Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 17;67(Pt 10):o2674. doi: 10.1107/S1600536811037536

4-Chloro-N-(2,3-dimethyl­phen­yl)-2-methyl­benzene­sulfonamide

Vinola Z Rodrigues a, Sabine Foro b, B Thimme Gowda a,*, K Shakuntala a
PMCID: PMC3201417  PMID: 22065412

Abstract

The asymmetric unit of the title compound, C15H16ClNO2S, contains two independent moleules. The conformation of the N—H bonds are anti to the ortho-methyl groups in the sulfonyl benzene rings of both the mol­ecules, while the N—H bonds are anti to the ortho- and meta-methyl groups in the aniline ring of one of the mol­ecules and syn in the other. Furthermore, the torsion angles of the C—SO2—NH—C segments in the two mol­ecules of are −66.8 (3) and 70.3 (3)°. The sulfonyl and the aniline benzene rings are oriented at angles of 44.1 (1) and 39.7 (1)° in the two mol­ecules. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into dimers.

Related literature

For the preparation of the title compound, see: Savitha & Gowda (2006). For hydrogen-bonding modes of sulfonamides, see; Adsmond & Grant (2001). For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Arjunan et al. (2004); Gowda et al. (2006), on N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007) and on N-(ar­yl)-aryl­sulfonamides, see: Gelbrich et al. (2007); Perlovich et al. (2006); Gowda et al. (2010).graphic file with name e-67-o2674-scheme1.jpg

Experimental

Crystal data

  • C15H16ClNO2S

  • M r = 309.80

  • Triclinic, Inline graphic

  • a = 8.2747 (7) Å

  • b = 11.0464 (9) Å

  • c = 17.021 (1) Å

  • α = 82.722 (7)°

  • β = 79.529 (7)°

  • γ = 80.267 (7)°

  • V = 1500.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 293 K

  • 0.40 × 0.28 × 0.14 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.858, T max = 0.947

  • 10437 measured reflections

  • 6064 independent reflections

  • 4140 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.166

  • S = 1.12

  • 6064 reflections

  • 373 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811037536/bq2304sup1.cif

e-67-o2674-sup1.cif (25.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037536/bq2304Isup2.hkl

e-67-o2674-Isup2.hkl (296.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037536/bq2304Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3 0.85 (2) 2.15 (2) 2.971 (4) 162 (4)
N2—H2N⋯O2 0.85 (2) 2.12 (2) 2.954 (4) 166 (4)

Acknowledgments

VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS fellowship.

supplementary crystallographic information

Comment

The amide and sulfonamide moieties are the constituents of many biologically significant compounds. The hydrogen bonding preferences of sulfonamides have been investigated (Adsmond & Grant, 2001). As part of our work on the substituent effects on the structures and other aspects of N-(aryl)-amides (Arjunan et al., 2004; Gowda et al., 2006), N-(aryl)-methanesulfonamides (Gowda et al., 2007) and N-(aryl)-arylsulfonamides (Gowda et al., 2010), in the present work, the crystal structure of 4-Chloro-2-methyl-N- (2,3-dimethylphenyl)benzenesulfonamide (I) has been determined (Fig. 1).

The asymmetric unit of (I) contains two independent moleules. The conformation of the N—H bonds are anti to the ortho-methyl groups in the sulfonyl benzene rings of both the molecules, while, the N—H bonds are anti to the ortho- and meta-methyl groups in the anilino benzene ring of one of the molecules and syn in the other.

The torsion angles of the C—SO2—NH—C segments in the two molecules of (I) are -66.8 (3)° and 70.3 (3)°, compared to the values of -61.9 (4)° and 69.7 (4)° in the two independent molecules of 4-chloro-2-methyl- N-(phenyl)-benzenesulfonamide (II) and -76.5 (5)° and -48.3 (4)° in 4-chloro-2-methyl-N-(4-methylphenyl)-benzenesulfonamide (III) (Gowda et al., 2010).

The sulfonyl and the aniline benzene rings in (I) are tilted relative to each other by 44.1 (1)° in molecule 1 and 39.7 (1)° in molecule 2, compared to the values of 86.6 (2)° and 83.0 (2)° in the two independent molecules of (II), and 76.6 (2)° in molecule 1 and 70.7 (2)° in molecule 2 of (III).

The other bond parameters in (I) are similar to those observed in (II), (III) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

In the crystal, the intermolecular N–H···O hydrogen bonds (Table 1) link the molecules as dimers (Fig. 2).

Experimental

The solution of m-chlorotoluene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2-methyl-4-chlorobenzenesulfonylchloride was treated with 2,3-dimethylaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid 4-chloro-2-methyl-N- (2,3-dimethylphenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006).

Prism like light pink single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

The H atoms of the NH groups were located in a difference map and later restrained to N—H = 0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93Å and methyl C—H = 0.96 Å. All H atoms were refined with isotropic displacement parameters. The Uiso(H) values were set at 1.2Ueq(C-aromatic, N) and 1.5Ueq(C-methyl).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C15H16ClNO2S Z = 4
Mr = 309.80 F(000) = 648
Triclinic, P1 Dx = 1.371 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.2747 (7) Å Cell parameters from 3482 reflections
b = 11.0464 (9) Å θ = 2.5–27.9°
c = 17.021 (1) Å µ = 0.39 mm1
α = 82.722 (7)° T = 293 K
β = 79.529 (7)° Prism, light pink
γ = 80.267 (7)° 0.40 × 0.28 × 0.14 mm
V = 1500.5 (2) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 6064 independent reflections
Radiation source: fine-focus sealed tube 4140 reflections with I > 2σ(I)
graphite Rint = 0.016
Rotation method data acquisition using ω scans θmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −8→10
Tmin = 0.858, Tmax = 0.947 k = −13→13
10437 measured reflections l = −20→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166 H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0505P)2 + 1.8811P] where P = (Fo2 + 2Fc2)/3
6064 reflections (Δ/σ)max = 0.001
373 parameters Δρmax = 0.58 e Å3
2 restraints Δρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.52306 (16) 1.04270 (13) 0.11188 (11) 0.1031 (5)
S1 0.01951 (12) 0.67472 (8) 0.25114 (5) 0.0460 (2)
O1 −0.1489 (3) 0.7348 (2) 0.26297 (15) 0.0552 (7)
O2 0.0856 (4) 0.6027 (2) 0.31763 (14) 0.0610 (7)
N1 0.0393 (4) 0.5780 (3) 0.18362 (17) 0.0443 (7)
H1N 0.134 (3) 0.533 (3) 0.182 (2) 0.053*
C1 0.1528 (4) 0.7859 (3) 0.2117 (2) 0.0437 (8)
C2 0.1054 (4) 0.8924 (3) 0.1619 (2) 0.0494 (9)
C3 0.2245 (5) 0.9684 (3) 0.1318 (3) 0.0590 (10)
H3 0.1971 1.0392 0.0982 0.071*
C4 0.3823 (5) 0.9412 (4) 0.1508 (3) 0.0597 (10)
C5 0.4282 (5) 0.8370 (4) 0.2000 (3) 0.0608 (11)
H5 0.5349 0.8195 0.2127 0.073*
C6 0.3138 (5) 0.7598 (4) 0.2299 (2) 0.0519 (9)
H6 0.3436 0.6888 0.2629 0.062*
C7 −0.0170 (4) 0.6186 (3) 0.10819 (19) 0.0388 (7)
C8 0.0950 (4) 0.6401 (3) 0.0383 (2) 0.0422 (8)
C9 0.0315 (5) 0.6788 (3) −0.0338 (2) 0.0495 (9)
C10 −0.1381 (5) 0.6941 (4) −0.0326 (3) 0.0591 (10)
H10 −0.1795 0.7191 −0.0803 0.071*
C11 −0.2468 (5) 0.6733 (4) 0.0370 (3) 0.0597 (11)
H11 −0.3607 0.6858 0.0366 0.072*
C12 −0.1861 (4) 0.6338 (3) 0.1073 (2) 0.0501 (9)
H12 −0.2589 0.6172 0.1545 0.060*
C13 −0.0679 (5) 0.9320 (4) 0.1388 (3) 0.0660 (12)
H13A −0.1452 0.9589 0.1848 0.079*
H13B −0.1029 0.8634 0.1206 0.079*
H13C −0.0641 0.9986 0.0967 0.079*
C14 0.2798 (4) 0.6235 (4) 0.0383 (2) 0.0569 (10)
H14A 0.3052 0.5743 0.0864 0.068*
H14B 0.3141 0.7028 0.0362 0.068*
H14C 0.3376 0.5830 −0.0076 0.068*
C15 0.1476 (6) 0.7027 (4) −0.1115 (2) 0.0740 (13)
H15A 0.2166 0.6269 −0.1253 0.089*
H15B 0.2163 0.7615 −0.1052 0.089*
H15C 0.0839 0.7348 −0.1534 0.089*
Cl2 −0.09225 (15) −0.06815 (12) 0.40474 (9) 0.0840 (4)
S2 0.39623 (11) 0.31016 (8) 0.26485 (5) 0.0461 (2)
O3 0.3263 (3) 0.3796 (2) 0.19847 (15) 0.0607 (7)
O4 0.5651 (3) 0.2535 (2) 0.25283 (15) 0.0579 (7)
N2 0.3740 (4) 0.4077 (3) 0.33141 (18) 0.0475 (7)
H2N 0.282 (3) 0.456 (3) 0.334 (2) 0.057*
C16 0.2681 (4) 0.1958 (3) 0.3046 (2) 0.0424 (8)
C17 0.3215 (5) 0.0878 (3) 0.3519 (2) 0.0489 (9)
C18 0.2057 (5) 0.0090 (3) 0.3816 (2) 0.0558 (10)
H18 0.2368 −0.0631 0.4133 0.067*
C19 0.0459 (5) 0.0349 (3) 0.3652 (2) 0.0518 (9)
C20 −0.0065 (5) 0.1399 (4) 0.3189 (2) 0.0556 (10)
H20 −0.1145 0.1562 0.3077 0.067*
C21 0.1047 (4) 0.2201 (4) 0.2893 (2) 0.0511 (9)
H21 0.0706 0.2924 0.2585 0.061*
C22 0.4406 (4) 0.3718 (3) 0.4052 (2) 0.0404 (7)
C23 0.6040 (4) 0.3884 (3) 0.4066 (2) 0.0408 (8)
C24 0.6675 (5) 0.3519 (3) 0.4783 (2) 0.0510 (9)
C25 0.5644 (6) 0.3059 (4) 0.5452 (2) 0.0649 (12)
H25 0.6061 0.2827 0.5929 0.078*
C26 0.4023 (6) 0.2936 (4) 0.5431 (2) 0.0649 (12)
H26 0.3358 0.2638 0.5891 0.078*
C27 0.3396 (5) 0.3256 (3) 0.4727 (2) 0.0524 (9)
H27 0.2309 0.3164 0.4703 0.063*
C28 0.4975 (5) 0.0499 (4) 0.3714 (3) 0.0690 (12)
H28A 0.5307 0.1174 0.3918 0.083*
H28B 0.5729 0.0287 0.3235 0.083*
H28C 0.4994 −0.0201 0.4111 0.083*
C29 0.7049 (5) 0.4485 (4) 0.3345 (2) 0.0571 (10)
H29A 0.6317 0.5008 0.3023 0.069*
H29B 0.7720 0.3861 0.3033 0.069*
H29C 0.7754 0.4971 0.3517 0.069*
C30 0.8441 (5) 0.3647 (5) 0.4836 (3) 0.0803 (15)
H30A 0.8636 0.4473 0.4642 0.096*
H30B 0.9199 0.3073 0.4515 0.096*
H30C 0.8610 0.3476 0.5385 0.096*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0637 (8) 0.0905 (9) 0.1610 (15) −0.0338 (7) −0.0213 (8) −0.0007 (9)
S1 0.0517 (6) 0.0501 (5) 0.0345 (4) −0.0050 (4) −0.0070 (4) −0.0013 (4)
O1 0.0483 (15) 0.0622 (16) 0.0507 (15) −0.0037 (12) 0.0005 (12) −0.0073 (12)
O2 0.0770 (19) 0.0663 (17) 0.0369 (13) −0.0031 (14) −0.0143 (13) 0.0025 (12)
N1 0.0492 (18) 0.0428 (17) 0.0386 (15) −0.0028 (13) −0.0090 (14) 0.0018 (13)
C1 0.0432 (19) 0.0454 (19) 0.0437 (19) −0.0010 (15) −0.0113 (16) −0.0107 (15)
C2 0.044 (2) 0.0425 (19) 0.064 (2) −0.0018 (16) −0.0161 (18) −0.0065 (17)
C3 0.053 (2) 0.044 (2) 0.082 (3) −0.0069 (18) −0.020 (2) −0.001 (2)
C4 0.044 (2) 0.060 (2) 0.079 (3) −0.0130 (18) −0.011 (2) −0.016 (2)
C5 0.044 (2) 0.070 (3) 0.074 (3) 0.000 (2) −0.022 (2) −0.023 (2)
C6 0.050 (2) 0.057 (2) 0.052 (2) −0.0012 (18) −0.0198 (18) −0.0066 (18)
C7 0.0441 (19) 0.0356 (17) 0.0376 (17) −0.0076 (14) −0.0076 (15) −0.0030 (14)
C8 0.0436 (19) 0.0409 (18) 0.0429 (19) −0.0085 (15) −0.0064 (15) −0.0050 (15)
C9 0.067 (3) 0.046 (2) 0.0381 (19) −0.0141 (18) −0.0113 (17) −0.0037 (15)
C10 0.070 (3) 0.057 (2) 0.057 (2) −0.005 (2) −0.031 (2) −0.0062 (19)
C11 0.049 (2) 0.064 (3) 0.073 (3) −0.0065 (19) −0.025 (2) −0.014 (2)
C12 0.045 (2) 0.054 (2) 0.053 (2) −0.0141 (17) −0.0053 (17) −0.0083 (17)
C13 0.050 (2) 0.045 (2) 0.102 (3) −0.0053 (18) −0.030 (2) 0.017 (2)
C14 0.046 (2) 0.071 (3) 0.051 (2) −0.0146 (19) 0.0008 (17) −0.0053 (19)
C15 0.097 (4) 0.081 (3) 0.044 (2) −0.026 (3) −0.006 (2) 0.003 (2)
Cl2 0.0711 (8) 0.0751 (8) 0.1086 (10) −0.0281 (6) −0.0147 (7) 0.0035 (7)
S2 0.0475 (5) 0.0498 (5) 0.0412 (5) −0.0046 (4) −0.0127 (4) −0.0012 (4)
O3 0.0714 (18) 0.0662 (17) 0.0443 (14) −0.0072 (14) −0.0201 (13) 0.0061 (13)
O4 0.0504 (16) 0.0676 (17) 0.0542 (16) −0.0069 (13) −0.0039 (12) −0.0093 (13)
N2 0.0470 (18) 0.0454 (17) 0.0506 (17) 0.0005 (13) −0.0177 (15) −0.0029 (14)
C16 0.046 (2) 0.0422 (19) 0.0406 (18) −0.0005 (15) −0.0127 (15) −0.0086 (15)
C17 0.049 (2) 0.045 (2) 0.054 (2) 0.0033 (16) −0.0197 (18) −0.0062 (17)
C18 0.060 (2) 0.044 (2) 0.064 (2) −0.0040 (18) −0.017 (2) −0.0008 (18)
C19 0.051 (2) 0.051 (2) 0.056 (2) −0.0090 (17) −0.0104 (18) −0.0110 (18)
C20 0.043 (2) 0.065 (3) 0.063 (2) −0.0058 (18) −0.0175 (19) −0.007 (2)
C21 0.046 (2) 0.056 (2) 0.051 (2) 0.0028 (17) −0.0205 (17) −0.0029 (17)
C22 0.0439 (19) 0.0348 (17) 0.0418 (18) −0.0046 (14) −0.0056 (15) −0.0050 (14)
C23 0.0441 (19) 0.0369 (17) 0.0418 (18) −0.0088 (14) −0.0051 (15) −0.0044 (14)
C24 0.056 (2) 0.048 (2) 0.052 (2) 0.0047 (17) −0.0185 (18) −0.0169 (17)
C25 0.098 (4) 0.052 (2) 0.041 (2) 0.010 (2) −0.022 (2) −0.0056 (18)
C26 0.091 (3) 0.053 (2) 0.043 (2) −0.012 (2) 0.008 (2) 0.0007 (18)
C27 0.055 (2) 0.049 (2) 0.052 (2) −0.0155 (17) 0.0028 (18) −0.0066 (17)
C28 0.052 (2) 0.055 (2) 0.098 (3) 0.0012 (19) −0.032 (2) 0.015 (2)
C29 0.050 (2) 0.063 (2) 0.060 (2) −0.0185 (19) −0.0006 (19) −0.0093 (19)
C30 0.061 (3) 0.098 (4) 0.090 (3) 0.011 (3) −0.035 (3) −0.036 (3)

Geometric parameters (Å, °)

Cl1—C4 1.739 (4) Cl2—C19 1.738 (4)
S1—O1 1.429 (3) S2—O4 1.421 (3)
S1—O2 1.436 (2) S2—O3 1.438 (2)
S1—N1 1.635 (3) S2—N2 1.626 (3)
S1—C1 1.777 (4) S2—C16 1.776 (4)
N1—C7 1.438 (4) N2—C22 1.445 (4)
N1—H1N 0.850 (18) N2—H2N 0.848 (18)
C1—C6 1.396 (5) C16—C21 1.398 (5)
C1—C2 1.403 (5) C16—C17 1.405 (5)
C2—C3 1.387 (5) C17—C18 1.388 (5)
C2—C13 1.533 (5) C17—C28 1.530 (5)
C3—C4 1.377 (5) C18—C19 1.376 (5)
C3—H3 0.9300 C18—H18 0.9300
C4—C5 1.376 (6) C19—C20 1.371 (5)
C5—C6 1.368 (5) C20—C21 1.371 (5)
C5—H5 0.9300 C20—H20 0.9300
C6—H6 0.9300 C21—H21 0.9300
C7—C12 1.384 (5) C22—C27 1.388 (5)
C7—C8 1.390 (5) C22—C23 1.400 (5)
C8—C9 1.410 (5) C23—C24 1.403 (5)
C8—C14 1.509 (5) C23—C29 1.500 (5)
C9—C10 1.382 (5) C24—C25 1.389 (6)
C9—C15 1.509 (5) C24—C30 1.512 (6)
C10—C11 1.372 (6) C25—C26 1.378 (6)
C10—H10 0.9300 C25—H25 0.9300
C11—C12 1.374 (5) C26—C27 1.374 (6)
C11—H11 0.9300 C26—H26 0.9300
C12—H12 0.9300 C27—H27 0.9300
C13—H13A 0.9600 C28—H28A 0.9600
C13—H13B 0.9600 C28—H28B 0.9600
C13—H13C 0.9600 C28—H28C 0.9600
C14—H14A 0.9600 C29—H29A 0.9600
C14—H14B 0.9600 C29—H29B 0.9600
C14—H14C 0.9600 C29—H29C 0.9600
C15—H15A 0.9600 C30—H30A 0.9600
C15—H15B 0.9600 C30—H30B 0.9600
C15—H15C 0.9600 C30—H30C 0.9600
O1—S1—O2 119.33 (16) O4—S2—O3 119.65 (17)
O1—S1—N1 108.10 (16) O4—S2—N2 107.93 (16)
O2—S1—N1 104.79 (15) O3—S2—N2 104.94 (16)
O1—S1—C1 109.28 (16) O4—S2—C16 109.10 (16)
O2—S1—C1 107.43 (17) O3—S2—C16 106.85 (16)
N1—S1—C1 107.27 (16) N2—S2—C16 107.82 (16)
C7—N1—S1 120.3 (2) C22—N2—S2 120.5 (2)
C7—N1—H1N 117 (3) C22—N2—H2N 118 (3)
S1—N1—H1N 109 (3) S2—N2—H2N 112 (3)
C6—C1—C2 120.4 (3) C21—C16—C17 120.1 (3)
C6—C1—S1 116.4 (3) C21—C16—S2 116.5 (3)
C2—C1—S1 123.2 (3) C17—C16—S2 123.3 (3)
C3—C2—C1 117.3 (3) C18—C17—C16 117.0 (3)
C3—C2—C13 117.5 (3) C18—C17—C28 118.0 (3)
C1—C2—C13 125.2 (3) C16—C17—C28 124.9 (3)
C4—C3—C2 121.4 (4) C19—C18—C17 121.6 (4)
C4—C3—H3 119.3 C19—C18—H18 119.2
C2—C3—H3 119.3 C17—C18—H18 119.2
C5—C4—C3 121.2 (4) C20—C19—C18 121.6 (4)
C5—C4—Cl1 120.4 (3) C20—C19—Cl2 119.5 (3)
C3—C4—Cl1 118.4 (3) C18—C19—Cl2 119.0 (3)
C6—C5—C4 118.7 (4) C19—C20—C21 118.1 (3)
C6—C5—H5 120.7 C19—C20—H20 120.9
C4—C5—H5 120.7 C21—C20—H20 120.9
C5—C6—C1 121.1 (4) C20—C21—C16 121.5 (3)
C5—C6—H6 119.5 C20—C21—H21 119.2
C1—C6—H6 119.5 C16—C21—H21 119.2
C12—C7—C8 121.2 (3) C27—C22—C23 122.2 (3)
C12—C7—N1 117.8 (3) C27—C22—N2 119.2 (3)
C8—C7—N1 121.1 (3) C23—C22—N2 118.6 (3)
C7—C8—C9 118.2 (3) C22—C23—C24 117.9 (3)
C7—C8—C14 121.7 (3) C22—C23—C29 120.8 (3)
C9—C8—C14 120.1 (3) C24—C23—C29 121.3 (3)
C10—C9—C8 119.3 (4) C25—C24—C23 118.9 (4)
C10—C9—C15 120.3 (4) C25—C24—C30 120.3 (4)
C8—C9—C15 120.4 (4) C23—C24—C30 120.8 (4)
C11—C10—C9 121.7 (4) C26—C25—C24 122.2 (4)
C11—C10—H10 119.2 C26—C25—H25 118.9
C9—C10—H10 119.2 C24—C25—H25 118.9
C10—C11—C12 119.4 (4) C27—C26—C25 119.6 (4)
C10—C11—H11 120.3 C27—C26—H26 120.2
C12—C11—H11 120.3 C25—C26—H26 120.2
C11—C12—C7 120.2 (4) C26—C27—C22 119.0 (4)
C11—C12—H12 119.9 C26—C27—H27 120.5
C7—C12—H12 119.9 C22—C27—H27 120.5
C2—C13—H13A 109.5 C17—C28—H28A 109.5
C2—C13—H13B 109.5 C17—C28—H28B 109.5
H13A—C13—H13B 109.5 H28A—C28—H28B 109.5
C2—C13—H13C 109.5 C17—C28—H28C 109.5
H13A—C13—H13C 109.5 H28A—C28—H28C 109.5
H13B—C13—H13C 109.5 H28B—C28—H28C 109.5
C8—C14—H14A 109.5 C23—C29—H29A 109.5
C8—C14—H14B 109.5 C23—C29—H29B 109.5
H14A—C14—H14B 109.5 H29A—C29—H29B 109.5
C8—C14—H14C 109.5 C23—C29—H29C 109.5
H14A—C14—H14C 109.5 H29A—C29—H29C 109.5
H14B—C14—H14C 109.5 H29B—C29—H29C 109.5
C9—C15—H15A 109.5 C24—C30—H30A 109.5
C9—C15—H15B 109.5 C24—C30—H30B 109.5
H15A—C15—H15B 109.5 H30A—C30—H30B 109.5
C9—C15—H15C 109.5 C24—C30—H30C 109.5
H15A—C15—H15C 109.5 H30A—C30—H30C 109.5
H15B—C15—H15C 109.5 H30B—C30—H30C 109.5
O1—S1—N1—C7 50.9 (3) O4—S2—N2—C22 −47.4 (3)
O2—S1—N1—C7 179.2 (3) O3—S2—N2—C22 −176.0 (3)
C1—S1—N1—C7 −66.8 (3) C16—S2—N2—C22 70.3 (3)
O1—S1—C1—C6 151.7 (3) O4—S2—C16—C21 −154.0 (3)
O2—S1—C1—C6 20.8 (3) O3—S2—C16—C21 −23.3 (3)
N1—S1—C1—C6 −91.4 (3) N2—S2—C16—C21 89.0 (3)
O1—S1—C1—C2 −31.0 (3) O4—S2—C16—C17 28.5 (3)
O2—S1—C1—C2 −161.8 (3) O3—S2—C16—C17 159.2 (3)
N1—S1—C1—C2 86.0 (3) N2—S2—C16—C17 −88.4 (3)
C6—C1—C2—C3 0.5 (5) C21—C16—C17—C18 0.0 (5)
S1—C1—C2—C3 −176.7 (3) S2—C16—C17—C18 177.4 (3)
C6—C1—C2—C13 −178.9 (4) C21—C16—C17—C28 178.8 (4)
S1—C1—C2—C13 3.8 (5) S2—C16—C17—C28 −3.8 (5)
C1—C2—C3—C4 −0.7 (6) C16—C17—C18—C19 0.4 (6)
C13—C2—C3—C4 178.7 (4) C28—C17—C18—C19 −178.5 (4)
C2—C3—C4—C5 0.3 (7) C17—C18—C19—C20 −0.1 (6)
C2—C3—C4—Cl1 −178.9 (3) C17—C18—C19—Cl2 −179.9 (3)
C3—C4—C5—C6 0.3 (6) C18—C19—C20—C21 −0.6 (6)
Cl1—C4—C5—C6 179.6 (3) Cl2—C19—C20—C21 179.2 (3)
C4—C5—C6—C1 −0.5 (6) C19—C20—C21—C16 1.0 (6)
C2—C1—C6—C5 0.1 (6) C17—C16—C21—C20 −0.7 (6)
S1—C1—C6—C5 177.5 (3) S2—C16—C21—C20 −178.3 (3)
S1—N1—C7—C12 −76.7 (4) S2—N2—C22—C27 −92.8 (4)
S1—N1—C7—C8 104.2 (3) S2—N2—C22—C23 89.1 (4)
C12—C7—C8—C9 0.5 (5) C27—C22—C23—C24 2.7 (5)
N1—C7—C8—C9 179.5 (3) N2—C22—C23—C24 −179.3 (3)
C12—C7—C8—C14 −179.8 (3) C27—C22—C23—C29 −174.8 (3)
N1—C7—C8—C14 −0.8 (5) N2—C22—C23—C29 3.2 (5)
C7—C8—C9—C10 0.0 (5) C22—C23—C24—C25 −2.6 (5)
C14—C8—C9—C10 −179.7 (3) C29—C23—C24—C25 174.8 (3)
C7—C8—C9—C15 −179.6 (3) C22—C23—C24—C30 178.7 (3)
C14—C8—C9—C15 0.7 (5) C29—C23—C24—C30 −3.8 (5)
C8—C9—C10—C11 0.4 (6) C23—C24—C25—C26 0.8 (6)
C15—C9—C10—C11 −179.9 (4) C30—C24—C25—C26 179.5 (4)
C9—C10—C11—C12 −1.4 (6) C24—C25—C26—C27 1.1 (6)
C10—C11—C12—C7 1.8 (6) C25—C26—C27—C22 −1.1 (6)
C8—C7—C12—C11 −1.4 (5) C23—C22—C27—C26 −0.8 (5)
N1—C7—C12—C11 179.5 (3) N2—C22—C27—C26 −178.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O3 0.85 (2) 2.15 (2) 2.971 (4) 162 (4)
N2—H2N···O2 0.85 (2) 2.12 (2) 2.954 (4) 166 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2304).

References

  1. Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077. [DOI] [PubMed]
  2. Arjunan, V., Mohan, S., Subramanian, S. & Gowda, B. T. (2004). Spectrochim. Acta Part A, 60, 1141–1159. [DOI] [PubMed]
  3. Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [DOI] [PubMed]
  4. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2337.
  5. Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o2329. [DOI] [PMC free article] [PubMed]
  6. Gowda, B. T., Kozisek, J. & Fuess, H. (2006). Z. Naturforsch. Teil A, 55, 588–594.
  7. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  8. Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  9. Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 61, 600–606.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811037536/bq2304sup1.cif

e-67-o2674-sup1.cif (25.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037536/bq2304Isup2.hkl

e-67-o2674-Isup2.hkl (296.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811037536/bq2304Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES