Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2747. doi: 10.1107/S160053681103830X

(4R)-4-(Biphenyl-4-yl)-7-chloro-1,2,3,4-tetra­hydro­quinoline

Thomas Theissmann a, Michael Bolte b,*
PMCID: PMC3201410  PMID: 22064825

Abstract

The title compound, C21H18ClN, was synthesized by an enanti­oselective Brønsted acid-catalysed transfer hydrogenation reaction. The six-membered heterocycle adopts a half-chair conformation. It has the biphenyl residue in an axial position. The two rings of the biphenyl residue are almost coplanar [dihedral angle = 2.65 (9)°]. The crystal packing is stabilized by N—H⋯Cl hydrogen bonds, which connect the mol­ecules into chains running along the a axis.

Related literature

For organocatalysed processes, see: Rueping, Sugiono & Schoepke (2010); Rueping, Dufour & Schoepke (2011). For Brønsted acid-catalysed transfer hydrogenations, see: Rueping et al. (2008); Rueping, Stoeckel et al. (2010). For the synthesis of the title compound, see: Rueping, Theissmann et al. (2011).graphic file with name e-67-o2747-scheme1.jpg

Experimental

Crystal data

  • C21H18ClN

  • M r = 319.81

  • Orthorhombic, Inline graphic

  • a = 5.5354 (4) Å

  • b = 8.0039 (4) Å

  • c = 35.8207 (17) Å

  • V = 1587.03 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 K

  • 0.35 × 0.21 × 0.11 mm

Data collection

  • STOE IPDS II two-circle-diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2009; Blessing, 1995) T min = 0.921, T max = 0.984

  • 18042 measured reflections

  • 3071 independent reflections

  • 2867 reflections with I > 2σ(I)

  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.079

  • S = 1.05

  • 3071 reflections

  • 213 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983), 1240 Friedel pairs

  • Flack parameter: 0.01 (5)

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681103830X/lr2028sup1.cif

e-67-o2747-sup1.cif (19.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103830X/lr2028Isup2.hkl

e-67-o2747-Isup2.hkl (150.7KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681103830X/lr2028Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1i 0.90 (3) 2.66 (3) 3.5466 (17) 171 (2)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Tetrahydroquinolines are widely distributed in nature. Due to their importance as synthetic intermediates in the preparation of pharmaceuticals, agrochemicals, and in material science, considerable effort has been made to prepare these important molecules. Recently organocatalyzed processes have found widespread applications (Rueping, Sugiono & Schoepke, 2010; Rueping, Dufour & Schoepke, 2011). In particular Brønsted acid catalyzed transfer hydrogenations have been reported to provide a series of N-heterocyclic compounds with highest enantioselectivities (Rueping et al., 2008; Rueping, Stoeckel et al., 2010). The title compound was synthesized for the first time following this methodology (Rueping, Theissmann et al., 2011) and colourless plates suitable for crystal structure determination were obtained.

The six-membered heterocycle in the title compound adopts a half chair conformation. It has the biphenyl residue in an axial position. The two rings of the biphenyl residue are almost coplanar [dihedral angle 2.65 (9)°]. The crystal packing is stabilized by N—H···Cl hydrogen bonds connecting the molecules to chains running along the a axis.

Experimental

The title compound has been synthesized as described by Rueping, Theissmann et al. (2011).

Refinement

All H atoms could be located by difference Fourier synthesis. Those bonded to C were refined with fixed individual displacement parameters [U(H) = 1.2 Ueq(C)] using a riding model with C—H ranging from 0.95Å to 1.00 Å. The H atom bonded to N was freely refined.

Figures

Fig. 1.

Fig. 1.

Perspective view of the title compound with the atom numbering; displacement ellipsoids are at the 50% probability level.

Fig. 2.

Fig. 2.

Packing diagram of the title compound. Hydrogen atoms bonded to C have been omitted for clarity. Hydrogen bonds are drawn as dashed lines.

Crystal data

C21H18ClN F(000) = 672
Mr = 319.81 Dx = 1.339 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 18030 reflections
a = 5.5354 (4) Å θ = 2.3–26.4°
b = 8.0039 (4) Å µ = 0.24 mm1
c = 35.8207 (17) Å T = 173 K
V = 1587.03 (16) Å3 Plate, colourless
Z = 4 0.35 × 0.21 × 0.11 mm

Data collection

STOE IPDS II two-circle-diffractometer 3071 independent reflections
Radiation source: fine-focus sealed tube 2867 reflections with I > 2σ(I)
graphite Rint = 0.059
ω scans θmax = 25.9°, θmin = 2.3°
Absorption correction: multi-scan (MULABS; Spek, 2009; Blessing, 1995) h = −6→6
Tmin = 0.921, Tmax = 0.984 k = −9→9
18042 measured reflections l = −43→44

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.1208P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.079 (Δ/σ)max < 0.001
S = 1.05 Δρmax = 0.21 e Å3
3071 reflections Δρmin = −0.18 e Å3
213 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.026 (2)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 1240 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.01 (5)

Special details

Experimental. ;
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.19210 (10) 0.59051 (5) 0.005768 (11) 0.04965 (15)
N1 0.1122 (3) 0.01504 (19) 0.06517 (4) 0.0428 (4)
H1 −0.002 (5) 0.000 (3) 0.0477 (7) 0.059 (6)*
C2 0.1862 (4) −0.12356 (19) 0.08883 (4) 0.0407 (4)
H2A 0.1373 −0.2302 0.0771 0.049*
H2B 0.1034 −0.1151 0.1133 0.049*
C3 0.4575 (4) −0.12319 (19) 0.09483 (5) 0.0406 (4)
H3A 0.5403 −0.1469 0.0709 0.049*
H3B 0.5017 −0.2120 0.1128 0.049*
C4 0.5406 (3) 0.04765 (18) 0.10990 (4) 0.0317 (3)
H4 0.7213 0.0481 0.1100 0.038*
C5 0.4573 (3) 0.18288 (17) 0.08315 (4) 0.0281 (3)
C6 0.2442 (3) 0.15963 (19) 0.06229 (4) 0.0308 (3)
C7 0.1654 (3) 0.28714 (19) 0.03814 (4) 0.0331 (3)
H7 0.0211 0.2739 0.0241 0.040*
C8 0.3000 (3) 0.43151 (18) 0.03507 (4) 0.0337 (3)
C9 0.5160 (3) 0.45488 (18) 0.05393 (4) 0.0349 (3)
H9 0.6092 0.5534 0.0506 0.042*
C10 0.5906 (3) 0.32869 (19) 0.07781 (4) 0.0327 (3)
H10 0.7381 0.3421 0.0910 0.039*
C11 0.4564 (3) 0.07013 (17) 0.15017 (4) 0.0277 (3)
C12 0.5861 (3) −0.00906 (19) 0.17846 (4) 0.0319 (3)
H12 0.7295 −0.0682 0.1723 0.038*
C13 0.5108 (3) −0.00350 (18) 0.21525 (4) 0.0311 (3)
H13 0.6035 −0.0590 0.2338 0.037*
C14 0.3006 (3) 0.08229 (16) 0.22576 (4) 0.0248 (3)
C15 0.1743 (3) 0.16460 (19) 0.19743 (4) 0.0304 (3)
H15 0.0325 0.2257 0.2035 0.037*
C16 0.2518 (3) 0.15902 (19) 0.16041 (4) 0.0310 (3)
H16 0.1628 0.2172 0.1418 0.037*
C21 0.2160 (3) 0.08270 (16) 0.26536 (4) 0.0249 (3)
C22 0.3477 (3) 0.00061 (19) 0.29322 (4) 0.0351 (4)
H22 0.4934 −0.0551 0.2868 0.042*
C23 0.2701 (3) −0.0012 (2) 0.33005 (4) 0.0403 (4)
H23 0.3632 −0.0577 0.3484 0.048*
C24 0.0585 (3) 0.07846 (19) 0.34030 (4) 0.0357 (4)
H24 0.0048 0.0762 0.3655 0.043*
C25 −0.0739 (3) 0.1618 (2) 0.31320 (5) 0.0371 (4)
H25 −0.2188 0.2178 0.3199 0.045*
C26 0.0041 (3) 0.16382 (19) 0.27635 (4) 0.0321 (3)
H26 −0.0888 0.2217 0.2582 0.039*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0746 (3) 0.0413 (2) 0.0330 (2) 0.0169 (2) 0.0022 (2) 0.00881 (16)
N1 0.0445 (8) 0.0444 (8) 0.0394 (8) −0.0146 (7) −0.0043 (7) 0.0067 (6)
C2 0.0615 (11) 0.0297 (7) 0.0309 (8) −0.0111 (8) 0.0079 (8) −0.0035 (6)
C3 0.0623 (11) 0.0287 (8) 0.0309 (8) 0.0079 (8) 0.0097 (8) −0.0005 (6)
C4 0.0329 (7) 0.0325 (7) 0.0296 (7) 0.0056 (6) 0.0058 (6) 0.0022 (6)
C5 0.0316 (8) 0.0290 (7) 0.0237 (7) 0.0038 (6) 0.0040 (6) −0.0007 (5)
C6 0.0341 (8) 0.0337 (7) 0.0246 (7) −0.0020 (6) 0.0060 (6) −0.0018 (5)
C7 0.0337 (8) 0.0420 (8) 0.0237 (7) 0.0033 (7) 0.0008 (6) −0.0011 (6)
C8 0.0473 (9) 0.0304 (7) 0.0235 (7) 0.0083 (7) 0.0045 (7) 0.0002 (5)
C9 0.0461 (9) 0.0271 (7) 0.0315 (7) −0.0031 (7) 0.0041 (7) −0.0018 (6)
C10 0.0351 (8) 0.0345 (7) 0.0284 (7) −0.0023 (6) 0.0025 (6) −0.0044 (6)
C11 0.0301 (7) 0.0250 (6) 0.0280 (7) −0.0008 (6) 0.0016 (6) 0.0003 (6)
C12 0.0287 (7) 0.0335 (8) 0.0336 (8) 0.0093 (6) 0.0012 (6) 0.0005 (6)
C13 0.0312 (7) 0.0327 (7) 0.0294 (7) 0.0073 (6) −0.0046 (6) 0.0016 (6)
C14 0.0253 (6) 0.0214 (6) 0.0278 (6) −0.0025 (6) −0.0017 (6) −0.0012 (5)
C15 0.0278 (7) 0.0329 (7) 0.0306 (7) 0.0083 (6) 0.0009 (6) −0.0003 (6)
C16 0.0312 (8) 0.0334 (7) 0.0285 (7) 0.0079 (6) −0.0021 (6) 0.0037 (6)
C21 0.0281 (7) 0.0201 (6) 0.0266 (6) −0.0038 (6) −0.0018 (5) −0.0023 (5)
C22 0.0377 (8) 0.0345 (8) 0.0330 (8) 0.0069 (7) 0.0011 (7) 0.0025 (6)
C23 0.0523 (10) 0.0389 (8) 0.0296 (8) 0.0077 (7) −0.0025 (7) 0.0058 (6)
C24 0.0491 (9) 0.0307 (7) 0.0273 (7) −0.0037 (7) 0.0057 (7) −0.0027 (6)
C25 0.0374 (9) 0.0396 (8) 0.0344 (8) 0.0023 (7) 0.0045 (7) −0.0068 (7)
C26 0.0317 (8) 0.0345 (7) 0.0302 (7) 0.0036 (7) −0.0027 (6) −0.0013 (6)

Geometric parameters (Å, °)

Cl1—C8 1.7545 (15) C11—C16 1.387 (2)
N1—C6 1.372 (2) C11—C12 1.394 (2)
N1—C2 1.455 (2) C12—C13 1.383 (2)
N1—H1 0.90 (3) C12—H12 0.9500
C2—C3 1.517 (3) C13—C14 1.402 (2)
C2—H2A 0.9900 C13—H13 0.9500
C2—H2B 0.9900 C14—C15 1.397 (2)
C3—C4 1.540 (2) C14—C21 1.4937 (19)
C3—H3A 0.9900 C15—C16 1.395 (2)
C3—H3B 0.9900 C15—H15 0.9500
C4—C5 1.5175 (19) C16—H16 0.9500
C4—C11 1.5267 (19) C21—C26 1.398 (2)
C4—H4 1.0000 C21—C22 1.399 (2)
C5—C10 1.394 (2) C22—C23 1.388 (2)
C5—C6 1.409 (2) C22—H22 0.9500
C6—C7 1.407 (2) C23—C24 1.383 (2)
C7—C8 1.379 (2) C23—H23 0.9500
C7—H7 0.9500 C24—C25 1.387 (2)
C8—C9 1.386 (2) C24—H24 0.9500
C9—C10 1.386 (2) C25—C26 1.389 (2)
C9—H9 0.9500 C25—H25 0.9500
C10—H10 0.9500 C26—H26 0.9500
C6—N1—C2 122.48 (15) C5—C10—H10 118.8
C6—N1—H1 115.7 (15) C16—C11—C12 117.50 (13)
C2—N1—H1 120.3 (15) C16—C11—C4 124.03 (13)
N1—C2—C3 111.07 (14) C12—C11—C4 118.41 (13)
N1—C2—H2A 109.4 C13—C12—C11 121.50 (13)
C3—C2—H2A 109.4 C13—C12—H12 119.2
N1—C2—H2B 109.4 C11—C12—H12 119.2
C3—C2—H2B 109.4 C12—C13—C14 121.44 (13)
H2A—C2—H2B 108.0 C12—C13—H13 119.3
C2—C3—C4 110.31 (13) C14—C13—H13 119.3
C2—C3—H3A 109.6 C15—C14—C13 116.80 (13)
C4—C3—H3A 109.6 C15—C14—C21 122.13 (12)
C2—C3—H3B 109.6 C13—C14—C21 121.06 (12)
C4—C3—H3B 109.6 C16—C15—C14 121.43 (13)
H3A—C3—H3B 108.1 C16—C15—H15 119.3
C5—C4—C11 114.82 (12) C14—C15—H15 119.3
C5—C4—C3 108.73 (13) C11—C16—C15 121.28 (13)
C11—C4—C3 110.15 (12) C11—C16—H16 119.4
C5—C4—H4 107.6 C15—C16—H16 119.4
C11—C4—H4 107.6 C26—C21—C22 117.03 (13)
C3—C4—H4 107.6 C26—C21—C14 122.11 (12)
C10—C5—C6 118.75 (14) C22—C21—C14 120.86 (13)
C10—C5—C4 121.53 (14) C23—C22—C21 121.44 (15)
C6—C5—C4 119.69 (13) C23—C22—H22 119.3
N1—C6—C7 119.52 (15) C21—C22—H22 119.3
N1—C6—C5 121.15 (14) C24—C23—C22 120.65 (15)
C7—C6—C5 119.33 (14) C24—C23—H23 119.7
C8—C7—C6 119.28 (14) C22—C23—H23 119.7
C8—C7—H7 120.4 C23—C24—C25 118.89 (14)
C6—C7—H7 120.4 C23—C24—H24 120.6
C7—C8—C9 122.71 (14) C25—C24—H24 120.6
C7—C8—Cl1 118.13 (13) C24—C25—C26 120.44 (15)
C9—C8—Cl1 119.17 (12) C24—C25—H25 119.8
C8—C9—C10 117.34 (14) C26—C25—H25 119.8
C8—C9—H9 121.3 C25—C26—C21 121.54 (14)
C10—C9—H9 121.3 C25—C26—H26 119.2
C9—C10—C5 122.47 (15) C21—C26—H26 119.2
C9—C10—H10 118.8
C6—N1—C2—C3 −25.4 (2) C5—C4—C11—C12 −157.97 (14)
N1—C2—C3—C4 54.08 (17) C3—C4—C11—C12 78.90 (17)
C2—C3—C4—C5 −55.71 (17) C16—C11—C12—C13 1.8 (2)
C2—C3—C4—C11 70.92 (17) C4—C11—C12—C13 −175.56 (15)
C11—C4—C5—C10 88.01 (17) C11—C12—C13—C14 −0.1 (2)
C3—C4—C5—C10 −148.10 (14) C12—C13—C14—C15 −1.3 (2)
C11—C4—C5—C6 −93.87 (16) C12—C13—C14—C21 177.88 (14)
C3—C4—C5—C6 30.02 (18) C13—C14—C15—C16 1.1 (2)
C2—N1—C6—C7 178.40 (14) C21—C14—C15—C16 −178.13 (13)
C2—N1—C6—C5 −1.7 (2) C12—C11—C16—C15 −2.0 (2)
C10—C5—C6—N1 176.93 (14) C4—C11—C16—C15 175.14 (14)
C4—C5—C6—N1 −1.2 (2) C14—C15—C16—C11 0.6 (2)
C10—C5—C6—C7 −3.2 (2) C15—C14—C21—C26 0.8 (2)
C4—C5—C6—C7 178.64 (13) C13—C14—C21—C26 −178.40 (13)
N1—C6—C7—C8 −179.37 (14) C15—C14—C21—C22 −179.32 (14)
C5—C6—C7—C8 0.7 (2) C13—C14—C21—C22 1.5 (2)
C6—C7—C8—C9 2.3 (2) C26—C21—C22—C23 0.5 (2)
C6—C7—C8—Cl1 −178.17 (11) C14—C21—C22—C23 −179.43 (14)
C7—C8—C9—C10 −2.6 (2) C21—C22—C23—C24 0.1 (2)
Cl1—C8—C9—C10 177.80 (11) C22—C23—C24—C25 −0.6 (2)
C8—C9—C10—C5 0.0 (2) C23—C24—C25—C26 0.5 (2)
C6—C5—C10—C9 2.8 (2) C24—C25—C26—C21 0.1 (2)
C4—C5—C10—C9 −179.01 (14) C22—C21—C26—C25 −0.6 (2)
C5—C4—C11—C16 24.9 (2) C14—C21—C26—C25 179.31 (14)
C3—C4—C11—C16 −98.23 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···Cl1i 0.90 (3) 2.66 (3) 3.5466 (17) 171 (2)

Symmetry codes: (i) x−1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LR2028).

References

  1. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Rueping, M., Dufour, J. & Schoepke, F. R. (2011). Green Chem. 13, 1084–1105.
  4. Rueping, M., Stoeckel, M., Sugiono, E. & Theissmann, T. (2010). Tetrahedron, 66, 6565–6568.
  5. Rueping, M., Sugiono, E. & Schoepke, F. R. (2010). Synlett, pp. 852–865.
  6. Rueping, M., Theissmann, T., Raja, S. & Bats, J. B. (2008). Adv. Synth. Catal. 350, 1001–1006.
  7. Rueping, M., Theissmann, T., Stoeckel, M. & Antonchick, A. P. (2011). Org. Biomol. Chem. 9, 6844–6850 [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Stoe & Cie (2001). X-AREA Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681103830X/lr2028sup1.cif

e-67-o2747-sup1.cif (19.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103830X/lr2028Isup2.hkl

e-67-o2747-Isup2.hkl (150.7KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681103830X/lr2028Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES