Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2767. doi: 10.1107/S1600536811038840

N-(2-Chloro­phen­yl)-4-methyl­benzamide

Vinola Z Rodrigues a, Peter Herich b, B Thimme Gowda a,*, Jozef Kožíšek b
PMCID: PMC3201415  PMID: 22065132

Abstract

The asymmetric unit of the title compound, C14H12ClNO, contains two independent mol­ecules in which the dihedral angles between the two aromatic rings are 51.76 (6) and 51.48 (7)°. The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds, which link the mol­ecules into chains running along the c axis.

Related literature

For preparation of the title compound, see: Gowda et al. (2003). For our studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Arjunan et al. (2004); Bowes et al. (2003); Gowda et al. (2001); Rodrigues et al. (2011); Saeed et al. (2010) on N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007) and on N-(ar­yl)-aryl­sulfonamides, see: Gowda et al. (2005). graphic file with name e-67-o2767-scheme1.jpg

Experimental

Crystal data

  • C14H12ClNO

  • M r = 245.70

  • Monoclinic, Inline graphic

  • a = 9.6940 (5) Å

  • b = 27.4495 (9) Å

  • c = 9.9025 (4) Å

  • β = 106.730 (5)°

  • V = 2523.48 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.97 × 0.13 × 0.10 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009) based on expressions derived by Clark & Reid (1995)] T min = 0.957, T max = 0.972

  • 47577 measured reflections

  • 7045 independent reflections

  • 2850 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.126

  • S = 0.85

  • 7045 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2002); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811038840/bt5650sup1.cif

e-67-o2767-sup1.cif (23.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038840/bt5650Isup2.hkl

e-67-o2767-Isup2.hkl (320.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811038840/bt5650Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N15—H15A⋯O34 0.86 2.02 2.8408 (16) 159
N32—H32A⋯O17i 0.86 2.01 2.8455 (16) 165

Symmetry code: (i) Inline graphic.

Acknowledgments

MF and JK thank the VEGA Grant Agency of the Slovak Ministry of Education (1/0679/11) and the Research and Development Agency of Slovakia (APVV-0202–10) for their financial support and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for award of an RFSMS research fellowship.

supplementary crystallographic information

Comment

The amide and sulfonamide moieties are the constituents of many biologically significant compounds. As part of our work on the substituent effects on the structures and other aspects of N-(aryl)-amides (Arjunan et al., 2004; Bowes et al., 2003; Gowda et al., 2001; Saeed et al., 2010; Rodrigues et al., 2011), N-(aryl)-methanesulfonamides (Gowda et al., 2007) and N-(aryl)-arylsulfonamides (Gowda et al., 2005), in the present work, the crystal structure of N-(2-Chlorophenyl)-4-methylbenzamide (I) has been determined (Fig.1). The asymmetric unit of (I) contains two independent molecules. In the crystal, the ortho-Cl substituent in the anilino ring is positioned syn to the N–H bond in one of the molecules and anti in the other molecule. Further, the N—H and C=O bonds in the C—NH—C(O)—C segment are anti to each other in both the molecules, similar to that observed in N-(2-methylphenyl)- 4-methylbenzamide (II)(Rodrigues et al., 2011).

The packing of molecules linked by N—H···O hydrogen bonds into infinite chains is shown in Fig. 2.

Experimental

The title compound was prepared according to the method described by Gowda et al. (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. cuboid-like colourless single crystals of the title compound were obtained by slow evaporation from an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement

All H atoms were visible in difference maps and then treated as riding atoms with C–H distances of 0.93Å (C-aromatic), 0.96Å (C-methyl) and N—H = 0.86 Å. The Uiso(H) values were set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq(C-methyl).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound. Molecular chains are generated by N—H···O hydrogen bonds which are shown by dashed lines. H atoms not involved in intermolecular bonding have been omitted.

Crystal data

C14H12ClNO F(000) = 1024
Mr = 245.70 Dx = 1.293 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 13361 reflections
a = 9.6940 (5) Å θ = 3.6–29.4°
b = 27.4495 (9) Å µ = 0.29 mm1
c = 9.9025 (4) Å T = 293 K
β = 106.730 (5)° Cuboid, colorless
V = 2523.48 (19) Å3 0.97 × 0.13 × 0.10 mm
Z = 8

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer 7045 independent reflections
Radiation source: fine-focus sealed tube 2850 reflections with I > 2σ(I)
graphite Rint = 0.046
Detector resolution: 10.4340 pixels mm-1 θmax = 29.4°, θmin = 3.6°
ω scans h = −13→13
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009) based on expressions derived by Clark & Reid (1995)] k = −37→37
Tmin = 0.957, Tmax = 0.972 l = −13→12
47577 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126 H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.0704P)2] where P = (Fo2 + 2Fc2)/3
7045 reflections (Δ/σ)max < 0.001
307 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4465 (2) 0.18661 (6) 0.78372 (15) 0.0492 (4)
C2 0.5890 (2) 0.19536 (7) 0.85616 (18) 0.0567 (5)
C3 0.6412 (3) 0.24255 (8) 0.8811 (2) 0.0712 (6)
H3A 0.7374 0.2481 0.9296 0.085*
C4 0.5494 (3) 0.28101 (8) 0.8336 (2) 0.0794 (7)
H4A 0.5839 0.3128 0.8495 0.095*
C5 0.4082 (3) 0.27296 (8) 0.7632 (2) 0.0827 (7)
H5A 0.3463 0.2991 0.7320 0.099*
C6 0.3572 (2) 0.22594 (7) 0.7386 (2) 0.0676 (5)
H6A 0.2608 0.2207 0.6906 0.081*
C7 0.3647 (2) 0.10713 (6) 0.83990 (16) 0.0497 (4)
C8 0.30994 (18) 0.05833 (6) 0.78704 (16) 0.0466 (4)
C9 0.2405 (2) 0.04866 (7) 0.64638 (17) 0.0555 (5)
H9A 0.2249 0.0738 0.5808 0.067*
C10 0.1947 (2) 0.00242 (7) 0.6028 (2) 0.0653 (5)
H10A 0.1467 −0.0031 0.5083 0.078*
C11 0.2182 (2) −0.03609 (7) 0.6964 (2) 0.0677 (5)
C12 0.2852 (2) −0.02635 (7) 0.8368 (2) 0.0693 (6)
H12A 0.3009 −0.0516 0.9021 0.083*
C13 0.3290 (2) 0.02018 (7) 0.88200 (18) 0.0583 (5)
H13A 0.3719 0.0260 0.9774 0.070*
C14 0.1746 (4) −0.08743 (8) 0.6468 (3) 0.1105 (10)
H14C 0.1994 −0.1092 0.7260 0.133*
H14B 0.2242 −0.0971 0.5800 0.133*
H14A 0.0725 −0.0886 0.6028 0.133*
C18 0.3176 (2) 0.05619 (6) 0.25095 (15) 0.0472 (4)
C19 0.1723 (2) 0.04811 (6) 0.18847 (17) 0.0556 (5)
C20 0.1129 (2) 0.00237 (8) 0.1859 (2) 0.0703 (6)
H20A 0.0150 −0.0025 0.1435 0.084*
C21 0.1995 (3) −0.03562 (8) 0.2465 (2) 0.0755 (6)
H21A 0.1605 −0.0667 0.2437 0.091*
C22 0.3426 (3) −0.02856 (7) 0.3110 (2) 0.0755 (6)
H22A 0.4003 −0.0546 0.3535 0.091*
C23 0.4020 (2) 0.01741 (7) 0.31306 (19) 0.0624 (5)
H23A 0.4997 0.0221 0.3568 0.075*
C24 0.41322 (19) 0.13420 (6) 0.35262 (16) 0.0511 (4)
C25 0.44828 (19) 0.18501 (6) 0.32278 (15) 0.0476 (4)
C26 0.4024 (2) 0.20526 (6) 0.18911 (17) 0.0621 (5)
H26A 0.3556 0.1858 0.1129 0.074*
C27 0.4250 (2) 0.25370 (7) 0.1674 (2) 0.0683 (6)
H27A 0.3930 0.2663 0.0765 0.082*
C28 0.4937 (2) 0.28404 (7) 0.2766 (2) 0.0618 (5)
C29 0.5419 (2) 0.26368 (7) 0.4093 (2) 0.0707 (6)
H29A 0.5907 0.2832 0.4848 0.085*
C30 0.5195 (2) 0.21513 (7) 0.43291 (18) 0.0606 (5)
H30A 0.5526 0.2025 0.5237 0.073*
C31 0.5128 (3) 0.33727 (7) 0.2505 (3) 0.0915 (7)
H31C 0.5625 0.3529 0.3377 0.110*
H31B 0.4202 0.3522 0.2124 0.110*
H31A 0.5681 0.3407 0.1847 0.110*
N15 0.39382 (16) 0.13853 (5) 0.74748 (13) 0.0507 (4)
H15A 0.3799 0.1290 0.6618 0.061*
N32 0.37672 (17) 0.10304 (5) 0.24535 (13) 0.0534 (4)
H32A 0.3900 0.1120 0.1668 0.064*
O17 0.38313 (17) 0.11887 (5) 0.96324 (11) 0.0771 (5)
O34 0.4147 (2) 0.12111 (5) 0.47127 (12) 0.0924 (5)
Cl16 0.70621 (7) 0.14715 (2) 0.91490 (7) 0.0936 (2)
Cl33 0.06234 (7) 0.09610 (2) 0.10827 (7) 0.0956 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0709 (13) 0.0453 (10) 0.0353 (8) −0.0042 (9) 0.0213 (8) 0.0003 (7)
C2 0.0676 (14) 0.0507 (11) 0.0551 (10) −0.0015 (10) 0.0228 (9) −0.0006 (8)
C3 0.0802 (15) 0.0639 (14) 0.0698 (13) −0.0166 (12) 0.0220 (11) −0.0058 (10)
C4 0.114 (2) 0.0492 (13) 0.0813 (14) −0.0168 (14) 0.0383 (15) −0.0030 (11)
C5 0.105 (2) 0.0487 (13) 0.0948 (16) 0.0094 (13) 0.0286 (15) 0.0157 (11)
C6 0.0756 (14) 0.0593 (13) 0.0651 (12) 0.0025 (11) 0.0155 (10) 0.0129 (10)
C7 0.0668 (12) 0.0505 (10) 0.0354 (9) −0.0018 (9) 0.0203 (8) −0.0013 (7)
C8 0.0533 (11) 0.0490 (10) 0.0408 (9) −0.0024 (8) 0.0187 (7) −0.0022 (8)
C9 0.0668 (12) 0.0555 (11) 0.0452 (9) −0.0073 (9) 0.0175 (9) −0.0013 (8)
C10 0.0708 (14) 0.0716 (14) 0.0548 (11) −0.0152 (11) 0.0202 (9) −0.0157 (10)
C11 0.0751 (14) 0.0558 (12) 0.0801 (14) −0.0189 (10) 0.0351 (11) −0.0147 (11)
C12 0.0872 (16) 0.0539 (12) 0.0719 (13) −0.0079 (11) 0.0309 (11) 0.0086 (10)
C13 0.0735 (13) 0.0547 (12) 0.0478 (9) −0.0055 (10) 0.0192 (9) 0.0040 (9)
C14 0.145 (3) 0.0753 (16) 0.122 (2) −0.0446 (17) 0.0568 (19) −0.0319 (15)
C18 0.0676 (13) 0.0425 (10) 0.0359 (8) −0.0033 (9) 0.0218 (8) −0.0009 (7)
C19 0.0702 (14) 0.0515 (11) 0.0455 (9) −0.0003 (10) 0.0172 (9) 0.0017 (8)
C20 0.0780 (15) 0.0693 (14) 0.0619 (12) −0.0175 (12) 0.0171 (10) −0.0064 (10)
C21 0.106 (2) 0.0494 (12) 0.0799 (14) −0.0162 (13) 0.0409 (14) −0.0102 (11)
C22 0.103 (2) 0.0470 (13) 0.0871 (14) 0.0161 (12) 0.0443 (14) 0.0128 (10)
C23 0.0660 (13) 0.0630 (13) 0.0610 (11) 0.0055 (11) 0.0228 (9) 0.0065 (9)
C24 0.0676 (12) 0.0538 (11) 0.0357 (9) −0.0019 (9) 0.0210 (8) −0.0024 (8)
C25 0.0581 (11) 0.0484 (10) 0.0398 (9) −0.0006 (8) 0.0194 (8) −0.0032 (8)
C26 0.0951 (16) 0.0470 (11) 0.0432 (10) −0.0061 (10) 0.0185 (9) −0.0058 (8)
C27 0.1027 (17) 0.0506 (12) 0.0544 (11) −0.0028 (11) 0.0273 (11) 0.0041 (9)
C28 0.0671 (13) 0.0489 (11) 0.0769 (13) −0.0062 (10) 0.0326 (10) −0.0050 (10)
C29 0.0736 (15) 0.0660 (13) 0.0696 (13) −0.0172 (11) 0.0159 (11) −0.0206 (11)
C30 0.0692 (13) 0.0615 (12) 0.0469 (10) −0.0078 (10) 0.0100 (9) −0.0059 (9)
C31 0.109 (2) 0.0522 (13) 0.1262 (19) −0.0105 (13) 0.0550 (16) −0.0083 (13)
N15 0.0737 (10) 0.0472 (8) 0.0339 (7) −0.0094 (7) 0.0200 (7) −0.0038 (6)
N32 0.0805 (11) 0.0490 (9) 0.0340 (7) −0.0119 (7) 0.0215 (7) −0.0006 (6)
O17 0.1376 (14) 0.0618 (8) 0.0409 (7) −0.0250 (8) 0.0399 (7) −0.0084 (6)
O34 0.1802 (17) 0.0653 (9) 0.0414 (7) −0.0260 (10) 0.0475 (9) −0.0063 (6)
Cl16 0.0746 (4) 0.0705 (4) 0.1285 (5) 0.0101 (3) 0.0178 (3) 0.0039 (3)
Cl33 0.0833 (4) 0.0885 (4) 0.1050 (5) 0.0137 (3) 0.0112 (3) 0.0323 (3)

Geometric parameters (Å, °)

C1—C6 1.375 (3) C18—C19 1.384 (3)
C1—C2 1.382 (3) C18—N32 1.415 (2)
C1—N15 1.423 (2) C19—C20 1.379 (3)
C2—C3 1.387 (3) C19—Cl33 1.7365 (19)
C2—Cl16 1.732 (2) C20—C21 1.365 (3)
C3—C4 1.374 (3) C20—H20A 0.9300
C3—H3A 0.9300 C21—C22 1.364 (3)
C4—C5 1.364 (3) C21—H21A 0.9300
C4—H4A 0.9300 C22—C23 1.385 (3)
C5—C6 1.378 (3) C22—H22A 0.9300
C5—H5A 0.9300 C23—H23A 0.9300
C6—H6A 0.9300 C24—O34 1.2248 (17)
C7—O17 1.2255 (17) C24—N32 1.330 (2)
C7—N15 1.345 (2) C24—C25 1.485 (2)
C7—C8 1.480 (2) C25—C30 1.384 (2)
C8—C13 1.384 (2) C25—C26 1.386 (2)
C8—C9 1.387 (2) C26—C27 1.374 (3)
C9—C10 1.373 (3) C26—H26A 0.9300
C9—H9A 0.9300 C27—C28 1.375 (3)
C10—C11 1.381 (3) C27—H27A 0.9300
C10—H10A 0.9300 C28—C29 1.380 (3)
C11—C12 1.380 (3) C28—C31 1.505 (3)
C11—C14 1.512 (3) C29—C30 1.381 (3)
C12—C13 1.379 (3) C29—H29A 0.9300
C12—H12A 0.9300 C30—H30A 0.9300
C13—H13A 0.9300 C31—H31C 0.9600
C14—H14C 0.9600 C31—H31B 0.9600
C14—H14B 0.9600 C31—H31A 0.9600
C14—H14A 0.9600 N15—H15A 0.8600
C18—C23 1.375 (2) N32—H32A 0.8600
C6—C1—C2 118.26 (17) C20—C19—C18 121.37 (18)
C6—C1—N15 119.97 (17) C20—C19—Cl33 118.95 (17)
C2—C1—N15 121.63 (16) C18—C19—Cl33 119.67 (14)
C1—C2—C3 120.95 (18) C21—C20—C19 119.1 (2)
C1—C2—Cl16 120.17 (14) C21—C20—H20A 120.4
C3—C2—Cl16 118.88 (17) C19—C20—H20A 120.4
C4—C3—C2 119.3 (2) C22—C21—C20 120.8 (2)
C4—C3—H3A 120.3 C22—C21—H21A 119.6
C2—C3—H3A 120.3 C20—C21—H21A 119.6
C5—C4—C3 120.4 (2) C21—C22—C23 119.9 (2)
C5—C4—H4A 119.8 C21—C22—H22A 120.0
C3—C4—H4A 119.8 C23—C22—H22A 120.0
C4—C5—C6 119.9 (2) C18—C23—C22 120.5 (2)
C4—C5—H5A 120.1 C18—C23—H23A 119.8
C6—C5—H5A 120.1 C22—C23—H23A 119.8
C1—C6—C5 121.2 (2) O34—C24—N32 120.29 (15)
C1—C6—H6A 119.4 O34—C24—C25 121.75 (14)
C5—C6—H6A 119.4 N32—C24—C25 117.94 (13)
O17—C7—N15 120.71 (15) C30—C25—C26 117.58 (16)
O17—C7—C8 121.67 (14) C30—C25—C24 119.67 (14)
N15—C7—C8 117.62 (13) C26—C25—C24 122.55 (15)
C13—C8—C9 117.97 (16) C27—C26—C25 121.04 (16)
C13—C8—C7 118.71 (14) C27—C26—H26A 119.5
C9—C8—C7 123.32 (15) C25—C26—H26A 119.5
C10—C9—C8 120.80 (17) C26—C27—C28 121.73 (17)
C10—C9—H9A 119.6 C26—C27—H27A 119.1
C8—C9—H9A 119.6 C28—C27—H27A 119.1
C9—C10—C11 121.40 (17) C27—C28—C29 117.26 (17)
C9—C10—H10A 119.3 C27—C28—C31 120.59 (19)
C11—C10—H10A 119.3 C29—C28—C31 122.15 (19)
C12—C11—C10 117.82 (17) C28—C29—C30 121.68 (17)
C12—C11—C14 121.0 (2) C28—C29—H29A 119.2
C10—C11—C14 121.2 (2) C30—C29—H29A 119.2
C13—C12—C11 121.17 (17) C29—C30—C25 120.69 (17)
C13—C12—H12A 119.4 C29—C30—H30A 119.7
C11—C12—H12A 119.4 C25—C30—H30A 119.7
C12—C13—C8 120.78 (17) C28—C31—H31C 109.5
C12—C13—H13A 119.6 C28—C31—H31B 109.5
C8—C13—H13A 119.6 H31C—C31—H31B 109.5
C11—C14—H14C 109.5 C28—C31—H31A 109.5
C11—C14—H14B 109.5 H31C—C31—H31A 109.5
H14C—C14—H14B 109.5 H31B—C31—H31A 109.5
C11—C14—H14A 109.5 C7—N15—C1 123.57 (12)
H14C—C14—H14A 109.5 C7—N15—H15A 118.2
H14B—C14—H14A 109.5 C1—N15—H15A 118.2
C23—C18—C19 118.30 (16) C24—N32—C18 124.80 (13)
C23—C18—N32 121.70 (17) C24—N32—H32A 117.6
C19—C18—N32 119.96 (16) C18—N32—H32A 117.6
C6—C1—C2—C3 −0.8 (2) C18—C19—C20—C21 0.0 (3)
N15—C1—C2—C3 174.95 (14) Cl33—C19—C20—C21 178.76 (15)
C6—C1—C2—Cl16 −179.78 (13) C19—C20—C21—C22 1.1 (3)
N15—C1—C2—Cl16 −4.0 (2) C20—C21—C22—C23 −1.3 (3)
C1—C2—C3—C4 0.3 (3) C19—C18—C23—C22 0.9 (2)
Cl16—C2—C3—C4 179.27 (15) N32—C18—C23—C22 −176.82 (15)
C2—C3—C4—C5 0.4 (3) C21—C22—C23—C18 0.3 (3)
C3—C4—C5—C6 −0.5 (3) O34—C24—C25—C30 17.0 (3)
C2—C1—C6—C5 0.7 (3) N32—C24—C25—C30 −164.36 (17)
N15—C1—C6—C5 −175.18 (16) O34—C24—C25—C26 −157.66 (19)
C4—C5—C6—C1 0.0 (3) N32—C24—C25—C26 21.0 (3)
O17—C7—C8—C13 −23.7 (3) C30—C25—C26—C27 −1.0 (3)
N15—C7—C8—C13 156.29 (17) C24—C25—C26—C27 173.79 (19)
O17—C7—C8—C9 156.49 (18) C25—C26—C27—C28 0.0 (3)
N15—C7—C8—C9 −23.5 (3) C26—C27—C28—C29 1.2 (3)
C13—C8—C9—C10 −1.2 (3) C26—C27—C28—C31 −178.1 (2)
C7—C8—C9—C10 178.60 (17) C27—C28—C29—C30 −1.5 (3)
C8—C9—C10—C11 −1.2 (3) C31—C28—C29—C30 177.8 (2)
C9—C10—C11—C12 2.3 (3) C28—C29—C30—C25 0.5 (3)
C9—C10—C11—C14 −176.7 (2) C26—C25—C30—C29 0.7 (3)
C10—C11—C12—C13 −0.9 (3) C24—C25—C30—C29 −174.21 (18)
C14—C11—C12—C13 178.0 (2) O17—C7—N15—C1 −0.2 (3)
C11—C12—C13—C8 −1.4 (3) C8—C7—N15—C1 179.78 (16)
C9—C8—C13—C12 2.5 (3) C6—C1—N15—C7 −107.11 (19)
C7—C8—C13—C12 −177.30 (18) C2—C1—N15—C7 77.2 (2)
C23—C18—C19—C20 −1.0 (2) O34—C24—N32—C18 9.7 (3)
N32—C18—C19—C20 176.71 (15) C25—C24—N32—C18 −168.96 (16)
C23—C18—C19—Cl33 −179.72 (12) C23—C18—N32—C24 −77.9 (2)
N32—C18—C19—Cl33 −2.0 (2) C19—C18—N32—C24 104.46 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N15—H15A···O34 0.86 2.02 2.8408 (16) 159.
N32—H32A···O17i 0.86 2.01 2.8455 (16) 165.

Symmetry codes: (i) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5650).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Arjunan, V., Mohan, S., Subramanian, S. & Gowda, B. T. (2004). Spectrochim. Acta Part A, 60, 1141–1159. [DOI] [PubMed]
  3. Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. [DOI] [PubMed]
  4. Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  6. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2597.
  7. Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  8. Gowda, B. T., Paulus, H. & Fuess, H. (2001). Z. Naturforsch.Teil A, 56, 386–394.
  9. Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch.Teil A, 60, 106–112.
  10. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  11. Rodrigues, V. Z., Fronc, M., Gowda, B. T. & Kožíšek, J. (2011). Acta Cryst. E67, o1500. [DOI] [PMC free article] [PubMed]
  12. Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809. [DOI] [PMC free article] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811038840/bt5650sup1.cif

e-67-o2767-sup1.cif (23.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038840/bt5650Isup2.hkl

e-67-o2767-Isup2.hkl (320.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811038840/bt5650Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES