Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):m1431–m1432. doi: 10.1107/S1600536811038074

Poly[[tetra­aquatetrakis­[μ3-5-(pyridine-4-carboxamido)­isophthalato]cobalt(II)digadolinium(III)] tetra­hydrate]

Yi-Fang Deng a, Man-Sheng Chen a,*, Chun-Hua Zhang a,*, Dai-Zhi Kuang a
PMCID: PMC3201412  PMID: 22064912

Abstract

In the centrosymmetric polymeric title compound, {[CoGd2(C14H8N2O5)4(H2O)4]·4H2O}n, the GdIII cation is coordinated by one water mol­ecule and four pyridine-4-carboxamido­isophthalate (L) anions in a distorted square-anti­prismatic arrangement, while the CoII cation, located on an inversion center, is coordinated by two pyridyl-N atoms, two carboxyl­ate-O atoms and two water mol­ecules in a distorted octa­hedral geometry. The asymmetric unit contains two anionic L ligands: one bridges two Gd cations and one Co cation through two carboxyl groups and one pyridine-N atom; the other bridges two Gd cations and one Co cation through two carboxyl groups and the uncoordinated pyridine-N atom is hydrogen-bonded to the adjacent coordinated water mol­ecule. Extensive O—H⋯O and N—H⋯O hydrogen bonds are present in the crystal structure.

Related literature

For related hetero-metallic complexes, see: Chen et al. (2011); Gu & Xue (2006); Liang et al. (2000); Prasad et al. (2007); Zhao et al. (2003, 2004). graphic file with name e-67-m1431-scheme1.jpg

Experimental

Crystal data

  • [CoGd2(C14H8N2O5)4(H2O)4]·4H2O

  • M r = 1654.45

  • Triclinic, Inline graphic

  • a = 10.1457 (14) Å

  • b = 10.8728 (15) Å

  • c = 13.7552 (19) Å

  • α = 79.123 (2)°

  • β = 78.844 (3)°

  • γ = 86.317 (2)°

  • V = 1461.3 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.62 mm−1

  • T = 293 K

  • 0.20 × 0.16 × 0.10 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.622, T max = 0.779

  • 7307 measured reflections

  • 5053 independent reflections

  • 4462 reflections with I > 2σ(I)

  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.070

  • S = 1.00

  • 5053 reflections

  • 430 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.23 e Å−3

  • Δρmin = −0.88 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811038074/xu5327sup1.cif

e-67-m1431-sup1.cif (31KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038074/xu5327Isup2.hkl

e-67-m1431-Isup2.hkl (247.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Co1—O1 2.083 (3)
Co1—O1W 2.178 (4)
Co1—N4i 2.159 (4)
Gd1—O2 2.246 (3)
Gd1—O2W 2.365 (3)
Gd1—O3ii 2.436 (3)
Gd1—O4ii 2.420 (3)
Gd1—O6 2.487 (3)
Gd1—O7 2.408 (3)
Gd1—O8iii 2.475 (3)
Gd1—O9iii 2.382 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4Wiv 0.86 2.16 2.999 (6) 166
N3—H3⋯O4v 0.86 2.15 2.942 (6) 152
O1W—H1WA⋯O6vi 0.82 2.25 2.992 (5) 151
O1W—H1WB⋯O3Wvii 0.85 2.03 2.753 (6) 143
O2W—H2WA⋯O3Wviii 0.85 2.40 3.130 (6) 144
O2W—H2WB⋯N2i 0.85 1.92 2.676 (6) 147
O3W—H3WA⋯O3vii 0.85 1.91 2.737 (6) 163
O3W—H3WB⋯O8iii 0.85 1.97 2.781 (6) 160
O4W—H4WA⋯O9ix 0.85 2.26 3.097 (6) 170
O4W—H4WB⋯O9v 0.85 2.18 3.028 (6) 172

Symmetry codes: (i) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic.

Acknowledgments

This work was supported by the Open Fund Project of Key Laboratories in Hunan Universities (11 K009) and the Science Foundation of Hengyang Normal University of China (10B67).

supplementary crystallographic information

Comment

The rational synthesis and investigation of 3d-4f or 4d-4f hetero-metallic complexes are challenge for chemists and have attracted increasing attention in last few years since the competitive reaction containing 3d-4f metal ions in conjunction with ligands often result in formation of a mixture of homometallic assemblies rather than hetero-metallic analogous (Liang et al., 2000; Zhao et al., 2003; Zhao et al., 2004; Gu et al., 2006; Prasad et al., 2007). So we have recently prepared a new lanthanide(III)-transition metal(II) coordination polymer, [GdCo0.5(H2O)2(L)2]n.2nH2O, (I) through hydrothermal condition.

In the title compound, the central GdIII ion is eight-coordinated by seven O atoms from four ligands and one water molecule, which forming a distorted square antiprismatic geometry(Fig. 1). It is interesting that the carboxyl groups of two unique L2- ligands exhibit the different coordination modes: one coordinated to two GdIII and one CoII atoms using its two carboxylate groups with µ111-chelate and µ211-bis-monodentate coordination modes while the pyridyl group is free of coordination, the other one coordinated to two GdIII through the carboxylate groups with µ111-chelate coordination mode and one CoIIvia the pyridyl group. Based on the coordination modes of the carboxylate and pyridyl groups of L2- ligands, a complicated three-dimensional network is formed (Fig. 2), which is similar to the complex {[LnCo0.5(INAIP)2(H2O)2].2H2O}n (Chen, et al. 2011).

Experimental

A mixture of 0.05 mmol Gd(NO3)3.6H2O (21.8 mg. 0.05 mmol), H2L (28.6 mg, 0.1 mmol), Co(OAc)2.4H2O (13.1 mg, 0.05 mmol), NaOH (6.0 mg, 0.15 mmol), MeOH (4 ml) and H2O (6 ml) was heated in a 16 mL capacity Teflon-lined reaction vessel at 433 K for 4 days, the reaction mixture was cooled to room temperature over a period of 40 h. The product was collected by filtration, washed with H2O and air-dried.

Refinement

H atoms bonded to C atoms were placed geometrically and refined as riding atoms. The pyridyl N atoms were found from a difference Fourier maps and refined as riding, with N—H = 0.86 Å, and the water H atoms were found from Fourier difference maps and refined with restraints for O—H distances (0.82–0.8515 Å) with Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.

Fig. 1.

The ORTEP drawing of the title compound (I). Displacement ellipsoids are drawn at 30% probability level. [Symmetry codes: (i) 2 - x, 1 - y, 1 - z (ii) 2 - x, 1 - y, 2 - z (iii) x, y, -1 + z (iv) x,-1 + y, z (v)-1 + x, y, z.]

Fig. 2.

Fig. 2.

Projection showing the three-dimensional structure of the compound.

Crystal data

[CoGd2(C14H8N2O5)4(H2O)4]·4H2O Z = 1
Mr = 1654.45 F(000) = 819
Triclinic, P1 Dx = 1.880 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.1457 (14) Å Cell parameters from 5652 reflections
b = 10.8728 (15) Å θ = 2.7–28.2°
c = 13.7552 (19) Å µ = 2.62 mm1
α = 79.123 (2)° T = 293 K
β = 78.844 (3)° Block, pink
γ = 86.317 (2)° 0.20 × 0.16 × 0.10 mm
V = 1461.3 (3) Å3

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 5053 independent reflections
Radiation source: fine-focus sealed tube 4462 reflections with I > 2σ(I)
graphite Rint = 0.045
φ and ω scans θmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −12→10
Tmin = 0.622, Tmax = 0.779 k = −12→12
7307 measured reflections l = −15→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0217P)2] where P = (Fo2 + 2Fc2)/3
5053 reflections (Δ/σ)max = 0.001
430 parameters Δρmax = 1.23 e Å3
1 restraint Δρmin = −0.88 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 1.0000 0.5000 0.5000 0.0225 (2)
Gd1 0.68073 (2) 0.07754 (2) 0.702891 (17) 0.01596 (9)
C1 0.7021 (5) 0.4733 (4) 0.7262 (4) 0.0203 (11)
C2 0.6789 (5) 0.4174 (5) 0.8277 (3) 0.0204 (11)
H2 0.6736 0.3308 0.8458 0.024*
C3 0.6639 (4) 0.4907 (4) 0.9019 (3) 0.0193 (11)
C4 0.6653 (4) 0.6204 (4) 0.8743 (4) 0.0197 (11)
H4 0.6539 0.6703 0.9235 0.024*
C5 0.6838 (5) 0.6749 (4) 0.7734 (3) 0.0173 (11)
C6 0.7035 (5) 0.6027 (4) 0.6993 (4) 0.0209 (11)
H6 0.7176 0.6405 0.6317 0.025*
C7 0.6865 (5) 0.8143 (4) 0.7469 (4) 0.0193 (11)
C8 0.7333 (5) 0.3940 (5) 0.6454 (4) 0.0221 (11)
C9 0.6653 (5) 0.4830 (5) 1.0810 (4) 0.0290 (13)
C10 0.6520 (5) 0.4000 (5) 1.1831 (4) 0.0254 (12)
C11 0.6510 (5) 0.2702 (5) 1.2015 (4) 0.0302 (13)
H11 0.6536 0.2269 1.1489 0.036*
C12 0.6462 (5) 0.2065 (5) 1.2977 (4) 0.0354 (14)
H12 0.6463 0.1195 1.3083 0.042*
C13 0.6398 (6) 0.3854 (6) 1.3606 (4) 0.0395 (15)
H13 0.6347 0.4256 1.4152 0.047*
C14 0.6451 (6) 0.4584 (6) 1.2657 (4) 0.0356 (14)
H14 0.6442 0.5454 1.2574 0.043*
C15 1.0257 (5) 0.1207 (4) 0.8319 (4) 0.0196 (11)
C16 1.1577 (5) 0.1051 (4) 0.7839 (4) 0.0224 (11)
H16 1.1755 0.0884 0.7186 0.027*
C17 1.2619 (5) 0.1141 (5) 0.8325 (4) 0.0205 (11)
C18 1.2342 (5) 0.1428 (4) 0.9300 (4) 0.0219 (11)
H18 1.3043 0.1485 0.9634 0.026*
C19 1.1033 (5) 0.1625 (5) 0.9764 (4) 0.0222 (11)
C20 0.9992 (5) 0.1483 (5) 0.9280 (4) 0.0218 (11)
H20 0.9107 0.1574 0.9603 0.026*
C21 0.9089 (5) 0.1090 (4) 0.7833 (4) 0.0209 (11)
C22 1.4062 (5) 0.0983 (5) 0.7846 (4) 0.0230 (12)
C23 0.9939 (5) 0.2964 (5) 1.0919 (4) 0.0265 (12)
C24 0.9909 (5) 0.3393 (5) 1.1902 (4) 0.0257 (12)
C25 0.9824 (5) 0.2572 (5) 1.2814 (4) 0.0269 (12)
H25 0.9817 0.1711 1.2846 0.032*
C26 0.9752 (5) 0.3078 (5) 1.3671 (4) 0.0277 (13)
H26 0.9670 0.2532 1.4286 0.033*
C27 0.9848 (5) 0.5065 (5) 1.2779 (4) 0.0281 (13)
H27 0.9861 0.5923 1.2761 0.034*
C28 0.9885 (5) 0.4655 (5) 1.1898 (4) 0.0271 (12)
H28 0.9895 0.5225 1.1301 0.033*
N1 0.6472 (4) 0.4306 (4) 1.0036 (3) 0.0218 (10)
H1 0.6233 0.3539 1.0173 0.026*
N2 0.6415 (5) 0.2612 (5) 1.3771 (3) 0.0371 (12)
N3 1.0794 (4) 0.2000 (4) 1.0720 (3) 0.0239 (10)
H3 1.1204 0.1604 1.1183 0.029*
N4 0.9793 (4) 0.4299 (4) 1.3671 (3) 0.0246 (10)
O1 0.8077 (3) 0.4368 (3) 0.5644 (2) 0.0302 (9)
O2 0.6813 (4) 0.2877 (3) 0.6641 (3) 0.0322 (9)
O3 0.6714 (4) 0.8704 (3) 0.6616 (3) 0.0351 (10)
O4 0.7066 (4) 0.8773 (3) 0.8103 (3) 0.0358 (10)
O5 0.6911 (5) 0.5913 (4) 1.0738 (3) 0.0564 (13)
O6 0.9267 (3) 0.0946 (3) 0.6916 (3) 0.0312 (9)
O7 0.7925 (3) 0.1148 (3) 0.8335 (2) 0.0242 (8)
O8 1.4396 (3) 0.0994 (4) 0.6915 (3) 0.0301 (9)
O9 1.4954 (3) 0.0854 (4) 0.8378 (3) 0.0413 (11)
O10 0.9241 (4) 0.3512 (4) 1.0332 (3) 0.0392 (10)
O1W 0.9258 (4) 0.6827 (3) 0.4333 (3) 0.0329 (9)
H1WB 0.8653 0.7196 0.4704 0.039*
H1WA 0.9888 0.7243 0.3993 0.039*
O2W 0.7218 (4) 0.0952 (3) 0.5257 (3) 0.0404 (10)
H2WA 0.6782 0.0365 0.5148 0.048*
H2WB 0.6868 0.1627 0.4982 0.048*
O3W 0.3006 (4) 0.1662 (5) 0.5329 (3) 0.0747 (16)
H3WA 0.3248 0.1472 0.4746 0.090*
H3WB 0.3576 0.1389 0.5703 0.090*
O4W 0.4138 (5) 0.8385 (4) 0.9854 (3) 0.0680 (15)
H4WA 0.4328 0.9019 0.9390 0.082*
H4WB 0.4384 0.8526 1.0379 0.082*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0265 (6) 0.0248 (6) 0.0171 (5) −0.0039 (4) −0.0018 (4) −0.0071 (4)
Gd1 0.01600 (14) 0.01569 (14) 0.01703 (14) −0.00071 (9) −0.00433 (10) −0.00367 (9)
C1 0.021 (3) 0.020 (3) 0.020 (3) −0.001 (2) −0.004 (2) −0.002 (2)
C2 0.021 (3) 0.017 (3) 0.020 (3) −0.002 (2) 0.001 (2) 0.000 (2)
C3 0.013 (3) 0.025 (3) 0.018 (3) 0.001 (2) −0.001 (2) 0.001 (2)
C4 0.016 (3) 0.022 (3) 0.022 (3) 0.001 (2) −0.006 (2) −0.004 (2)
C5 0.015 (3) 0.015 (3) 0.020 (3) −0.003 (2) −0.003 (2) −0.001 (2)
C6 0.020 (3) 0.021 (3) 0.019 (3) −0.002 (2) −0.002 (2) −0.001 (2)
C7 0.017 (3) 0.019 (3) 0.023 (3) 0.001 (2) −0.006 (2) −0.006 (2)
C8 0.021 (3) 0.020 (3) 0.025 (3) 0.003 (2) −0.009 (2) −0.002 (2)
C9 0.028 (3) 0.033 (3) 0.025 (3) −0.002 (3) −0.002 (2) −0.002 (2)
C10 0.018 (3) 0.033 (3) 0.024 (3) −0.002 (2) −0.005 (2) −0.001 (2)
C11 0.036 (3) 0.030 (3) 0.026 (3) −0.006 (3) −0.009 (3) −0.001 (2)
C12 0.039 (4) 0.032 (3) 0.034 (3) −0.011 (3) −0.011 (3) 0.004 (3)
C13 0.047 (4) 0.054 (4) 0.020 (3) 0.004 (3) −0.009 (3) −0.012 (3)
C14 0.040 (4) 0.037 (4) 0.030 (3) −0.002 (3) −0.009 (3) −0.004 (3)
C15 0.017 (3) 0.021 (3) 0.022 (3) 0.002 (2) −0.006 (2) −0.005 (2)
C16 0.024 (3) 0.026 (3) 0.017 (3) 0.001 (2) −0.004 (2) −0.006 (2)
C17 0.014 (3) 0.027 (3) 0.021 (3) 0.000 (2) −0.005 (2) −0.003 (2)
C18 0.018 (3) 0.025 (3) 0.026 (3) −0.002 (2) −0.010 (2) −0.008 (2)
C19 0.021 (3) 0.026 (3) 0.022 (3) −0.001 (2) −0.003 (2) −0.011 (2)
C20 0.017 (3) 0.026 (3) 0.024 (3) 0.001 (2) −0.003 (2) −0.010 (2)
C21 0.023 (3) 0.018 (3) 0.024 (3) −0.001 (2) −0.007 (2) −0.007 (2)
C22 0.024 (3) 0.020 (3) 0.026 (3) 0.000 (2) −0.005 (2) −0.004 (2)
C23 0.021 (3) 0.035 (3) 0.026 (3) −0.004 (2) −0.003 (2) −0.013 (3)
C24 0.016 (3) 0.042 (4) 0.022 (3) 0.000 (2) −0.004 (2) −0.011 (2)
C25 0.026 (3) 0.034 (3) 0.024 (3) −0.001 (2) −0.006 (2) −0.012 (2)
C26 0.029 (3) 0.032 (3) 0.021 (3) −0.009 (2) −0.003 (2) −0.002 (2)
C27 0.029 (3) 0.027 (3) 0.028 (3) −0.003 (2) −0.002 (3) −0.007 (2)
C28 0.031 (3) 0.033 (3) 0.018 (3) 0.001 (2) −0.005 (2) −0.006 (2)
N1 0.025 (2) 0.018 (2) 0.019 (2) −0.0009 (18) −0.0032 (19) 0.0015 (18)
N2 0.043 (3) 0.042 (3) 0.026 (3) −0.009 (2) −0.010 (2) 0.003 (2)
N3 0.022 (2) 0.033 (3) 0.017 (2) 0.0036 (19) −0.0085 (19) −0.0049 (19)
N4 0.021 (2) 0.035 (3) 0.020 (2) −0.004 (2) −0.0025 (19) −0.010 (2)
O1 0.030 (2) 0.039 (2) 0.021 (2) −0.0097 (18) 0.0009 (17) −0.0097 (17)
O2 0.048 (2) 0.016 (2) 0.033 (2) −0.0053 (17) −0.0041 (19) −0.0062 (16)
O3 0.070 (3) 0.016 (2) 0.022 (2) −0.0008 (18) −0.015 (2) −0.0015 (15)
O4 0.068 (3) 0.018 (2) 0.030 (2) 0.0048 (18) −0.028 (2) −0.0074 (16)
O5 0.113 (4) 0.028 (3) 0.034 (2) −0.024 (3) −0.023 (3) −0.0009 (19)
O6 0.021 (2) 0.052 (3) 0.026 (2) −0.0032 (17) −0.0058 (17) −0.0170 (18)
O7 0.0140 (19) 0.036 (2) 0.026 (2) −0.0013 (15) −0.0043 (16) −0.0138 (16)
O8 0.0164 (19) 0.054 (3) 0.024 (2) 0.0013 (17) −0.0044 (16) −0.0168 (18)
O9 0.015 (2) 0.087 (3) 0.022 (2) 0.005 (2) −0.0068 (17) −0.010 (2)
O10 0.039 (2) 0.054 (3) 0.032 (2) 0.021 (2) −0.016 (2) −0.023 (2)
O1W 0.036 (2) 0.034 (2) 0.026 (2) 0.0018 (17) 0.0009 (17) −0.0072 (17)
O2W 0.066 (3) 0.031 (2) 0.024 (2) −0.005 (2) −0.013 (2) 0.0016 (17)
O3W 0.060 (3) 0.132 (5) 0.031 (3) 0.028 (3) −0.015 (2) −0.014 (3)
O4W 0.139 (5) 0.037 (3) 0.030 (2) −0.031 (3) −0.015 (3) −0.003 (2)

Geometric parameters (Å, °)

Co1—O1i 2.083 (3) C15—C16 1.389 (6)
Co1—O1 2.083 (3) C15—C21 1.492 (6)
Co1—O1W 2.178 (4) C16—C17 1.374 (6)
Co1—O1Wi 2.178 (4) C16—H16 0.9300
Co1—N4ii 2.159 (4) C17—C18 1.406 (6)
Co1—N4iii 2.159 (4) C17—C22 1.498 (7)
Gd1—O2 2.246 (3) C18—C19 1.380 (6)
Gd1—O2W 2.365 (3) C18—H18 0.9300
Gd1—O3iv 2.436 (3) C19—C20 1.384 (7)
Gd1—O4iv 2.420 (3) C19—N3 1.421 (6)
Gd1—O6 2.487 (3) C20—H20 0.9300
Gd1—O7 2.408 (3) C21—O7 1.252 (5)
Gd1—O8v 2.475 (3) C21—O6 1.277 (5)
Gd1—O9v 2.382 (3) C22—O9 1.256 (6)
C1—C6 1.386 (6) C22—O8 1.257 (6)
C1—C2 1.395 (6) C23—O10 1.223 (6)
C1—C8 1.505 (7) C23—N3 1.352 (6)
C2—C3 1.389 (7) C23—C24 1.506 (7)
C2—H2 0.9300 C24—C28 1.369 (7)
C3—C4 1.390 (6) C24—C25 1.387 (7)
C3—N1 1.410 (6) C25—C26 1.380 (7)
C4—C5 1.385 (6) C25—H25 0.9300
C4—H4 0.9300 C26—N4 1.331 (6)
C5—C6 1.378 (7) C26—H26 0.9300
C5—C7 1.491 (6) C27—N4 1.340 (6)
C6—H6 0.9300 C27—C28 1.361 (7)
C7—O3 1.250 (6) C27—H27 0.9300
C7—O4 1.257 (5) C28—H28 0.9300
C8—O1 1.246 (5) N1—H1 0.8600
C8—O2 1.263 (6) N3—H3 0.8600
C9—O5 1.204 (6) N4—Co1vi 2.159 (4)
C9—N1 1.345 (6) O3—Gd1vii 2.436 (3)
C9—C10 1.507 (7) O4—Gd1vii 2.420 (3)
C10—C11 1.387 (7) O8—Gd1viii 2.475 (3)
C10—C14 1.390 (7) O9—Gd1viii 2.382 (3)
C11—C12 1.365 (7) O1W—H1WB 0.8501
C11—H11 0.9300 O1W—H1WA 0.8200
C12—N2 1.331 (7) O2W—H2WA 0.8500
C12—H12 0.9300 O2W—H2WB 0.8499
C13—N2 1.326 (7) O3W—H3WA 0.8515
C13—C14 1.387 (7) O3W—H3WB 0.8500
C13—H13 0.9300 O4W—H4WA 0.8501
C14—H14 0.9300 O4W—H4WB 0.8501
C15—C20 1.382 (6)
O1i—Co1—O1 180.00 (19) O5—C9—C10 118.3 (5)
O1i—Co1—N4ii 87.68 (14) N1—C9—C10 117.4 (5)
O1—Co1—N4ii 92.32 (14) C11—C10—C14 117.2 (5)
O1i—Co1—N4iii 92.32 (14) C11—C10—C9 125.6 (5)
O1—Co1—N4iii 87.68 (14) C14—C10—C9 117.2 (5)
N4ii—Co1—N4iii 180.000 (1) C12—C11—C10 119.3 (5)
O1i—Co1—O1W 86.75 (14) C12—C11—H11 120.3
O1—Co1—O1W 93.25 (14) C10—C11—H11 120.3
N4ii—Co1—O1W 90.98 (15) N2—C12—C11 124.1 (5)
N4iii—Co1—O1W 89.02 (15) N2—C12—H12 117.9
O1i—Co1—O1Wi 93.25 (14) C11—C12—H12 117.9
O1—Co1—O1Wi 86.75 (14) N2—C13—C14 123.2 (5)
N4ii—Co1—O1Wi 89.02 (15) N2—C13—H13 118.4
N4iii—Co1—O1Wi 90.98 (15) C14—C13—H13 118.4
O1W—Co1—O1Wi 180.000 (1) C13—C14—C10 119.2 (6)
O2—Gd1—O2W 82.58 (12) C13—C14—H14 120.4
O2—Gd1—O9v 91.01 (14) C10—C14—H14 120.4
O2W—Gd1—O9v 138.94 (13) C20—C15—C16 119.9 (4)
O2—Gd1—O7 81.95 (12) C20—C15—C21 117.8 (4)
O2W—Gd1—O7 139.26 (12) C16—C15—C21 122.2 (4)
O9v—Gd1—O7 78.76 (11) C17—C16—C15 120.2 (4)
O2—Gd1—O4iv 154.21 (12) C17—C16—H16 119.9
O2W—Gd1—O4iv 120.60 (12) C15—C16—H16 119.9
O9v—Gd1—O4iv 78.54 (13) C16—C17—C18 119.5 (4)
O7—Gd1—O4iv 72.97 (12) C16—C17—C22 122.6 (4)
O2—Gd1—O3iv 152.78 (12) C18—C17—C22 117.9 (4)
O2W—Gd1—O3iv 71.09 (12) C19—C18—C17 120.3 (4)
O9v—Gd1—O3iv 104.19 (13) C19—C18—H18 119.9
O7—Gd1—O3iv 122.72 (12) C17—C18—H18 119.9
O4iv—Gd1—O3iv 52.79 (11) C18—C19—C20 119.4 (4)
O2—Gd1—O8v 85.71 (13) C18—C19—N3 118.8 (4)
O2W—Gd1—O8v 85.98 (12) C20—C19—N3 121.8 (4)
O9v—Gd1—O8v 53.03 (11) C15—C20—C19 120.6 (4)
O7—Gd1—O8v 129.89 (11) C15—C20—H20 119.7
O4iv—Gd1—O8v 105.71 (13) C19—C20—H20 119.7
O3iv—Gd1—O8v 85.72 (13) O7—C21—O6 120.2 (4)
O2—Gd1—O6 84.41 (13) O7—C21—C15 119.0 (4)
O2W—Gd1—O6 87.95 (12) O6—C21—C15 120.8 (4)
O9v—Gd1—O6 131.92 (11) O9—C22—O8 119.4 (5)
O7—Gd1—O6 53.19 (11) O9—C22—C17 119.6 (4)
O4iv—Gd1—O6 85.28 (13) O8—C22—C17 121.0 (5)
O3iv—Gd1—O6 100.97 (13) O9—C22—Gd1viii 57.6 (3)
O8v—Gd1—O6 169.00 (12) O8—C22—Gd1viii 61.8 (3)
O2—Gd1—C22v 87.78 (13) C17—C22—Gd1viii 176.5 (3)
O2W—Gd1—C22v 112.54 (14) O10—C23—N3 123.3 (5)
O9v—Gd1—C22v 26.43 (13) O10—C23—C24 119.8 (5)
O7—Gd1—C22v 104.25 (13) N3—C23—C24 116.9 (5)
O4iv—Gd1—C22v 92.60 (14) C28—C24—C25 118.8 (5)
O3iv—Gd1—C22v 95.88 (14) C28—C24—C23 118.2 (5)
O8v—Gd1—C22v 26.61 (12) C25—C24—C23 122.9 (5)
O6—Gd1—C22v 156.94 (13) C24—C25—C26 117.7 (5)
O2—Gd1—C7iv 178.34 (13) C24—C25—H25 121.2
O2W—Gd1—C7iv 96.19 (13) C26—C25—H25 121.2
O9v—Gd1—C7iv 90.65 (14) N4—C26—C25 124.0 (5)
O7—Gd1—C7iv 98.34 (13) N4—C26—H26 118.0
O4iv—Gd1—C7iv 26.48 (12) C25—C26—H26 118.0
O3iv—Gd1—C7iv 26.34 (12) N4—C27—C28 123.6 (5)
O8v—Gd1—C7iv 95.32 (13) N4—C27—H27 118.2
O6—Gd1—C7iv 94.44 (13) C28—C27—H27 118.2
C22v—Gd1—C7iv 93.72 (14) C27—C28—C24 119.2 (5)
C6—C1—C2 119.9 (4) C27—C28—H28 120.4
C6—C1—C8 119.6 (4) C24—C28—H28 120.4
C2—C1—C8 120.5 (4) C9—N1—C3 125.7 (4)
C3—C2—C1 120.2 (5) C9—N1—H1 117.2
C3—C2—H2 119.9 C3—N1—H1 117.2
C1—C2—H2 119.9 C12—N2—C13 117.0 (5)
C2—C3—C4 119.5 (4) C23—N3—C19 121.6 (4)
C2—C3—N1 118.7 (4) C23—N3—H3 119.2
C4—C3—N1 121.8 (4) C19—N3—H3 119.2
C5—C4—C3 119.7 (4) C26—N4—C27 116.6 (4)
C5—C4—H4 120.2 C26—N4—Co1vi 121.8 (3)
C3—C4—H4 120.2 C27—N4—Co1vi 121.3 (3)
C6—C5—C4 121.2 (4) C8—O1—Co1 144.0 (3)
C6—C5—C7 120.8 (4) C8—O2—Gd1 155.3 (3)
C4—C5—C7 118.0 (4) C7—O3—Gd1vii 93.8 (3)
C5—C6—C1 119.5 (5) C7—O4—Gd1vii 94.4 (3)
C5—C6—H6 120.3 C21—O6—Gd1 91.1 (3)
C1—C6—H6 120.3 C21—O7—Gd1 95.4 (3)
O3—C7—O4 118.8 (4) C22—O8—Gd1viii 91.5 (3)
O3—C7—C5 121.0 (4) C22—O9—Gd1viii 96.0 (3)
O4—C7—C5 120.1 (4) Co1—O1W—H1WB 117.3
O3—C7—Gd1vii 59.9 (2) Co1—O1W—H1WA 109.9
O4—C7—Gd1vii 59.1 (3) H1WB—O1W—H1WA 117.8
C5—C7—Gd1vii 177.5 (3) Gd1—O2W—H2WA 105.0
O1—C8—O2 123.9 (5) Gd1—O2W—H2WB 110.8
O1—C8—C1 118.6 (4) H2WA—O2W—H2WB 105.6
O2—C8—C1 117.5 (4) H3WA—O3W—H3WB 111.2
O5—C9—N1 124.3 (5) H4WA—O4W—H4WB 107.9
C6—C1—C2—C3 −3.2 (7) O5—C9—N1—C3 4.4 (9)
C8—C1—C2—C3 173.3 (4) C10—C9—N1—C3 −175.7 (4)
C1—C2—C3—C4 3.2 (7) C2—C3—N1—C9 162.1 (5)
C1—C2—C3—N1 −176.9 (4) C4—C3—N1—C9 −18.1 (7)
C2—C3—C4—C5 −1.0 (7) C11—C12—N2—C13 0.8 (9)
N1—C3—C4—C5 179.2 (4) C14—C13—N2—C12 −1.2 (9)
C3—C4—C5—C6 −1.3 (7) O10—C23—N3—C19 5.8 (8)
C3—C4—C5—C7 −179.2 (4) C24—C23—N3—C19 −171.8 (4)
C4—C5—C6—C1 1.3 (7) C18—C19—N3—C23 132.4 (5)
C7—C5—C6—C1 179.2 (4) C20—C19—N3—C23 −45.9 (7)
C2—C1—C6—C5 0.9 (7) C25—C26—N4—C27 3.1 (7)
C8—C1—C6—C5 −175.7 (4) C25—C26—N4—Co1vi −169.8 (4)
C6—C5—C7—O3 18.9 (7) C28—C27—N4—C26 −1.1 (8)
C4—C5—C7—O3 −163.2 (5) C28—C27—N4—Co1vi 171.8 (4)
C6—C5—C7—O4 −159.9 (5) O2—C8—O1—Co1 −118.9 (5)
C4—C5—C7—O4 18.0 (7) C1—C8—O1—Co1 61.6 (7)
C6—C1—C8—O1 27.7 (7) N4ii—Co1—O1—C8 −31.5 (6)
C2—C1—C8—O1 −148.9 (5) N4iii—Co1—O1—C8 148.5 (6)
C6—C1—C8—O2 −151.9 (5) O1W—Co1—O1—C8 −122.6 (6)
C2—C1—C8—O2 31.5 (7) O1Wi—Co1—O1—C8 57.4 (6)
O5—C9—C10—C11 −165.6 (5) O1—C8—O2—Gd1 75.0 (10)
N1—C9—C10—C11 14.5 (8) C1—C8—O2—Gd1 −105.4 (8)
O5—C9—C10—C14 11.8 (8) O2W—Gd1—O2—C8 −92.6 (8)
N1—C9—C10—C14 −168.1 (5) O9v—Gd1—O2—C8 128.1 (8)
C14—C10—C11—C12 −1.3 (8) O7—Gd1—O2—C8 49.6 (8)
C9—C10—C11—C12 176.1 (5) O4iv—Gd1—O2—C8 62.9 (9)
C10—C11—C12—N2 0.4 (9) O3iv—Gd1—O2—C8 −107.1 (8)
N2—C13—C14—C10 0.4 (9) O8v—Gd1—O2—C8 −179.1 (8)
C11—C10—C14—C13 0.9 (8) O6—Gd1—O2—C8 −4.0 (8)
C9—C10—C14—C13 −176.7 (5) C22v—Gd1—O2—C8 154.3 (8)
C20—C15—C16—C17 1.5 (7) O4—C7—O3—Gd1vii −4.0 (5)
C21—C15—C16—C17 −178.6 (5) C5—C7—O3—Gd1vii 177.2 (4)
C15—C16—C17—C18 −1.8 (7) O3—C7—O4—Gd1vii 4.0 (5)
C15—C16—C17—C22 −179.9 (4) C5—C7—O4—Gd1vii −177.2 (4)
C16—C17—C18—C19 −0.4 (7) O7—C21—O6—Gd1 −3.4 (5)
C22—C17—C18—C19 177.8 (4) C15—C21—O6—Gd1 177.4 (4)
C17—C18—C19—C20 2.8 (7) O2—Gd1—O6—C21 86.0 (3)
C17—C18—C19—N3 −175.6 (4) O2W—Gd1—O6—C21 168.7 (3)
C16—C15—C20—C19 1.0 (7) O9v—Gd1—O6—C21 −0.3 (4)
C21—C15—C20—C19 −178.9 (5) O7—Gd1—O6—C21 1.9 (3)
C18—C19—C20—C15 −3.2 (8) O4iv—Gd1—O6—C21 −70.3 (3)
N3—C19—C20—C15 175.2 (4) O3iv—Gd1—O6—C21 −121.0 (3)
C20—C15—C21—O7 −5.5 (7) O8v—Gd1—O6—C21 112.2 (6)
C16—C15—C21—O7 174.6 (4) C22v—Gd1—O6—C21 15.2 (5)
C20—C15—C21—O6 173.8 (4) C7iv—Gd1—O6—C21 −95.2 (3)
C16—C15—C21—O6 −6.1 (7) O6—C21—O7—Gd1 3.5 (5)
C16—C17—C22—O9 −167.4 (5) C15—C21—O7—Gd1 −177.2 (4)
C18—C17—C22—O9 14.5 (7) O2—Gd1—O7—C21 −91.0 (3)
C16—C17—C22—O8 13.5 (7) O2W—Gd1—O7—C21 −22.3 (4)
C18—C17—C22—O8 −164.7 (5) O9v—Gd1—O7—C21 176.4 (3)
O10—C23—C24—C28 −41.3 (7) O4iv—Gd1—O7—C21 95.1 (3)
N3—C23—C24—C28 136.4 (5) O3iv—Gd1—O7—C21 76.6 (3)
O10—C23—C24—C25 134.8 (6) O8v—Gd1—O7—C21 −168.4 (3)
N3—C23—C24—C25 −47.5 (7) O6—Gd1—O7—C21 −1.9 (3)
C28—C24—C25—C26 −1.5 (7) C22v—Gd1—O7—C21 −176.6 (3)
C23—C24—C25—C26 −177.5 (5) C7iv—Gd1—O7—C21 87.4 (3)
C24—C25—C26—N4 −1.8 (8) O9—C22—O8—Gd1viii −1.6 (5)
N4—C27—C28—C24 −2.0 (8) C17—C22—O8—Gd1viii 177.6 (4)
C25—C24—C28—C27 3.3 (8) O8—C22—O9—Gd1viii 1.6 (5)
C23—C24—C28—C27 179.5 (5) C17—C22—O9—Gd1viii −177.5 (4)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+2, −y+1, −z+2; (iii) x, y, z−1; (iv) x, y−1, z; (v) x−1, y, z; (vi) x, y, z+1; (vii) x, y+1, z; (viii) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O4Wix 0.86 2.16 2.999 (6) 166
N3—H3···O4ii 0.86 2.15 2.942 (6) 152
O1W—H1WA···O6i 0.82 2.25 2.992 (5) 151
O1W—H1WB···O3Wx 0.85 2.03 2.753 (6) 143
O2W—H2WA···O3Wxi 0.85 2.40 3.130 (6) 144
O2W—H2WB···N2iii 0.85 1.92 2.676 (6) 147
O3W—H3WA···O3x 0.85 1.91 2.737 (6) 163
O3W—H3WB···O8v 0.85 1.97 2.781 (6) 160
O4W—H4WA···O9xii 0.85 2.26 3.097 (6) 170
O4W—H4WB···O9ii 0.85 2.18 3.028 (6) 172

Symmetry codes: (ix) −x+1, −y+1, −z+2; (ii) −x+2, −y+1, −z+2; (i) −x+2, −y+1, −z+1; (x) −x+1, −y+1, −z+1; (xi) −x+1, −y, −z+1; (iii) x, y, z−1; (v) x−1, y, z; (xii) x−1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5327).

References

  1. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, M.-S., Zhao, Y., Okamura, T.-A., Su, Z., Sun, W.-Y. & Ueyama, N. (2011). Supramol. Chem. 23, 117–124.
  4. Gu, X.-J. & Xue, D.-F. (2006). Inorg. Chem. 45, 9257–9261. [DOI] [PubMed]
  5. Liang, Y.-C., Cao, R., Su, W.-P., Hong, M.-C. & Zhang, W.-J. (2000). Angew. Chem. Int. Ed. 39, 3304–3307. [DOI] [PubMed]
  6. Prasad, T. K., Rajasekharan, M. V. & Costes, J. P. (2007). Angew. Chem. Int. Ed. 46, 2851–2854. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Zhao, B., Cheng, P., Chen, X.-Y., Cheng, C., Shi, W., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). J. Am. Chem. Soc. 126, 3012–3013. [DOI] [PubMed]
  9. Zhao, B., Cheng, P., Dai, Y., Cheng, C., Liao, D.-Z., Yan, S.-P., Jiang, Z.-H. & Wang, G.-L. (2003). Angew. Chem. Int. Ed. 42, 934–936. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811038074/xu5327sup1.cif

e-67-m1431-sup1.cif (31KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038074/xu5327Isup2.hkl

e-67-m1431-Isup2.hkl (247.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES