Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 3;67(Pt 10):o2552. doi: 10.1107/S1600536811035343

1,1′-(Propane-1,3-di­yl)bis­(3-phenyl­urea)

Pramod Pansuriya a, Hariska Naidu a, Holger B Friedrich a, Glenn E M Maguire a,*
PMCID: PMC3201411  PMID: 22064870

Abstract

The title compound, C17H20N4O2, has crystallographic inversion symmetry. In the crystal structure, inter­molecular hydrogen bonding between adjacent urea groups gives rise to infinite polymeric chains diagonally across the bc plane. With a centroid–centroid distance of 3.295 (2) Å, π–π stacking is present in the crystal along the same plane.

Related literature

For applications of ureas, see: Park et al. (2011); Ahmed et al. (2011); Sharma et al. (2010); Vos et al. (2010); Dawn et al. (2011). For related structures, see: Koevoets et al. (2005).graphic file with name e-67-o2552-scheme1.jpg

Experimental

Crystal data

  • C17H20N4O2

  • M r = 312.37

  • Monoclinic, Inline graphic

  • a = 33.811 (7) Å

  • b = 4.598 (1) Å

  • c = 9.891 (2) Å

  • β = 98.957 (4)°

  • V = 1518.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.50 × 0.21 × 0.02 mm

Data collection

  • Bruker Kappa DUO APEXII diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2007)T min = 0.955, T max = 0.998

  • 1930 measured reflections

  • 1930 independent reflections

  • 1811 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.092

  • S = 1.05

  • 1930 reflections

  • 114 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811035343/hg5067sup1.cif

e-67-o2552-sup1.cif (14.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035343/hg5067Isup2.hkl

e-67-o2552-Isup2.hkl (95.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811035343/hg5067Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.834 (18) 2.124 (18) 2.8742 (14) 149.7 (13)
N2—H2N⋯O1i 0.864 (18) 2.119 (18) 2.8904 (14) 148.4 (15)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors wish to thank Dr Hong Su from the the University of the Cape Town for his assistance with the data collection and refinement and the National Research Foundation c*change for support.

supplementary crystallographic information

Comment

Bis-ureas have been employed as ligands for metal complexes used in hydrolytic kinetic resolution of epoxides (Park et al., 2011) and as chromogenic and fluorogenic receptors (Ahmed et al., 2011). These molecules have also been found to be useful as epigenetic modulators (Sharma et al., 2010), in surfactant self-assembies (Vos et al., 2010), and photo dimerizing agent for coumarins (Dawn et al., 2011).

The closest reported structures are 3,3'-bis-phenyl-(butylene-1,4)-bisurea and 3,3'-bis-phenyl-(heptylene-1,7)-bisurea (Koevoets et al., 2005). In the butylene derivatives a transoid arrangement is evident whereas the heptylene molecule adopts a cisoid arrangement of the two urea groups. The title compound has an odd number of carbons in its aliphatic chain (propylene). This leads to a cisoid arrangement of the two urea groups (Fig. 1).

The asymmetric unit of the title compund, C17H20N4O2, contains half molecule of 1,1'-(propane-1,3-diyl)bis(3-phenylurea) and the complete molecule is generated by inversion symmetry (i) : 1-x, y, 1.5-z. Intermolecular hydrogen bonding between adjacent urea groups N1–H1–O1, 2.8742 (14) Å and N2–H2–O1, 2.8904 (14) Å gives rise to infinite polymeric chains across the bc plane (Fig. 2), The spacing between the two hydrogen-bonded urea groups is 4.59 Å in the title compound, while it is 4.64 Å for the even butylene spacer and 4.63 Å for the odd heptylene spacer. With a centroid distance of less than 3.5 Å, π-π stacking is present in the crystal along the same plane.

Experimental

A solution of phenyl isocyanate (6.76 g, 50 mmol) in diethylether (15 ml) was added dropwise at 15 °C to a vigorously stirred solution of anhydrous propane-1,3-diamine (7.41 g, 100 mmol) in isopropyl alcohol (100 ml) over a period of 30 min.The reaction mixture was stirred for 2 hrs at room temperature and quenched with water (200 ml). The reaction mixture was maintained overnight at room temperature. Then the reaction mixture was acidified with conc. HCl to pH 2.6. The solvents were evaporated under vacuum, the residue was suspended in hot water for 30 min and the resulting precipitate was filtered. The product was washed with ice cold water and dried. The yield was 2.70 g (40%).

Crystals suitable for single-crystal X-ray diffraction were grown in methanol: methylenechloride (1:2) at room temperature. M.p. = 504 K.

Refinement

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms, except the H atoms H1N and H2N on N1 and N2, were positioned geometrically with C—H distances ranging from 0.95 Å to 0.99 Å and refined as riding on their parent atoms with Uiso (H) = 1.2Ueq (C). The positions of H1N and H2N were located in the difference electron density maps and refined independently.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atomic numbering scheme. The hydrogen atoms have been omitted clarity. Displacement elipsoids are drawn at 40% probability. The symmetry code is (i) : 1-x,y, 1.5-z.

Fig. 2.

Fig. 2.

The hydrogen bonding interactions of the title compound along the [001] axis. All hydrogen atoms except those involved in hydrogen bonding interactions have been omitted for clarity. Displacement elipsoids are drawn at 40% probability.

Crystal data

C17H20N4O2 F(000) = 664
Mr = 312.37 Dx = 1.366 Mg m3
Monoclinic, C2/c Melting point: 504 K
Hall symbol: -C 2yc Mo Kα radiation, λ = 0.71073 Å
a = 33.811 (7) Å Cell parameters from 1930 reflections
b = 4.598 (1) Å θ = 2.4–28.5°
c = 9.891 (2) Å µ = 0.09 mm1
β = 98.957 (4)° T = 173 K
V = 1518.9 (6) Å3 Plate, colourless
Z = 4 0.50 × 0.21 × 0.02 mm

Data collection

Bruker Kappa DUO APEXII diffractometer 1930 independent reflections
Radiation source: fine-focus sealed tube 1811 reflections with I > 2σ(I)
graphite Rint = 0.042
0.5° φ scans and ω scans θmax = 28.5°, θmin = 2.4°
Absorption correction: multi-scan (TWINABS; Sheldrick, 2007) h = −44→44
Tmin = 0.955, Tmax = 0.998 k = 0→6
1930 measured reflections l = 0→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.4485P] where P = (Fo2 + 2Fc2)/3
1930 reflections (Δ/σ)max = 0.001
114 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.42150 (2) 0.94129 (16) 0.45600 (10) 0.0258 (2)
N1 0.39232 (3) 0.5132 (2) 0.37683 (12) 0.0243 (2)
H1N 0.3915 (4) 0.335 (4) 0.3917 (18) 0.035 (4)*
N2 0.44667 (3) 0.5183 (2) 0.54828 (11) 0.0228 (2)
H2N 0.4448 (5) 0.331 (4) 0.5513 (17) 0.039 (5)*
C1 0.36029 (3) 0.6418 (2) 0.28699 (11) 0.0204 (2)
C2 0.36739 (3) 0.8527 (3) 0.19350 (13) 0.0243 (2)
H2 0.3940 0.9150 0.1897 0.029*
C3 0.33567 (4) 0.9726 (3) 0.10557 (14) 0.0285 (3)
H3 0.3405 1.1188 0.0423 0.034*
C4 0.29688 (4) 0.8801 (3) 0.10954 (14) 0.0297 (3)
H4 0.2752 0.9631 0.0494 0.036*
C5 0.28992 (4) 0.6679 (3) 0.20069 (14) 0.0303 (3)
H5 0.2633 0.6025 0.2023 0.036*
C6 0.32140 (4) 0.5478 (3) 0.29065 (14) 0.0267 (3)
H6 0.3164 0.4026 0.3541 0.032*
C7 0.42011 (3) 0.6716 (2) 0.46010 (12) 0.0194 (2)
C8 0.47434 (3) 0.6748 (2) 0.64875 (13) 0.0247 (3)
H8A 0.4590 0.8079 0.6998 0.030*
H8B 0.4921 0.7951 0.6007 0.030*
C9 0.5000 0.4779 (3) 0.7500 0.0195 (3)
H9B 0.4829 0.3523 0.7980 0.023* 0.50
H9A 0.5171 0.3523 0.7020 0.023* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0313 (4) 0.0117 (4) 0.0306 (4) 0.0004 (3) −0.0070 (4) −0.0002 (3)
N1 0.0283 (4) 0.0126 (4) 0.0281 (5) −0.0010 (4) −0.0078 (4) 0.0011 (4)
N2 0.0262 (4) 0.0130 (4) 0.0260 (5) −0.0007 (3) −0.0057 (4) 0.0003 (4)
C1 0.0240 (5) 0.0158 (5) 0.0195 (5) 0.0011 (4) −0.0025 (4) −0.0027 (4)
C2 0.0259 (5) 0.0235 (5) 0.0228 (6) −0.0003 (4) 0.0018 (4) 0.0003 (5)
C3 0.0366 (6) 0.0261 (6) 0.0215 (5) 0.0016 (5) 0.0008 (5) 0.0045 (5)
C4 0.0295 (6) 0.0282 (6) 0.0277 (6) 0.0056 (5) −0.0073 (5) −0.0024 (5)
C5 0.0239 (5) 0.0311 (6) 0.0343 (7) −0.0022 (4) −0.0010 (5) −0.0025 (5)
C6 0.0291 (5) 0.0237 (5) 0.0256 (6) −0.0042 (4) −0.0005 (5) 0.0014 (5)
C7 0.0225 (5) 0.0149 (4) 0.0201 (5) 0.0004 (4) 0.0006 (4) −0.0007 (4)
C8 0.0273 (5) 0.0148 (5) 0.0280 (6) −0.0005 (4) −0.0086 (5) −0.0002 (4)
C9 0.0205 (6) 0.0147 (6) 0.0216 (7) 0.000 −0.0023 (6) 0.000

Geometric parameters (Å, °)

O1—C7 1.2416 (13) C3—H3 0.9500
N1—C7 1.3607 (14) C4—C5 1.373 (2)
N1—C1 1.4187 (14) C4—H4 0.9500
N1—H1N 0.833 (19) C5—C6 1.3909 (17)
N2—C7 1.3492 (14) C5—H5 0.9500
N2—C8 1.4463 (14) C6—H6 0.9500
N2—H2N 0.862 (19) C8—C9 1.5180 (14)
C1—C2 1.3866 (17) C8—H8A 0.9900
C1—C6 1.3898 (17) C8—H8B 0.9900
C2—C3 1.3857 (16) C9—C8i 1.5180 (14)
C2—H2 0.9500 C9—H9B 0.9900
C3—C4 1.3850 (19) C9—H9A 0.9900
C7—N1—C1 122.95 (9) C6—C5—H5 119.7
C7—N1—H1N 117.3 (11) C1—C6—C5 119.51 (13)
C1—N1—H1N 118.5 (11) C1—C6—H6 120.2
C7—N2—C8 118.57 (9) C5—C6—H6 120.2
C7—N2—H2N 119.8 (11) O1—C7—N2 121.22 (10)
C8—N2—H2N 121.1 (11) O1—C7—N1 122.76 (10)
C2—C1—C6 119.85 (11) N2—C7—N1 116.02 (9)
C2—C1—N1 120.98 (11) N2—C8—C9 113.49 (9)
C6—C1—N1 119.15 (11) N2—C8—H8A 108.9
C3—C2—C1 119.95 (11) C9—C8—H8A 108.9
C3—C2—H2 120.0 N2—C8—H8B 108.9
C1—C2—H2 120.0 C9—C8—H8B 108.9
C4—C3—C2 120.25 (13) H8A—C8—H8B 107.7
C4—C3—H3 119.9 C8i—C9—C8 106.78 (12)
C2—C3—H3 119.9 C8i—C9—H9B 110.4
C5—C4—C3 119.78 (11) C8—C9—H9B 110.4
C5—C4—H4 120.1 C8i—C9—H9A 110.4
C3—C4—H4 120.1 C8—C9—H9A 110.4
C4—C5—C6 120.65 (12) H9B—C9—H9A 108.6
C4—C5—H5 119.7
C7—N1—C1—C2 53.70 (18) N1—C1—C6—C5 −178.50 (11)
C7—N1—C1—C6 −128.16 (14) C4—C5—C6—C1 −0.7 (2)
C6—C1—C2—C3 1.05 (18) C8—N2—C7—O1 6.54 (18)
N1—C1—C2—C3 179.18 (11) C8—N2—C7—N1 −173.82 (12)
C1—C2—C3—C4 −0.77 (19) C1—N1—C7—O1 −6.0 (2)
C2—C3—C4—C5 −0.2 (2) C1—N1—C7—N2 174.39 (12)
C3—C4—C5—C6 1.0 (2) C7—N2—C8—C9 174.67 (10)
C2—C1—C6—C5 −0.34 (19) N2—C8—C9—C8i −177.37 (13)

Symmetry codes: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1ii 0.834 (18) 2.124 (18) 2.8742 (14) 149.7 (13)
N2—H2N···O1ii 0.864 (18) 2.119 (18) 2.8904 (14) 148.4 (15)

Symmetry codes: (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5067).

References

  1. Ahmed, N., Geronimo, I., Hwang, I., Singh, N. J. & Kim, K. S. (2011). Chem. Eur. J. 17, 8542–8548. [DOI] [PubMed]
  2. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dawn, S., Dewal, M. B., Sobransingh, D., Paderes, M. C., Wibowo, A. C., Smith, M. D., Krause, J. A., Pellechia, P. J. & Shimizu, L. S. (2011). J. Am. Chem. Soc. 133, 7025–7032. [DOI] [PubMed]
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Koevoets, R. A., Versteegen, R. M., Kooijman, H., Spek, A. L., Sijbesma, R. P. & Meijer, E. W. (2005). J. Am. Chem. Soc. 127, 2999–3003. [DOI] [PubMed]
  6. Park, J., Lang, K., Abboud, K. A. & Hong, S. (2011). Chem. Eur. J. 17, 2236–2245. [DOI] [PubMed]
  7. Sharma, S. K., Wu, Y., Steinbergs, N., Crowley, M. L., Hanson, A. S., Casero, R. A. Jr & Woster, P. M. (2010). J. Med. Chem. 53, 5197–5212. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2007). TWINABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Vos, M. R. J., Leclère, P. E. L. G., Meekes, H., Vlieg, E., Nolte, R. J. M. & Sommerdijk, N. A. J. M. (2010). Chem. Commun. 46, 6063–6065. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811035343/hg5067sup1.cif

e-67-o2552-sup1.cif (14.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811035343/hg5067Isup2.hkl

e-67-o2552-Isup2.hkl (95.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811035343/hg5067Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES