Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):m1390–m1391. doi: 10.1107/S1600536811036634

Poly[[(2,2′-bipyridine)(μ 3-7-oxabicyclo­[2.2.1]heptane-2,3-dicarboxyl­ato)cadmium] monohydrate]

Ling-Ling Zhang a, Shi-Kun Li a,b, Jie Feng a, Qiu-Yue Lin a,b,*
PMCID: PMC3201414  PMID: 22065044

Abstract

The title compound, {[Cd(C8H8O5)(C10H8N2)]·H2O}n, was obtained by the reaction of cadmium acetate with 2,2′-bi­pyridine and 7-oxabicyclo­(2.2.1)heptane-2,3-dicarb­oxy­lic anhydride. The CdII atom is seven-coordinated in a distorted penta­gonal–bipyramidal configuration, defined by five O atoms from the carboxyl­ate groups of three 7-oxabicyclo­[2.2.1]heptane-2,3-dicarboxyl­ato ligands and two N atoms from the 2,2′-bipyridine ligand. Two O atoms link two CdII atoms, forming a dinuclear center: the Cd—O—Cd bridging angle is 110.19 (6)°. The polymeric structure extends along [100] and is linked by inter­molecular O—H⋯O hydrogen bonds involving the solvent water molecule. Extensive π–π stacking exists between 2,2-bypiridine ligands along [010] with centroid-centroid distance of 3.650 (2) Å

Related literature

For background to the applications of norcantharidin [systematic name: 7-oxabicyclo­[2.2.1]heptane-2,3-dicarb­oxy­lic anhydride], see: Wang et al. (1989). F or related structures, see: Yin et al. (2003); Wang et al. (2009).graphic file with name e-67-m1390-scheme1.jpg

Experimental

Crystal data

  • [Cd(C8H8O5)(C10H8N2)]·H2O

  • M r = 470.75

  • Triclinic, Inline graphic

  • a = 8.2599 (1) Å

  • b = 10.5950 (2) Å

  • c = 11.1097 (2) Å

  • α = 111.784 (1)°

  • β = 94.066 (1)°

  • γ = 102.749 (1)°

  • V = 867.94 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.30 mm−1

  • T = 296 K

  • 0.33 × 0.14 × 0.07 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.803, T max = 0.918

  • 13190 measured reflections

  • 3972 independent reflections

  • 3699 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022

  • wR(F 2) = 0.059

  • S = 0.95

  • 3972 reflections

  • 250 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global. DOI: 10.1107/S1600536811036634/zb2016sup1.cif

e-67-m1390-sup1.cif (27.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036634/zb2016Isup2.hkl

e-67-m1390-Isup2.hkl (194.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3i 0.92 (2) 2.19 (4) 2.980 (4) 144 (5)
O1W—H1WA⋯O1Wii 0.92 (2) 2.38 (6) 2.833 (8) 110 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful for financial support from the undergraduate innovative project of Zhejiang Province, China.

supplementary crystallographic information

Comment

7-oxabicyclo(2,2,1)heptane-2,3-dicarboxylic anhydride (norcantharidin) is a variety of pharmacologically important compound such as protein kinase inhibitors and antitumor properties (Wang, 1989). Demethylcantharate is the acid radical of norcantharidin. A copper complex of 2,2'-bipyridine and demethylcantharate was reported (Yin et al., 2003); and a similar cadmium complex of demethylcantharate (Wang et al., 2009) has been reported.

Cadmium acetate can react with 2,2'-bipyridine and norcantharidin to form the title compound. X-ray crystallography measurement confirmed the molecular structure and the atom connectivity for the title compound (Fig. 1). The cadmium atom is seven-coordinated in a distorted pentagonal bipyramidal configuration, defined by five oxygen atoms (O1,O2,O1A,O3B,O4B) from carboxylate groups of three demethylcantharates and two nitrogen atoms (N1,N2) from 2,2'-bipyridine. O1 and O1A link two cadmium atoms(Cd1,Cd1A) to form a dinuclear center, and the The angle of the bridging O1(Cd1—O1—Cd1A)), is 110.19 (6)°.Each demethylcantharate acts as a four-coordinated bridging linker that connects two cadmium centers.

It showed that the polymeric molecules grow in [100] direction,and are linked by H-bonds(O1W—H1WA···O3; O1W—H1WA···O1W) to form a plane. Extensive pi-stacking is observed between 2,2-bypiridine ligands propagated along [010], linking the planes with the distance between planes of 3.4738 Å.

Experimental

A mixture of 0.5 mmol norcantharidin, 0.5 mmol 2,2'-bipyridine,0.5 mmol cadmium acetate and 10 mL distilled water was sealed in a 25 mL Teflon-lined stainless vessel and heated at 433 K for 3 d, then cooled slowly to room temperature. The solution was filtered and block shaped colorless transparent crystals were obtained.

Refinement

The structure was solved by direct methods and successive Fourier difference synthesis. The H atoms bonded to C atoms were positioned geometrically and refined using a riding model [aromatic C—H = 0.93 Å, aliphatic of tertiary carbon C—H = 0.98 Å, aliphatic of secondary carbon C—H = 0.97 Å, Uiso(H) = 1.2Ueq(C)]. The H atoms bonded to O atoms were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 (2) Å and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

A view of the molecule of (I) showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability, hydrogen atoms and water molecules were omitted.

Crystal data

[Cd(C8H8O5)(C10H8N2)]·H2O Z = 2
Mr = 470.75 F(000) = 472
Triclinic, P1 Dx = 1.801 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.2599 (1) Å Cell parameters from 7860 reflections
b = 10.5950 (2) Å θ = 2.0–27.6°
c = 11.1097 (2) Å µ = 1.30 mm1
α = 111.784 (1)° T = 296 K
β = 94.066 (1)° Block, colourless
γ = 102.749 (1)° 0.33 × 0.14 × 0.07 mm
V = 867.94 (2) Å3

Data collection

Bruker SMART APEXII CCD diffractometer 3972 independent reflections
Radiation source: fine-focus sealed tube 3699 reflections with I > 2σ(I)
graphite Rint = 0.021
ω scans θmax = 27.6°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.803, Tmax = 0.918 k = −13→13
13190 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059 H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0358P)2 + 0.509P] where P = (Fo2 + 2Fc2)/3
3972 reflections (Δ/σ)max < 0.001
250 parameters Δρmax = 0.34 e Å3
3 restraints Δρmin = −0.56 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.622884 (17) 0.135016 (14) 0.438680 (14) 0.02838 (6)
N1 0.7226 (2) 0.34613 (18) 0.41261 (17) 0.0312 (4)
N2 0.5919 (2) 0.32243 (19) 0.62096 (18) 0.0329 (4)
O1W 0.4578 (5) 0.1298 (4) 0.0551 (3) 0.1174 (12)
H1WA 0.411 (7) 0.057 (5) −0.024 (3) 0.176*
H1WB 0.400 (8) 0.088 (6) 0.104 (5) 0.176*
O1 0.37311 (19) −0.02140 (17) 0.40538 (16) 0.0371 (3)
O2 0.3303 (2) 0.11060 (18) 0.30183 (19) 0.0449 (4)
O3 −0.3040 (2) −0.0038 (2) 0.22846 (18) 0.0500 (5)
O4 −0.1199 (2) 0.09023 (19) 0.40964 (15) 0.0432 (4)
O5 −0.0940 (2) −0.27932 (18) 0.14335 (18) 0.0474 (4)
C1 0.2765 (2) 0.0124 (2) 0.33481 (19) 0.0274 (4)
C2 0.0974 (2) −0.0774 (2) 0.29330 (19) 0.0267 (4)
H2A 0.0520 −0.0788 0.3721 0.032*
C3 0.0822 (3) −0.2314 (2) 0.1986 (2) 0.0361 (5)
H3A 0.1177 −0.2882 0.2426 0.043*
C4 0.1675 (3) −0.2356 (3) 0.0796 (2) 0.0452 (6)
H4A 0.1784 −0.3293 0.0290 0.054*
H4B 0.2776 −0.1685 0.1058 0.054*
C5 0.0417 (4) −0.1935 (4) 0.0024 (3) 0.0565 (7)
H5A 0.0937 −0.1068 −0.0067 0.068*
H5B −0.0049 −0.2675 −0.0841 0.068*
C6 −0.0928 (3) −0.1738 (3) 0.0910 (2) 0.0439 (6)
H6A −0.2029 −0.1827 0.0448 0.053*
C7 −0.0255 (3) −0.0357 (2) 0.21353 (19) 0.0296 (4)
H7A 0.0382 0.0371 0.1878 0.036*
C8 −0.1600 (3) 0.0185 (2) 0.2884 (2) 0.0305 (4)
C9 0.7903 (3) 0.3532 (3) 0.3088 (2) 0.0402 (5)
H9A 0.7896 0.2695 0.2400 0.048*
C10 0.8609 (3) 0.4784 (3) 0.2992 (3) 0.0465 (6)
H10A 0.9063 0.4794 0.2252 0.056*
C11 0.8631 (4) 0.6025 (3) 0.4012 (3) 0.0477 (6)
H11A 0.9115 0.6889 0.3979 0.057*
C12 0.7923 (3) 0.5967 (2) 0.5088 (2) 0.0407 (5)
H12A 0.7914 0.6793 0.5784 0.049*
C13 0.7229 (3) 0.4670 (2) 0.5117 (2) 0.0295 (4)
C14 0.6425 (3) 0.4529 (2) 0.6236 (2) 0.0295 (4)
C15 0.6177 (3) 0.5688 (2) 0.7256 (2) 0.0393 (5)
H15A 0.6548 0.6591 0.7273 0.047*
C16 0.5372 (4) 0.5476 (3) 0.8235 (2) 0.0476 (6)
H16A 0.5199 0.6237 0.8924 0.057*
C17 0.4825 (3) 0.4128 (3) 0.8190 (2) 0.0463 (6)
H17A 0.4261 0.3964 0.8835 0.056*
C18 0.5134 (3) 0.3037 (3) 0.7171 (2) 0.0410 (5)
H18A 0.4784 0.2129 0.7145 0.049*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.02580 (9) 0.02276 (9) 0.03633 (9) 0.00709 (6) 0.00848 (6) 0.01055 (6)
N1 0.0303 (9) 0.0274 (9) 0.0358 (9) 0.0080 (7) 0.0086 (7) 0.0118 (7)
N2 0.0360 (10) 0.0287 (9) 0.0367 (9) 0.0109 (7) 0.0097 (8) 0.0139 (7)
O1W 0.152 (3) 0.093 (2) 0.087 (2) 0.012 (2) −0.004 (2) 0.0295 (18)
O1 0.0269 (8) 0.0421 (9) 0.0458 (9) 0.0071 (6) 0.0014 (6) 0.0233 (7)
O2 0.0348 (9) 0.0379 (9) 0.0687 (11) 0.0044 (7) 0.0074 (8) 0.0317 (8)
O3 0.0282 (8) 0.0570 (11) 0.0526 (10) 0.0190 (8) 0.0038 (7) 0.0047 (8)
O4 0.0451 (10) 0.0547 (10) 0.0328 (8) 0.0276 (8) 0.0114 (7) 0.0118 (7)
O5 0.0317 (9) 0.0380 (9) 0.0558 (10) 0.0016 (7) 0.0018 (7) 0.0058 (8)
C1 0.0246 (9) 0.0265 (10) 0.0305 (9) 0.0095 (7) 0.0078 (8) 0.0086 (8)
C2 0.0238 (9) 0.0296 (10) 0.0299 (9) 0.0072 (8) 0.0074 (7) 0.0147 (8)
C3 0.0306 (11) 0.0291 (11) 0.0454 (12) 0.0065 (8) 0.0051 (9) 0.0122 (9)
C4 0.0414 (13) 0.0494 (14) 0.0414 (12) 0.0219 (11) 0.0124 (10) 0.0078 (11)
C5 0.0595 (17) 0.078 (2) 0.0342 (12) 0.0364 (15) 0.0134 (12) 0.0131 (13)
C6 0.0334 (12) 0.0545 (15) 0.0339 (11) 0.0177 (11) −0.0002 (9) 0.0042 (10)
C7 0.0254 (10) 0.0361 (11) 0.0298 (9) 0.0104 (8) 0.0068 (8) 0.0144 (8)
C8 0.0291 (10) 0.0288 (10) 0.0385 (11) 0.0101 (8) 0.0113 (8) 0.0163 (9)
C9 0.0457 (13) 0.0340 (12) 0.0401 (12) 0.0102 (10) 0.0141 (10) 0.0130 (10)
C10 0.0549 (15) 0.0436 (14) 0.0423 (13) 0.0054 (11) 0.0162 (11) 0.0212 (11)
C11 0.0589 (16) 0.0339 (13) 0.0485 (14) −0.0002 (11) 0.0099 (12) 0.0214 (11)
C12 0.0507 (14) 0.0261 (11) 0.0401 (12) 0.0038 (10) 0.0052 (10) 0.0115 (9)
C13 0.0264 (10) 0.0273 (10) 0.0334 (10) 0.0066 (8) 0.0009 (8) 0.0117 (8)
C14 0.0283 (10) 0.0273 (10) 0.0324 (10) 0.0087 (8) 0.0017 (8) 0.0110 (8)
C15 0.0475 (13) 0.0276 (11) 0.0396 (12) 0.0107 (9) 0.0082 (10) 0.0091 (9)
C16 0.0561 (16) 0.0411 (14) 0.0384 (12) 0.0153 (11) 0.0118 (11) 0.0058 (10)
C17 0.0537 (15) 0.0497 (15) 0.0385 (12) 0.0149 (12) 0.0174 (11) 0.0186 (11)
C18 0.0489 (14) 0.0344 (12) 0.0436 (12) 0.0112 (10) 0.0156 (11) 0.0183 (10)

Geometric parameters (Å, °)

Cd1—O1 2.2511 (15) C3—H3A 0.9800
Cd1—O4i 2.2963 (16) C4—C5 1.541 (4)
Cd1—N2 2.3285 (18) C4—H4A 0.9700
Cd1—N1 2.3382 (17) C4—H4B 0.9700
Cd1—O1ii 2.4513 (15) C5—C6 1.534 (3)
Cd1—O3i 2.4546 (17) C5—H5A 0.9700
Cd1—O2 2.6704 (17) C5—H5B 0.9700
Cd1—C8i 2.720 (2) C6—C7 1.535 (3)
Cd1—C1 2.826 (2) C6—H6A 0.9800
N1—C9 1.336 (3) C7—C8 1.521 (3)
N1—C13 1.343 (3) C7—H7A 0.9800
N2—C18 1.341 (3) C8—Cd1iii 2.720 (2)
N2—C14 1.341 (3) C9—C10 1.373 (3)
O1W—H1WA 0.915 (19) C9—H9A 0.9300
O1W—H1WB 0.922 (19) C10—C11 1.377 (4)
O1—C1 1.275 (2) C10—H10A 0.9300
O1—Cd1ii 2.4513 (15) C11—C12 1.383 (3)
O2—C1 1.232 (3) C11—H11A 0.9300
O3—C8 1.249 (3) C12—C13 1.381 (3)
O3—Cd1iii 2.4546 (17) C12—H12A 0.9300
O4—C8 1.252 (3) C13—C14 1.490 (3)
O4—Cd1iii 2.2963 (16) C14—C15 1.395 (3)
O5—C3 1.438 (3) C15—C16 1.376 (4)
O5—C6 1.438 (3) C15—H15A 0.9300
C1—C2 1.504 (3) C16—C17 1.380 (4)
C2—C7 1.540 (3) C16—H16A 0.9300
C2—C3 1.550 (3) C17—C18 1.373 (3)
C2—H2A 0.9800 C17—H17A 0.9300
C3—C4 1.533 (3) C18—H18A 0.9300
O1—Cd1—O4i 127.85 (6) C7—C2—H2A 108.5
O1—Cd1—N2 99.82 (6) C3—C2—H2A 108.5
O4i—Cd1—N2 121.75 (6) O5—C3—C4 102.84 (19)
O1—Cd1—N1 137.35 (6) O5—C3—C2 101.22 (16)
O4i—Cd1—N1 88.94 (6) C4—C3—C2 110.98 (19)
N2—Cd1—N1 70.49 (6) O5—C3—H3A 113.6
O1—Cd1—O1ii 69.81 (6) C4—C3—H3A 113.6
O4i—Cd1—O1ii 84.38 (6) C2—C3—H3A 113.6
N2—Cd1—O1ii 83.14 (6) C3—C4—C5 101.08 (19)
N1—Cd1—O1ii 143.93 (6) C3—C4—H4A 111.6
O1—Cd1—O3i 93.72 (6) C5—C4—H4A 111.6
O4i—Cd1—O3i 54.58 (6) C3—C4—H4B 111.6
N2—Cd1—O3i 162.62 (7) C5—C4—H4B 111.6
N1—Cd1—O3i 92.16 (7) H4A—C4—H4B 109.4
O1ii—Cd1—O3i 111.97 (6) C6—C5—C4 101.4 (2)
O1—Cd1—O2 51.77 (5) C6—C5—H5A 111.5
O4i—Cd1—O2 141.20 (6) C4—C5—H5A 111.5
N2—Cd1—O2 92.73 (6) C6—C5—H5B 111.5
N1—Cd1—O2 86.47 (5) C4—C5—H5B 111.5
O1ii—Cd1—O2 119.82 (5) H5A—C5—H5B 109.3
O3i—Cd1—O2 87.10 (6) O5—C6—C5 102.7 (2)
O1—Cd1—C8i 112.42 (6) O5—C6—C7 102.64 (18)
O4i—Cd1—C8i 27.27 (6) C5—C6—C7 109.6 (2)
N2—Cd1—C8i 146.41 (7) O5—C6—H6A 113.6
N1—Cd1—C8i 90.67 (6) C5—C6—H6A 113.6
O1ii—Cd1—C8i 98.88 (6) C7—C6—H6A 113.6
O3i—Cd1—C8i 27.32 (6) C8—C7—C6 114.70 (18)
O2—Cd1—C8i 114.24 (6) C8—C7—C2 113.22 (16)
O1—Cd1—C1 26.07 (5) C6—C7—C2 101.20 (17)
O4i—Cd1—C1 140.84 (6) C8—C7—H7A 109.1
N2—Cd1—C1 96.88 (6) C6—C7—H7A 109.1
N1—Cd1—C1 111.81 (6) C2—C7—H7A 109.1
O1ii—Cd1—C1 95.02 (5) O3—C8—O4 121.56 (19)
O3i—Cd1—C1 90.48 (6) O3—C8—C7 120.25 (19)
O2—Cd1—C1 25.70 (5) O4—C8—C7 118.12 (18)
C8i—Cd1—C1 116.18 (6) O3—C8—Cd1iii 64.41 (12)
O1—Cd1—Cd1ii 36.61 (4) O4—C8—Cd1iii 57.15 (11)
O4i—Cd1—Cd1ii 107.21 (5) C7—C8—Cd1iii 174.70 (15)
N2—Cd1—Cd1ii 91.35 (5) N1—C9—C10 123.0 (2)
N1—Cd1—Cd1ii 160.51 (4) N1—C9—H9A 118.5
O1ii—Cd1—Cd1ii 33.21 (4) C10—C9—H9A 118.5
O3i—Cd1—Cd1ii 105.99 (5) C9—C10—C11 118.7 (2)
O2—Cd1—Cd1ii 87.42 (3) C9—C10—H10A 120.7
C8i—Cd1—Cd1ii 108.70 (4) C11—C10—H10A 120.7
C1—Cd1—Cd1ii 62.06 (4) C10—C11—C12 119.0 (2)
C9—N1—C13 118.48 (19) C10—C11—H11A 120.5
C9—N1—Cd1 123.34 (14) C12—C11—H11A 120.5
C13—N1—Cd1 117.99 (14) C13—C12—C11 119.3 (2)
C18—N2—C14 119.07 (19) C13—C12—H12A 120.4
C18—N2—Cd1 122.58 (15) C11—C12—H12A 120.4
C14—N2—Cd1 118.11 (14) N1—C13—C12 121.7 (2)
H1WA—O1W—H1WB 95 (2) N1—C13—C14 116.21 (18)
C1—O1—Cd1 103.02 (13) C12—C13—C14 122.13 (19)
C1—O1—Cd1ii 143.44 (13) N2—C14—C15 121.1 (2)
Cd1—O1—Cd1ii 110.19 (6) N2—C14—C13 116.89 (18)
C1—O2—Cd1 84.22 (12) C15—C14—C13 121.98 (19)
C8—O3—Cd1iii 88.27 (13) C16—C15—C14 119.0 (2)
C8—O4—Cd1iii 95.58 (13) C16—C15—H15A 120.5
C3—O5—C6 96.14 (17) C14—C15—H15A 120.5
O2—C1—O1 120.98 (19) C15—C16—C17 119.7 (2)
O2—C1—C2 123.43 (18) C15—C16—H16A 120.2
O1—C1—C2 115.57 (17) C17—C16—H16A 120.2
O2—C1—Cd1 70.08 (12) C18—C17—C16 118.4 (2)
O1—C1—Cd1 50.91 (10) C18—C17—H17A 120.8
C2—C1—Cd1 166.44 (14) C16—C17—H17A 120.8
C1—C2—C7 117.17 (16) N2—C18—C17 122.8 (2)
C1—C2—C3 112.65 (16) N2—C18—H18A 118.6
C7—C2—C3 101.19 (16) C17—C18—H18A 118.6
C1—C2—H2A 108.5
O1—Cd1—N1—C9 −98.43 (19) N1—Cd1—C1—O1 −170.00 (12)
O4i—Cd1—N1—C9 53.92 (18) O1ii—Cd1—C1—O1 −14.62 (16)
N2—Cd1—N1—C9 178.32 (19) O3i—Cd1—C1—O1 97.48 (13)
O1ii—Cd1—N1—C9 132.87 (17) O2—Cd1—C1—O1 179.8 (2)
O3i—Cd1—N1—C9 −0.57 (18) C8i—Cd1—C1—O1 87.84 (13)
O2—Cd1—N1—C9 −87.53 (18) Cd1ii—Cd1—C1—O1 −10.42 (11)
C8i—Cd1—N1—C9 26.71 (18) O1—Cd1—C1—C2 −4.7 (5)
C1—Cd1—N1—C9 −91.96 (18) O4i—Cd1—C1—C2 68.0 (6)
Cd1ii—Cd1—N1—C9 −159.50 (14) N2—Cd1—C1—C2 −103.0 (6)
O1—Cd1—N1—C13 86.62 (17) N1—Cd1—C1—C2 −174.7 (5)
O4i—Cd1—N1—C13 −121.02 (15) O1ii—Cd1—C1—C2 −19.3 (6)
N2—Cd1—N1—C13 3.37 (14) O3i—Cd1—C1—C2 92.8 (6)
O1ii—Cd1—N1—C13 −42.07 (19) O2—Cd1—C1—C2 175.1 (6)
O3i—Cd1—N1—C13 −175.52 (15) C8i—Cd1—C1—C2 83.2 (6)
O2—Cd1—N1—C13 97.52 (15) Cd1ii—Cd1—C1—C2 −15.1 (5)
C8i—Cd1—N1—C13 −148.23 (15) O2—C1—C2—C7 −4.4 (3)
C1—Cd1—N1—C13 93.09 (15) O1—C1—C2—C7 177.14 (17)
Cd1ii—Cd1—N1—C13 25.6 (2) Cd1—C1—C2—C7 −178.8 (5)
O1—Cd1—N2—C18 37.44 (19) O2—C1—C2—C3 112.4 (2)
O4i—Cd1—N2—C18 −109.65 (19) O1—C1—C2—C3 −66.1 (2)
N1—Cd1—N2—C18 174.4 (2) Cd1—C1—C2—C3 −62.1 (6)
O1ii—Cd1—N2—C18 −30.63 (18) C6—O5—C3—C4 −56.7 (2)
O3i—Cd1—N2—C18 178.09 (18) C6—O5—C3—C2 58.15 (19)
O2—Cd1—N2—C18 89.09 (18) C1—C2—C3—O5 −162.72 (17)
C8i—Cd1—N2—C18 −126.37 (18) C7—C2—C3—O5 −36.8 (2)
C1—Cd1—N2—C18 63.63 (19) C1—C2—C3—C4 −54.1 (2)
Cd1ii—Cd1—N2—C18 1.61 (18) C7—C2—C3—C4 71.8 (2)
O1—Cd1—N2—C14 −136.90 (15) O5—C3—C4—C5 34.9 (2)
O4i—Cd1—N2—C14 76.02 (16) C2—C3—C4—C5 −72.7 (2)
N1—Cd1—N2—C14 0.04 (14) C3—C4—C5—C6 −0.3 (3)
O1ii—Cd1—N2—C14 155.04 (16) C3—O5—C6—C5 56.3 (2)
O3i—Cd1—N2—C14 3.8 (3) C3—O5—C6—C7 −57.48 (19)
O2—Cd1—N2—C14 −85.25 (15) C4—C5—C6—O5 −34.4 (3)
C8i—Cd1—N2—C14 59.3 (2) C4—C5—C6—C7 74.2 (3)
C1—Cd1—N2—C14 −110.71 (15) O5—C6—C7—C8 −88.6 (2)
Cd1ii—Cd1—N2—C14 −172.72 (15) C5—C6—C7—C8 162.76 (19)
O4i—Cd1—O1—C1 −130.25 (12) O5—C6—C7—C2 33.6 (2)
N2—Cd1—O1—C1 85.57 (13) C5—C6—C7—C2 −75.0 (2)
N1—Cd1—O1—C1 13.77 (17) C1—C2—C7—C8 −111.9 (2)
O1ii—Cd1—O1—C1 164.46 (17) C3—C2—C7—C8 125.18 (18)
O3i—Cd1—O1—C1 −83.48 (13) C1—C2—C7—C6 124.80 (19)
O2—Cd1—O1—C1 −0.13 (11) C3—C2—C7—C6 1.9 (2)
C8i—Cd1—O1—C1 −104.04 (13) Cd1iii—O3—C8—O4 −0.2 (2)
Cd1ii—Cd1—O1—C1 164.46 (17) Cd1iii—O3—C8—C7 −177.16 (17)
O4i—Cd1—O1—Cd1ii 65.30 (9) Cd1iii—O4—C8—O3 0.2 (2)
N2—Cd1—O1—Cd1ii −78.88 (7) Cd1iii—O4—C8—C7 177.23 (16)
N1—Cd1—O1—Cd1ii −150.68 (7) C6—C7—C8—O3 −31.7 (3)
O1ii—Cd1—O1—Cd1ii 0.0 C2—C7—C8—O3 −147.1 (2)
O3i—Cd1—O1—Cd1ii 112.06 (7) C6—C7—C8—O4 151.3 (2)
O2—Cd1—O1—Cd1ii −164.59 (10) C2—C7—C8—O4 35.8 (3)
C8i—Cd1—O1—Cd1ii 91.51 (8) C13—N1—C9—C10 0.4 (4)
C1—Cd1—O1—Cd1ii −164.46 (17) Cd1—N1—C9—C10 −174.6 (2)
O1—Cd1—O2—C1 0.13 (12) N1—C9—C10—C11 0.4 (4)
O4i—Cd1—O2—C1 105.62 (14) C9—C10—C11—C12 −0.9 (4)
N2—Cd1—O2—C1 −100.23 (13) C10—C11—C12—C13 0.7 (4)
N1—Cd1—O2—C1 −170.48 (13) C9—N1—C13—C12 −0.6 (3)
O1ii—Cd1—O2—C1 −16.58 (15) Cd1—N1—C13—C12 174.62 (17)
O3i—Cd1—O2—C1 97.17 (13) C9—N1—C13—C14 178.72 (19)
C8i—Cd1—O2—C1 100.38 (13) Cd1—N1—C13—C14 −6.1 (2)
Cd1ii—Cd1—O2—C1 −9.00 (12) C11—C12—C13—N1 0.1 (4)
Cd1—O2—C1—O1 −0.22 (19) C11—C12—C13—C14 −179.2 (2)
Cd1—O2—C1—C2 −178.62 (18) C18—N2—C14—C15 1.2 (3)
Cd1—O1—C1—O2 0.3 (2) Cd1—N2—C14—C15 175.77 (16)
Cd1ii—O1—C1—O2 155.28 (18) C18—N2—C14—C13 −177.6 (2)
Cd1—O1—C1—C2 178.79 (13) Cd1—N2—C14—C13 −3.1 (2)
Cd1ii—O1—C1—C2 −26.2 (3) N1—C13—C14—N2 6.1 (3)
Cd1ii—O1—C1—Cd1 155.0 (3) C12—C13—C14—N2 −174.6 (2)
O1—Cd1—C1—O2 −179.8 (2) N1—C13—C14—C15 −172.8 (2)
O4i—Cd1—C1—O2 −107.13 (14) C12—C13—C14—C15 6.5 (3)
N2—Cd1—C1—O2 81.94 (13) N2—C14—C15—C16 −1.1 (3)
N1—Cd1—C1—O2 10.24 (14) C13—C14—C15—C16 177.7 (2)
O1ii—Cd1—C1—O2 165.61 (13) C14—C15—C16—C17 −0.2 (4)
O3i—Cd1—C1—O2 −82.28 (13) C15—C16—C17—C18 1.2 (4)
C8i—Cd1—C1—O2 −91.92 (13) C14—N2—C18—C17 −0.1 (4)
Cd1ii—Cd1—C1—O2 169.82 (14) Cd1—N2—C18—C17 −174.43 (19)
O4i—Cd1—C1—O1 72.63 (16) C16—C17—C18—N2 −1.1 (4)
N2—Cd1—C1—O1 −98.30 (13)

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z+1; (iii) x−1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1WA···O3iv 0.92 (2) 2.19 (4) 2.980 (4) 144 (5)
O1W—H1WA···O1Wv 0.92 (2) 2.38 (6) 2.833 (8) 110 (5)

Symmetry codes: (iv) −x, −y, −z; (v) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZB2016).

References

  1. Bruker (2001). SAINT Bruker AXS Inc., Madison,Wisconsin, USA.
  2. Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Wang, G.-S. (1989). J. Ethnopharmacol. 26, 147–162. [DOI] [PubMed]
  6. Wang, N., Wang, Y.-J. & Lin, Q.-Y. (2009). Acta Cryst. E65, m782. [DOI] [PMC free article] [PubMed]
  7. Yin, F.-L., Shen, J., Zou, J.-J. & Li, R.-C. (2003). Acta Chim. Sin. 61, 556–561.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global. DOI: 10.1107/S1600536811036634/zb2016sup1.cif

e-67-m1390-sup1.cif (27.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036634/zb2016Isup2.hkl

e-67-m1390-Isup2.hkl (194.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES