.34 (11)
C1—P1—O2—Co1 9.60 (17) C1—P2—O6—Cs1v −121.88 (10)
Cs1iii—P1—O2—Co1 132.87 (17) Cs1viii—P2—O6—Cs1v −55.00 (10)
Cs1vii—P1—O2—Co1 −143.29 (18) O6—P2—O7—Co1 80.65 (14)
O4—P1—O2—Cs1iii −2.83 (11) O5—P2—O7—Co1 −154.00 (11)
O3—P1—O2—Cs1iii 118.71 (9) C1—P2—O7—Co1 −41.97 (15)
C1—P1—O2—Cs1iii −123.27 (9) Cs1v—P2—O7—Co1 131.64 (9)
Cs1vii—P1—O2—Cs1iii 83.84 (8) Cs1viii—P2—O7—Co1 −109.34 (10)
O4—P1—O2—Cs1vii −86.67 (11) O6—P2—O7—Cs1vi −135.06 (11)
O3—P1—O2—Cs1vii 34.87 (11) O5—P2—O7—Cs1vi −9.70 (14)
C1—P1—O2—Cs1vii 152.89 (9) C1—P2—O7—Cs1vi 102.32 (13)
Cs1iii—P1—O2—Cs1vii −83.84 (8) Cs1v—P2—O7—Cs1vi −84.06 (12)
O1iii—Co1—O2—P1 −80.87 (15) Cs1viii—P2—O7—Cs1vi 34.96 (13)
O1—Co1—O2—P1 99.13 (15) O2iii—Co1—O7—P2 −168.93 (12)
O7iii—Co1—O2—P1 −172.41 (15) O2—Co1—O7—P2 11.07 (12)
O7—Co1—O2—P1 7.59 (15) O1iii—Co1—O7—P2 100.19 (13)
Cs1iii—Co1—O2—P1 −133.77 (17) O1—Co1—O7—P2 −79.81 (13)
Cs1vi—Co1—O2—P1 −35.83 (17) Cs1iii—Co1—O7—P2 47.08 (14)
Cs1vii—Co1—O2—P1 144.17 (17) Cs1vi—Co1—O7—P2 154.02 (14)
O1iii—Co1—O2—Cs1iii 52.90 (7) Cs1vii—Co1—O7—P2 −25.98 (14)
O1—Co1—O2—Cs1iii −127.10 (7) O2iii—Co1—O7—Cs1vi 37.05 (6)
O7iii—Co1—O2—Cs1iii −38.64 (6) O2—Co1—O7—Cs1vi −142.95 (6)
O7—Co1—O2—Cs1iii 141.36 (6) O1iii—Co1—O7—Cs1vi −53.82 (6)
Cs1vi—Co1—O2—Cs1iii 97.94 (6) O1—Co1—O7—Cs1vi 126.18 (6)
Cs1vii—Co1—O2—Cs1iii −82.06 (6) Cs1iii—Co1—O7—Cs1vi −106.94 (4)
O1iii—Co1—O2—Cs1vii 134.96 (7) Cs1vii—Co1—O7—Cs1vi 180
O1—Co1—O2—Cs1vii −45.04 (7) O2—P1—C1—P2 −44.78 (16)
O7iii—Co1—O2—Cs1vii 43.42 (6) O4—P1—C1—P2 −169.80 (12)
O7—Co1—O2—Cs1vii −136.58 (6) O3—P1—C1—P2 74.63 (14)
Cs1iii—Co1—O2—Cs1vii 82.06 (6) Cs1iii—P1—C1—P2 −100.25 (12)
Cs1vi—Co1—O2—Cs1vii 180 Cs1vii—P1—C1—P2 −3.5 (2)
O2—P1—O3—Cs1ii −136.98 (17) O2—P1—C1—Cs1viii 123.58 (19)
O4—P1—O3—Cs1ii −11.3 (2) O4—P1—C1—Cs1viii −1.4 (2)
C1—P1—O3—Cs1ii 103.8 (2) O3—P1—C1—Cs1viii −117.01 (19)
Cs1iii—P1—O3—Cs1ii −81.1 (2) Cs1iii—P1—C1—Cs1viii 68.1 (2)
Cs1vii—P1—O3—Cs1ii −109.40 (19) Cs1vii—P1—C1—Cs1viii 164.84 (9)
O2—P1—O3—Cs1vii −27.58 (9) O7—P2—C1—P1 62.05 (15)
O4—P1—O3—Cs1vii 98.08 (9) O6—P2—C1—P1 −64.42 (15)
C1—P1—O3—Cs1vii −146.80 (8) O5—P2—C1—P1 −179.41 (12)
Cs1iii—P1—O3—Cs1vii 28.30 (7) Cs1v—P2—C1—P1 −111.48 (11)
O2—P1—O4—Cs1iii 2.46 (9) Cs1viii—P2—C1—P1 174.11 (15)
O3—P1—O4—Cs1iii −120.24 (8) O7—P2—C1—Cs1viii −112.06 (8)
C1—P1—O4—Cs1iii 124.27 (8) O6—P2—C1—Cs1viii 121.47 (8)
Cs1vii—P1—O4—Cs1iii −48.42 (5) O5—P2—C1—Cs1viii 6.48 (9)
O7—P2—O5—Cs1viii 109.03 (10) Cs1v—P2—C1—Cs1viii 74.41 (7)
O6—P2—O5—Cs1viii −122.68 (10)

Symmetry codes: (i) x, y, z+1; (ii) −x, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x, y+1, z; (v) −x, −y+2, −z+1; (vi) −x+1, −y+2, −z+1; (vii) x, y−1, z; (viii) x, y, z−1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O4i 0.92 (2) 1.94 (2) 2.860 (3) 173 (3)
O5—H5B···O4iv 0.85 (2) 1.69 (3) 2.518 (3) 164 (7)

Symmetry codes: (i) x, y, z+1; (iv) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2322).

References

  1. Bao, S., Zheng, L., Liu, Y., Xu, W. & Feng, S. (2003). Inorg. Chem. 42, 5037–5039. [DOI] [PubMed]
  2. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2004). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cao, D., Li, Y. & Zheng, L. (2007). Inorg. Chem. 46, 7571–7578. [DOI] [PubMed]
  7. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  8. Fleisch, H. (1991). Drugs, 42, 919–944. [DOI] [PubMed]
  9. Gong, Y., Tang, W., Hou, W., Zha, Z. & Hu, C. (2006). Inorg. Chem. 45, 4987–4995. [DOI] [PubMed]
  10. Neville-Webbe, H. L., Holen, I. & Coleman, R. E. (2002). Cancer Treat. Rev. 28, 305–319. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Van der Merwe, K. A., Visser, H. G. & Venter, J. A. (2009). Acta Cryst. E65, m1394. [DOI] [PMC free article] [PubMed]
  13. Van der Merwe, K., Visser, H. G. & Venter, J. A. (2010). Acta Cryst. E66, m1011–m1012. [DOI] [PMC free article] [PubMed]
  14. Visser, H. G., Venter, J. A. & Van der Merwe, K. A. (2010). Acta Cryst. E66, m159. [DOI] [PMC free article] [PubMed]
  15. Yin, P., Gao, S., Zheng, L. & Xin, X. (2003). Chem. Mater. 15, 3233–3236.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811035355/jh2322sup1.cif

e-67-m1354-sup1.cif (22.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035355/jh2322Isup2.hkl

e-67-m1354-Isup2.hkl (91.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES