Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):m1386–m1387. doi: 10.1107/S1600536811036610

catena-Poly[[diaqua­strontium]-bis­(μ-quinoline-3-carboxyl­ato)]

Dong-Liang Miao a, Shi-Jie Li b, Wen-Dong Song c,*, Xiao-Tian Ma a, Xiao-Fei Li d
PMCID: PMC3201418  PMID: 22065503

Abstract

The title compound, [Sr(C10H6NO2)2(H2O)2]n, contains an eight-coordinate SrII ion displaying a distorted square-anti­prismatic geometry, two quinoline-3-carboxyl­ate ligands and two terminal water mol­ecules. The SrII atom is surrounded by six carboxyl­ate O atoms from four separate quinoline-3-carboxyl­ate ligands and two O atoms from two coordinated water mol­ecules. The bridging carboxyl­ate O atoms [Sr—O = 2.498 (3) and 2.495 (3) Å] link SrII atoms, forming a chain substructure extending along the c axis. The chains are linked by O—H⋯N and O—H⋯O hydrogen bonds, giving a three-dimensional framework structure

Related literature

For a similar structure, see: Miao et al. (2010). For structures with quinoline-3-carboxyl­ate ligands, see: Okabe & Muranishi (2003a ,b ); Zevaco et al. (1998). For quinoline-3-carboxyl­ate ligands in a range of metal complexes, see: Haendler (1986, 1996); Hu et al. (2007); Martell & Smith (1974); Odoko et al. (2001); Okabe & Koizumi (1997); Okabe & Makino (1998, 1999); Okabe & Muranishi (2002).graphic file with name e-67-m1386-scheme1.jpg

Experimental

Crystal data

  • [Sr(C10H6NO2)2(H2O)2]

  • M r = 467.97

  • Monoclinic, Inline graphic

  • a = 16.121 (3) Å

  • b = 15.568 (3) Å

  • c = 7.9607 (16) Å

  • β = 97.42 (3)°

  • V = 1981.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.76 mm−1

  • T = 293 K

  • 0.30 × 0.28 × 0.22 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.491, T max = 0.582

  • 15104 measured reflections

  • 3551 independent reflections

  • 2571 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.112

  • S = 1.19

  • 3551 reflections

  • 274 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.79 e Å−3

  • Δρmin = −1.19 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811036610/jh2325sup1.cif

e-67-m1386-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036610/jh2325Isup2.hkl

e-67-m1386-Isup2.hkl (174.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯O2i 0.84 (1) 1.97 (2) 2.798 (5) 168 (6)
O1W—H1W⋯N1ii 0.84 (1) 2.01 (1) 2.846 (6) 175 (6)
O2W—H3W⋯O3iii 0.84 (1) 1.99 (2) 2.810 (5) 166 (5)
O2W—H4W⋯N2iv 0.84 (1) 2.01 (1) 2.846 (6) 176 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by the Nonprofit Industry Foundation of the National Marine Public Welfare Projects (grant No. 2000905021), the Guangdong Oceanic Fisheries Technology Promotion Project [grant No. A2009003–018(c)], the Guangdong Chinese Academy of Science comprehensive strategic cooperation project (grant No. 2009B091300121), Guangdong Province key project in the field of social development [grant No. A2009011–007(c)], the Science and Technology Department of Guangdong Province Project (grant No. 00087061110314018) and the Guangdong Natural Science Foundation (No. 9252408801000002)

supplementary crystallographic information

Comment

Crystal engineering of mental-organic complexes is a very active research field. It is well known that organic ligands play a crucial role in the design and construction of desirable frameworks. Quinoline-2-carboxylic acid is a tryptophan metabolite and it is known to be a chelator of transition metal ions (Martell & Smith, 1974). The crystal structures of its metal complexes have been determined for several metal ions, including FeII (Okabe & Makino, 1998; Okabe & Muranishi (2003a), ZnII (Zevaco et al., 1998; Okabe & Muranishi (2003b), NiII (Odoko et al., 2001), VIV (Okabe & Muranishi, 2002), CuII (Haendler, 1986), MnII (Haendler, 1986; Okabe & Koizumi, 1997) and CoII (Okabe & Makino, 1999). However, to the best of our knowledge, the complexes based on the quinoline-3-carboxylate ligand are still largely unexplored(Hu et al., 2007), In our previous study, we obtained a new CaII complex with quinoline-3-carboxylate ligand (Miao et al., 2010). In this paper, we will present the synthesis and crystal structure of a new Sr(II) complex assembled from SrCl2 and quinoline-3-carboxylate ligand.

As illustrated in Fig. 1, the title complex [Sr(C10H6NO2)2 (H2O)2]n, contains a eight-coordinate SrII ion, two quinoline-3-carboxylate ligands and two terminal water molecules. Each SrII displays a distorted square-antiprismatic geametry defined by six carboxylate O atoms, from four separate quinoline-3-carboxylate ligands and two oxygen atoms from two aqual ligands. It is noted that the quinoline-3-carboxylate only one coordination mode in the title complex: each adopts bidentate chelating and bridging coordination fashion to connect two adjacent SrII ions. The bridging carboxylate O atoms (O1 and O4) [Sr—O, 2.498 (3), 2.495 (3) Å] link separate SrII centres, forming a one-dimensional chain substructure extended along c (Fig.2). The chains are linked together by O—H···N and O—H···O hydrogen bonds (Table 1) giving a three-dimensional framework structure (Fig.3).

Experimental

A mixture of SrCl2 (0.05 g, 0.2 mmol) and quinoline-3-carboxylic acid (0.04 g, 0.2 mmol) in 12 ml of distilled water was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 394 K for 2 days. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement

Water H atoms were located in a difference Fourier map and were allowed to ride on the parent atom, with Uiso(H) = 1.5Ueq(O). Carboxyl H atoms were located in a difference map and refined with distance restraints, Uiso(H) = 1.5Ueq(O). Other H atoms were placed at calculated positions and were treated as riding on parent atoms with C—H = 0.96 (methyl), 0.97 (methylene) and N—H = 0.86 Å, Uiso(H) = 1.2 or 1.5Ueq(C,N). The propyl groups of H3pimda are disordered over two sites with refined occupancies of 0.768 (6):0.232 (6) and 0.642 (8):0.358 (8). C—C distance restraints of disordered components were applied. The O3W water molecule is located close to an inversion center, its occupancy factor was refined to 0.49 (1) and was fixed as 0.5 at the final refinements.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The one-dimensional chain substructure of (I) extending along the c axis.

Fig. 3.

Fig. 3.

The three-dimensional hydrogen-bonded structure of (I).

Crystal data

[Sr(C10H6NO2)2(H2O)2] Z = 4
Mr = 467.97 F(000) = 944
Monoclinic, P21/c Dx = 1.569 Mg m3
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 16.121 (3) Å µ = 2.76 mm1
b = 15.568 (3) Å T = 293 K
c = 7.9607 (16) Å Block, colorless
β = 97.42 (3)° 0.30 × 0.28 × 0.22 mm
V = 1981.2 (7) Å3

Data collection

Bruker APEXII area-detector diffractometer 3551 independent reflections
Radiation source: fine-focus sealed tube 2571 reflections with I > 2σ(I)
graphite Rint = 0.047
φ and ω scan θmax = 25.2°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −19→19
Tmin = 0.491, Tmax = 0.582 k = −18→18
15104 measured reflections l = −9→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.0192P)2 + 6.2168P] where P = (Fo2 + 2Fc2)/3
3551 reflections (Δ/σ)max < 0.001
274 parameters Δρmax = 0.79 e Å3
6 restraints Δρmin = −1.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3837 (3) 0.4533 (3) 0.1246 (6) 0.0332 (11)
C2 0.3401 (3) 0.5067 (3) 0.0107 (6) 0.0365 (12)
H2 0.2915 0.4874 −0.0540 0.044*
C3 0.3245 (4) 0.6518 (4) −0.1203 (8) 0.0556 (16)
H3 0.2742 0.6365 −0.1840 0.067*
C4 0.3558 (5) 0.7327 (4) −0.1338 (9) 0.0653 (19)
H4 0.3263 0.7728 −0.2047 0.078*
C5 0.4321 (5) 0.7549 (4) −0.0410 (8) 0.0629 (19)
H5 0.4537 0.8096 −0.0539 0.076*
C6 0.4753 (4) 0.6996 (4) 0.0668 (7) 0.0506 (15)
H6 0.5258 0.7164 0.1281 0.061*
C7 0.4575 (3) 0.4845 (3) 0.2190 (7) 0.0390 (13)
H7 0.4861 0.4485 0.3000 0.047*
C8 0.3683 (3) 0.5914 (3) −0.0099 (7) 0.0388 (13)
C9 0.4441 (3) 0.6161 (3) 0.0865 (7) 0.0378 (13)
C10 0.3537 (3) 0.3649 (3) 0.1549 (6) 0.0281 (11)
C11 0.0395 (3) 0.3680 (3) 0.3787 (6) 0.0351 (12)
C12 0.0123 (3) 0.3445 (4) 0.5246 (7) 0.0441 (14)
H12 0.0446 0.3078 0.5988 0.053*
C13 −0.0952 (4) 0.3567 (5) 0.7191 (9) 0.077 (2)
H13 −0.0651 0.3203 0.7973 0.093*
C14 −0.1681 (5) 0.3917 (6) 0.7537 (11) 0.093 (3)
H14 −0.1873 0.3802 0.8566 0.112*
C15 −0.2145 (5) 0.4451 (5) 0.6353 (10) 0.076 (2)
H15 −0.2649 0.4679 0.6596 0.091*
C16 −0.1873 (4) 0.4638 (4) 0.4872 (9) 0.0564 (17)
H16 −0.2188 0.4995 0.4098 0.068*
C17 −0.0119 (4) 0.4216 (4) 0.2672 (7) 0.0466 (14)
H17 0.0064 0.4359 0.1646 0.056*
C18 −0.0649 (4) 0.3751 (4) 0.5657 (7) 0.0469 (14)
C19 −0.1115 (4) 0.4298 (4) 0.4488 (7) 0.0439 (14)
C20 0.1226 (3) 0.3383 (3) 0.3324 (7) 0.0358 (12)
N1 0.4882 (3) 0.5620 (3) 0.1991 (6) 0.0419 (11)
N2 −0.0843 (3) 0.4528 (3) 0.2993 (6) 0.0518 (13)
O1 0.3147 (2) 0.3241 (2) 0.0321 (4) 0.0353 (8)
O2 0.3661 (2) 0.3348 (2) 0.3017 (4) 0.0379 (9)
O3 0.1346 (2) 0.3385 (3) 0.1807 (4) 0.0486 (10)
O4 0.1760 (2) 0.3101 (2) 0.4499 (4) 0.0363 (8)
O1W 0.3523 (2) 0.1106 (3) 0.1318 (5) 0.0446 (10)
H2W 0.355 (3) 0.119 (4) 0.028 (2) 0.067*
H1W 0.3984 (18) 0.093 (4) 0.182 (5) 0.067*
O2W 0.1494 (3) 0.1094 (3) 0.3479 (5) 0.0535 (11)
H3W 0.141 (4) 0.117 (3) 0.448 (3) 0.080*
H4W 0.129 (4) 0.063 (2) 0.308 (6) 0.080*
Sr1 0.25124 (3) 0.21557 (3) 0.23948 (6) 0.02880 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.037 (3) 0.030 (3) 0.033 (3) −0.003 (2) 0.003 (2) −0.006 (2)
C2 0.033 (3) 0.044 (3) 0.032 (3) −0.009 (2) 0.004 (2) −0.004 (2)
C3 0.062 (4) 0.054 (4) 0.048 (4) −0.007 (3) −0.006 (3) 0.010 (3)
C4 0.085 (5) 0.049 (4) 0.062 (4) −0.004 (3) 0.011 (4) 0.022 (3)
C5 0.085 (5) 0.047 (4) 0.059 (4) −0.022 (4) 0.020 (4) 0.004 (3)
C6 0.057 (4) 0.048 (4) 0.047 (4) −0.013 (3) 0.009 (3) −0.004 (3)
C7 0.037 (3) 0.042 (3) 0.036 (3) −0.006 (2) −0.004 (2) −0.004 (2)
C8 0.040 (3) 0.036 (3) 0.042 (3) −0.005 (2) 0.010 (3) 0.003 (2)
C9 0.041 (3) 0.034 (3) 0.039 (3) −0.010 (2) 0.009 (3) −0.005 (2)
C10 0.021 (3) 0.039 (3) 0.027 (3) −0.002 (2) 0.014 (2) −0.008 (2)
C11 0.031 (3) 0.042 (3) 0.031 (3) 0.005 (2) −0.001 (2) −0.004 (2)
C12 0.036 (3) 0.058 (4) 0.037 (3) 0.009 (3) 0.001 (2) 0.007 (3)
C13 0.056 (5) 0.120 (6) 0.060 (5) 0.024 (4) 0.023 (4) 0.025 (4)
C14 0.074 (6) 0.140 (8) 0.072 (6) 0.022 (5) 0.035 (5) 0.009 (5)
C15 0.049 (4) 0.095 (6) 0.086 (6) 0.016 (4) 0.024 (4) −0.005 (5)
C16 0.044 (4) 0.061 (4) 0.067 (4) 0.016 (3) 0.016 (3) −0.009 (3)
C17 0.048 (4) 0.055 (4) 0.037 (3) 0.015 (3) 0.006 (3) 0.009 (3)
C18 0.038 (3) 0.059 (4) 0.044 (4) 0.007 (3) 0.006 (3) 0.005 (3)
C19 0.038 (3) 0.044 (3) 0.051 (4) 0.001 (2) 0.008 (3) −0.004 (3)
C20 0.037 (3) 0.035 (3) 0.034 (3) 0.004 (2) 0.000 (2) −0.002 (2)
N1 0.039 (3) 0.046 (3) 0.040 (3) −0.012 (2) 0.000 (2) −0.005 (2)
N2 0.044 (3) 0.055 (3) 0.056 (3) 0.019 (2) 0.004 (2) 0.007 (2)
O1 0.042 (2) 0.0345 (19) 0.0281 (19) −0.0058 (15) −0.0005 (16) −0.0059 (14)
O2 0.047 (2) 0.047 (2) 0.0189 (18) −0.0094 (17) 0.0002 (15) 0.0023 (15)
O3 0.055 (3) 0.068 (3) 0.024 (2) 0.023 (2) 0.0086 (18) 0.0050 (17)
O4 0.033 (2) 0.051 (2) 0.0246 (18) 0.0092 (16) 0.0020 (15) 0.0017 (15)
O1W 0.044 (2) 0.056 (2) 0.033 (2) 0.0159 (19) 0.0027 (18) 0.0034 (18)
O2W 0.066 (3) 0.063 (3) 0.032 (2) −0.029 (2) 0.009 (2) −0.0082 (19)
Sr1 0.0294 (3) 0.0317 (2) 0.0244 (3) −0.0002 (2) −0.00020 (17) 0.00050 (19)

Geometric parameters (Å, °)

C1—C2 1.357 (7) C14—C15 1.398 (11)
C1—C7 1.409 (7) C14—H14 0.9300
C1—C10 1.488 (7) C15—C16 1.342 (9)
C2—C8 1.412 (7) C15—H15 0.9300
C2—H2 0.9300 C16—C19 1.400 (8)
C3—C4 1.366 (8) C16—H16 0.9300
C3—C8 1.412 (8) C17—N2 1.320 (7)
C3—H3 0.9300 C17—H17 0.9300
C4—C5 1.394 (9) C18—C19 1.406 (8)
C4—H4 0.9300 C19—N2 1.368 (7)
C5—C6 1.345 (9) C20—O3 1.247 (6)
C5—H5 0.9300 C20—O4 1.265 (6)
C6—C9 1.411 (7) O1—Sr1i 2.498 (3)
C6—H6 0.9300 O1—Sr1 2.658 (3)
C7—N1 1.322 (6) O2—Sr1 2.624 (3)
C7—H7 0.9300 O3—Sr1 2.682 (4)
C8—C9 1.410 (7) O4—Sr1ii 2.495 (3)
C9—N1 1.362 (7) O4—Sr1 2.640 (3)
C10—O2 1.251 (6) O1W—Sr1 2.534 (4)
C10—O1 1.263 (5) O1W—H2W 0.840 (10)
C11—C12 1.344 (7) O1W—H1W 0.841 (10)
C11—C17 1.407 (7) O2W—Sr1 2.557 (4)
C11—C20 1.508 (7) O2W—H3W 0.839 (10)
C12—C18 1.410 (8) O2W—H4W 0.838 (10)
C12—H12 0.9300 Sr1—O4i 2.495 (3)
C13—C14 1.356 (10) Sr1—O1ii 2.498 (3)
C13—C18 1.402 (8) Sr1—H2W 2.93 (4)
C13—H13 0.9300
C2—C1—C7 118.3 (5) C20—O3—Sr1 91.3 (3)
C2—C1—C10 121.6 (5) C20—O4—Sr1ii 160.4 (3)
C7—C1—C10 120.1 (5) C20—O4—Sr1 92.8 (3)
C1—C2—C8 120.3 (5) Sr1ii—O4—Sr1 106.78 (12)
C1—C2—H2 119.9 Sr1—O1W—H2W 110 (4)
C8—C2—H2 119.9 Sr1—O1W—H1W 128 (4)
C4—C3—C8 120.2 (6) H2W—O1W—H1W 111.6 (14)
C4—C3—H3 119.9 Sr1—O2W—H3W 115 (4)
C8—C3—H3 119.9 Sr1—O2W—H4W 132 (3)
C3—C4—C5 119.8 (6) H3W—O2W—H4W 111.9 (14)
C3—C4—H4 120.1 O4i—Sr1—O1ii 156.08 (11)
C5—C4—H4 120.1 O4i—Sr1—O1W 80.89 (12)
C6—C5—C4 121.9 (6) O1ii—Sr1—O1W 87.25 (11)
C6—C5—H5 119.1 O4i—Sr1—O2W 87.22 (12)
C4—C5—H5 119.1 O1ii—Sr1—O2W 74.30 (13)
C5—C6—C9 119.9 (6) O1W—Sr1—O2W 99.57 (14)
C5—C6—H6 120.1 O4i—Sr1—O2 122.32 (11)
C9—C6—H6 120.1 O1ii—Sr1—O2 78.73 (11)
N1—C7—C1 123.7 (5) O1W—Sr1—O2 92.94 (13)
N1—C7—H7 118.2 O2W—Sr1—O2 149.55 (11)
C1—C7—H7 118.2 O4i—Sr1—O4 117.83 (13)
C9—C8—C2 117.4 (5) O1ii—Sr1—O4 73.29 (10)
C9—C8—C3 119.1 (5) O1W—Sr1—O4 160.47 (11)
C2—C8—C3 123.5 (5) O2W—Sr1—O4 77.18 (13)
N1—C9—C8 122.1 (5) O2—Sr1—O4 81.79 (11)
N1—C9—C6 118.7 (5) O4i—Sr1—O1 73.02 (10)
C8—C9—C6 119.2 (5) O1ii—Sr1—O1 126.30 (13)
O2—C10—O1 122.6 (4) O1W—Sr1—O1 83.32 (12)
O2—C10—C1 118.7 (4) O2W—Sr1—O1 159.40 (12)
O1—C10—C1 118.6 (4) O2—Sr1—O1 49.34 (10)
C12—C11—C17 118.4 (5) O4—Sr1—O1 106.60 (10)
C12—C11—C20 121.8 (5) O4i—Sr1—O3 72.94 (12)
C17—C11—C20 119.8 (5) O1ii—Sr1—O3 122.19 (11)
C11—C12—C18 120.3 (5) O1W—Sr1—O3 150.27 (11)
C11—C12—H12 119.9 O2W—Sr1—O3 93.09 (14)
C18—C12—H12 119.9 O2—Sr1—O3 89.40 (12)
C14—C13—C18 120.2 (7) O4—Sr1—O3 48.96 (10)
C14—C13—H13 119.9 O1—Sr1—O3 75.85 (11)
C18—C13—H13 119.9 O4i—Sr1—Sr1ii 150.83 (8)
C13—C14—C15 120.3 (7) O1ii—Sr1—Sr1ii 38.27 (8)
C13—C14—H14 119.8 O1W—Sr1—Sr1ii 125.06 (9)
C15—C14—H14 119.8 O2W—Sr1—Sr1ii 76.24 (9)
C16—C15—C14 120.9 (7) O2—Sr1—Sr1ii 73.85 (8)
C16—C15—H15 119.5 O4—Sr1—Sr1ii 35.41 (7)
C14—C15—H15 119.5 O1—Sr1—Sr1ii 118.86 (7)
C15—C16—C19 120.2 (6) O3—Sr1—Sr1ii 83.99 (8)
C15—C16—H16 119.9 O4i—Sr1—Sr1i 37.81 (8)
C19—C16—H16 119.9 O1ii—Sr1—Sr1i 156.01 (8)
N2—C17—C11 124.0 (5) O1W—Sr1—Sr1i 76.17 (9)
N2—C17—H17 118.0 O2W—Sr1—Sr1i 125.03 (9)
C11—C17—H17 118.0 O2—Sr1—Sr1i 84.84 (7)
C13—C18—C19 118.9 (6) O4—Sr1—Sr1i 121.68 (7)
C13—C18—C12 123.4 (6) O1—Sr1—Sr1i 35.59 (7)
C19—C18—C12 117.6 (5) O3—Sr1—Sr1i 74.54 (8)
N2—C19—C16 118.5 (6) Sr1ii—Sr1—Sr1i 149.85 (2)
N2—C19—C18 122.0 (5) O4i—Sr1—H2W 68.4 (7)
C16—C19—C18 119.4 (6) O1ii—Sr1—H2W 102.4 (5)
O3—C20—O4 122.8 (5) O1W—Sr1—H2W 15.7 (6)
O3—C20—C11 119.3 (5) O2W—Sr1—H2W 107.5 (11)
O4—C20—C11 117.8 (5) O2—Sr1—H2W 91.7 (11)
C7—N1—C9 118.1 (4) O4—Sr1—H2W 172.8 (10)
C17—N2—C19 117.6 (5) O1—Sr1—H2W 71.0 (10)
C10—O1—Sr1i 161.6 (3) O3—Sr1—H2W 134.7 (6)
C10—O1—Sr1 91.8 (3) Sr1ii—Sr1—H2W 139.3 (6)
Sr1i—O1—Sr1 106.14 (12) Sr1i—Sr1—H2W 60.5 (6)
C10—O2—Sr1 93.7 (3)

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H2W···O2i 0.84 (1) 1.97 (2) 2.798 (5) 168 (6)
O1W—H1W···N1iii 0.84 (1) 2.01 (1) 2.846 (6) 175 (6)
O2W—H3W···O3ii 0.84 (1) 1.99 (2) 2.810 (5) 166 (5)
O2W—H4W···N2iv 0.84 (1) 2.01 (1) 2.846 (6) 176 (5)

Symmetry codes: (i) x, −y+1/2, z−1/2; (iii) −x+1, y−1/2, −z+1/2; (ii) x, −y+1/2, z+1/2; (iv) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2325).

References

  1. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2002). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Haendler, H. M. (1986). Acta Cryst. C42, 147–149.
  5. Haendler, H. M. (1996). Acta Cryst. C52, 801–803.
  6. Hu, S., Zhang, S.-H. & Zeng, M.-H. (2007). Acta Cryst. E63, m2565.
  7. Martell, A. E. & Smith, R. M. (1974). Critical Stability Constants, Vol. 1, pp. 78, 372; Vol. 2, p. 219. New York: Plenum Press.
  8. Miao, D.-L., Li, S.-J., Song, W.-D., Liu, J.-H. & Li, X.-F. (2010). Acta Cryst. E66, m1441–m1442. [DOI] [PMC free article] [PubMed]
  9. Odoko, M., Muranishi, Y. & Okabe, N. (2001). Acta Cryst. E57, m267–m269.
  10. Okabe, N. & Koizumi, M. (1997). Acta Cryst. C53, 852–854.
  11. Okabe, N. & Makino, T. (1998). Acta Cryst. C54, 1279–1280.
  12. Okabe, N. & Makino, T. (1999). Acta Cryst. C55, 300–302.
  13. Okabe, N. & Muranishi, Y. (2002). Acta Cryst. E58, m287–m289.
  14. Okabe, N. & Muranishi, Y. (2003a). Acta Cryst. E59, m220–m222. [DOI] [PubMed]
  15. Okabe, N. & Muranishi, Y. (2003b). Acta Cryst. E59, m244–m246. [DOI] [PubMed]
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Zevaco, T. A., Gorls, H. & Dinjus, E. (1998). Inorg. Chim. Acta, 269, 283–286.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811036610/jh2325sup1.cif

e-67-m1386-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036610/jh2325Isup2.hkl

e-67-m1386-Isup2.hkl (174.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES