Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):m1408. doi: 10.1107/S1600536811037585

Dichloridobis[4-(1H-pyrazol-3-yl)pyridine-κN 1]zinc

Zheng-De Tan a,*, Feng-Jiao Tan b, Bo Tan b, Cheng-Ming Zhang a
PMCID: PMC3201423  PMID: 22065794

Abstract

In the title compound, [ZnCl2(C8H7N3)2], the ZnII cation is coordinated by two Cl anions and two 4-(1H-pyrazol-3-yl)pyridine ligands in a distorted tetra­hedral geometry. In the two 4-(1H-pyrazol-3-yl)pyridine ligands, the dihedral angles between the pyrazole and pyridine rings are 3.3 (3) and 13.3 (3)°. Inter­molecular N—H⋯N and N—H⋯Cl hydrogen bonding is present in the crystal structure.

Related literature

For the synthesis of 4-(1H-pyrazol-3-yl)-pyridine, see: Davies et al. (2003). For a related complex, see: Davies et al. (2005).graphic file with name e-67-m1408-scheme1.jpg

Experimental

Crystal data

  • [ZnCl2(C8H7N3)2]

  • M r = 426.60

  • Monoclinic, Inline graphic

  • a = 12.306 (3) Å

  • b = 7.8827 (16) Å

  • c = 18.883 (4) Å

  • β = 94.82 (3)°

  • V = 1825.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.65 mm−1

  • T = 293 K

  • 0.24 × 0.21 × 0.02 mm

Data collection

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.693, T max = 0.971

  • 14854 measured reflections

  • 3283 independent reflections

  • 2052 reflections with I > 2σ(I)

  • R int = 0.122

Refinement

  • R[F 2 > 2σ(F 2)] = 0.080

  • wR(F 2) = 0.138

  • S = 1.11

  • 3283 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811037585/xu5325sup1.cif

e-67-m1408-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037585/xu5325Isup2.hkl

e-67-m1408-Isup2.hkl (161.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Zn1—N1 2.041 (4)
Zn1—N2 2.032 (4)
Zn1—Cl1 2.2395 (17)
Zn1—Cl2 2.2241 (18)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N5i 0.86 2.23 2.945 (8) 140
N6—H6⋯Cl1ii 0.86 2.46 3.266 (5) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge Hunan Provincial Department of Education for the Foundation of Xiang Norimichi (grant No. 2010 243).

supplementary crystallographic information

Comment

Pyridine derivatives are an important class of ligand for constructing metal–organic frameworks. From the structural point of view, 4-(1H-pyrazol-3-yl)-pyridine can be used as pyridines ligand in building coordination compounds. In the present paper, we present the structure of the complex ZnCl2(C8H7N3)2.

As shown in Fig. 1, the ZnII atom exhibits a tetrahedral coordination sphere, defined by two Cl atoms and two N atoms from two different 4-(1H-pyrazol-3-yl)-pyridine ligands. Intermolecular N—H···N and N—H···Cl hydrogen bonds can be seen in the three-dimensional supramolecular network of the compound (Fig. 2).

Experimental

4-(1H-Pyrazol-3-yl)-pyridine was prepared according to the published method of Davies et al. (2003). The aqueous solution (20 ml) containing ZnCl2(0.1 mmol, 14 mg) and 4-(1H-pyrazol-3-yl)-pyridine (0.2 mmol, 29 mg) was stirred for a few minutes in air, and left to stand at room temperature for a few weeks, then the colorless crystals were obtained.

Refinement

Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with C—H = 0.93 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

A view of the three-dimensional network. Hydrogen bonds are shown as dashed lines.

Crystal data

[ZnCl2(C8H7N3)2] F(000) = 864
Mr = 426.60 Dx = 1.552 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 13142 reflections
a = 12.306 (3) Å θ = 3.1–27.7°
b = 7.8827 (16) Å µ = 1.65 mm1
c = 18.883 (4) Å T = 293 K
β = 94.82 (3)° Platelet, colourless
V = 1825.3 (6) Å3 0.24 × 0.21 × 0.02 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer 3283 independent reflections
Radiation source: fine-focus sealed tube 2052 reflections with I > 2σ(I)
graphite Rint = 0.122
ω scans θmax = 25.2°, θmin = 3.1°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −14→14
Tmin = 0.693, Tmax = 0.971 k = −9→9
14854 measured reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0451P)2] where P = (Fo2 + 2Fc2)/3
3283 reflections (Δ/σ)max < 0.001
226 parameters Δρmax = 0.42 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.46511 (6) 0.48942 (8) 0.20777 (3) 0.0476 (3)
Cl1 0.31124 (13) 0.34083 (19) 0.21462 (8) 0.0543 (5)
Cl2 0.61580 (14) 0.3545 (2) 0.18253 (9) 0.0761 (6)
N3 0.3040 (4) 1.2186 (7) 0.0109 (3) 0.0555 (14)
C5 0.4365 (5) 0.6564 (7) 0.0659 (3) 0.0502 (16)
H5 0.4609 0.5527 0.0499 0.060*
N1 0.4321 (4) 0.6807 (6) 0.1363 (2) 0.0435 (12)
C3 0.3709 (4) 0.9364 (7) 0.0374 (3) 0.0421 (15)
C6 0.3357 (4) 1.0691 (8) −0.0137 (3) 0.0454 (15)
C4 0.4062 (4) 0.7799 (7) 0.0171 (3) 0.0448 (16)
H4 0.4096 0.7571 −0.0310 0.054*
C2 0.3689 (5) 0.9619 (8) 0.1100 (3) 0.0578 (18)
H2 0.3472 1.0663 0.1269 0.069*
C8 0.2886 (6) 1.2202 (10) −0.1081 (4) 0.072 (2)
H8 0.2739 1.2588 −0.1544 0.087*
N4 0.2750 (4) 1.3070 (7) −0.0484 (3) 0.0653 (16)
H4A 0.2502 1.4090 −0.0482 0.078*
C1 0.3987 (5) 0.8344 (8) 0.1565 (3) 0.0545 (17)
H1 0.3957 0.8548 0.2048 0.065*
C7 0.3281 (5) 1.0644 (8) −0.0878 (3) 0.0590 (18)
H7 0.3459 0.9751 −0.1169 0.071*
C14 0.5765 (5) 0.8133 (7) 0.5098 (3) 0.0460 (16)
N6 0.6657 (5) 0.9532 (7) 0.5901 (3) 0.0718 (18)
H6 0.7140 1.0182 0.6115 0.086*
N5 0.6636 (4) 0.9156 (7) 0.5209 (3) 0.0592 (15)
C16 0.5854 (7) 0.8797 (9) 0.6228 (4) 0.071 (2)
H16 0.5727 0.8896 0.6705 0.086*
C15 0.5263 (6) 0.7882 (8) 0.5724 (3) 0.0578 (18)
H15 0.4650 0.7224 0.5784 0.069*
N2 0.4966 (4) 0.6034 (6) 0.3038 (2) 0.0433 (12)
C12 0.4504 (5) 0.6635 (7) 0.4214 (3) 0.0456 (15)
H12 0.3991 0.6554 0.4547 0.055*
C11 0.5491 (5) 0.7416 (7) 0.4388 (3) 0.0414 (15)
C13 0.4283 (5) 0.5978 (7) 0.3545 (3) 0.0463 (15)
H13 0.3610 0.5459 0.3440 0.056*
C9 0.5921 (5) 0.6814 (8) 0.3215 (3) 0.0617 (19)
H9 0.6419 0.6886 0.2873 0.074*
C10 0.6208 (5) 0.7512 (8) 0.3870 (3) 0.0574 (18)
H10 0.6880 0.8043 0.3963 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0574 (5) 0.0463 (5) 0.0385 (4) 0.0042 (4) 0.0010 (3) −0.0037 (4)
Cl1 0.0668 (11) 0.0519 (10) 0.0422 (9) −0.0083 (8) −0.0073 (8) 0.0009 (8)
Cl2 0.0715 (14) 0.0823 (13) 0.0752 (13) 0.0279 (10) 0.0113 (10) −0.0140 (11)
N3 0.055 (4) 0.059 (4) 0.053 (3) 0.013 (3) 0.007 (3) 0.018 (3)
C5 0.060 (4) 0.041 (4) 0.050 (4) 0.009 (3) 0.008 (3) −0.012 (3)
N1 0.046 (3) 0.043 (3) 0.042 (3) 0.003 (2) 0.008 (2) 0.000 (2)
C3 0.030 (4) 0.041 (4) 0.056 (4) −0.005 (3) 0.010 (3) 0.003 (3)
C6 0.034 (4) 0.048 (4) 0.055 (4) 0.002 (3) 0.007 (3) 0.005 (3)
C4 0.054 (4) 0.051 (4) 0.029 (3) 0.001 (3) −0.003 (3) 0.000 (3)
C2 0.070 (5) 0.047 (4) 0.058 (4) 0.014 (3) 0.018 (4) 0.004 (4)
C8 0.078 (6) 0.078 (6) 0.060 (5) 0.004 (4) 0.000 (4) 0.013 (5)
N4 0.070 (4) 0.057 (4) 0.070 (4) 0.016 (3) 0.007 (3) 0.019 (3)
C1 0.068 (5) 0.051 (4) 0.045 (4) 0.007 (4) 0.013 (3) −0.005 (4)
C7 0.071 (5) 0.056 (5) 0.050 (4) −0.006 (4) 0.006 (4) −0.005 (4)
C14 0.049 (4) 0.042 (4) 0.044 (4) 0.014 (3) −0.011 (3) −0.004 (3)
N6 0.066 (4) 0.068 (4) 0.075 (5) 0.022 (3) −0.032 (3) −0.032 (4)
N5 0.058 (4) 0.061 (4) 0.056 (4) −0.002 (3) −0.011 (3) −0.021 (3)
C16 0.106 (7) 0.066 (5) 0.042 (4) 0.030 (5) 0.005 (5) −0.003 (4)
C15 0.082 (5) 0.046 (4) 0.044 (4) 0.003 (4) −0.003 (4) −0.005 (3)
N2 0.046 (3) 0.045 (3) 0.038 (3) −0.004 (3) −0.004 (2) −0.005 (2)
C12 0.051 (4) 0.043 (4) 0.045 (4) −0.001 (3) 0.012 (3) −0.001 (3)
C11 0.033 (4) 0.038 (4) 0.051 (4) 0.002 (3) −0.005 (3) 0.003 (3)
C13 0.039 (4) 0.048 (4) 0.051 (4) −0.003 (3) 0.002 (3) −0.007 (3)
C9 0.059 (5) 0.074 (5) 0.054 (4) −0.011 (4) 0.015 (4) −0.020 (4)
C10 0.042 (4) 0.068 (5) 0.061 (5) −0.014 (3) −0.001 (4) −0.016 (4)

Geometric parameters (Å, °)

Zn1—N1 2.041 (4) C1—H1 0.9300
Zn1—N2 2.032 (4) C7—H7 0.9300
Zn1—Cl1 2.2395 (17) C14—N5 1.344 (7)
Zn1—Cl2 2.2241 (18) C14—C15 1.394 (8)
N3—C6 1.337 (7) C14—C11 1.468 (7)
N3—N4 1.342 (6) N6—N5 1.337 (6)
C5—N1 1.349 (6) N6—C16 1.341 (8)
C5—C4 1.370 (7) N6—H6 0.8600
C5—H5 0.9300 C16—C15 1.357 (8)
N1—C1 1.345 (7) C16—H16 0.9300
C3—C4 1.374 (7) C15—H15 0.9300
C3—C2 1.387 (8) N2—C13 1.326 (6)
C3—C6 1.464 (7) N2—C9 1.344 (7)
C6—C7 1.395 (8) C12—C13 1.371 (7)
C4—H4 0.9300 C12—C11 1.376 (7)
C2—C1 1.366 (7) C12—H12 0.9300
C2—H2 0.9300 C11—C10 1.372 (8)
C8—N4 1.341 (8) C13—H13 0.9300
C8—C7 1.363 (8) C9—C10 1.372 (8)
C8—H8 0.9300 C9—H9 0.9300
N4—H4A 0.8600 C10—H10 0.9300
N2—Zn1—N1 106.01 (19) C8—C7—C6 104.5 (6)
N2—Zn1—Cl2 107.64 (15) C8—C7—H7 127.8
N1—Zn1—Cl2 109.55 (14) C6—C7—H7 127.8
N2—Zn1—Cl1 106.16 (15) N5—C14—C15 110.9 (6)
N1—Zn1—Cl1 107.60 (13) N5—C14—C11 119.6 (6)
Cl2—Zn1—Cl1 119.11 (7) C15—C14—C11 129.5 (6)
C6—N3—N4 103.4 (5) N5—N6—C16 113.6 (6)
N1—C5—C4 122.1 (5) N5—N6—H6 123.2
N1—C5—H5 119.0 C16—N6—H6 123.2
C4—C5—H5 119.0 N6—N5—C14 103.6 (5)
C1—N1—C5 116.5 (5) N6—C16—C15 106.2 (6)
C1—N1—Zn1 121.7 (4) N6—C16—H16 126.9
C5—N1—Zn1 121.7 (4) C15—C16—H16 126.9
C4—C3—C2 116.0 (5) C16—C15—C14 105.7 (6)
C4—C3—C6 122.7 (6) C16—C15—H15 127.2
C2—C3—C6 121.2 (6) C14—C15—H15 127.2
N3—C6—C7 112.0 (5) C13—N2—C9 115.4 (5)
N3—C6—C3 118.7 (6) C13—N2—Zn1 123.0 (4)
C7—C6—C3 129.3 (6) C9—N2—Zn1 121.5 (4)
C5—C4—C3 121.6 (5) C13—C12—C11 119.4 (6)
C5—C4—H4 119.2 C13—C12—H12 120.3
C3—C4—H4 119.2 C11—C12—H12 120.3
C1—C2—C3 120.2 (6) C10—C11—C12 117.6 (6)
C1—C2—H2 119.9 C10—C11—C14 121.1 (6)
C3—C2—H2 119.9 C12—C11—C14 121.4 (6)
N4—C8—C7 106.9 (6) N2—C13—C12 124.3 (6)
N4—C8—H8 126.5 N2—C13—H13 117.8
C7—C8—H8 126.5 C12—C13—H13 117.8
C8—N4—N3 113.2 (5) N2—C9—C10 124.2 (6)
C8—N4—H4A 123.4 N2—C9—H9 117.9
N3—N4—H4A 123.4 C10—C9—H9 117.9
N1—C1—C2 123.5 (6) C9—C10—C11 119.1 (6)
N1—C1—H1 118.2 C9—C10—H10 120.4
C2—C1—H1 118.2 C11—C10—H10 120.4

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H4A···N5i 0.86 2.23 2.945 (8) 140.
N6—H6···Cl1ii 0.86 2.46 3.266 (5) 156.

Symmetry codes: (i) x−1/2, −y+5/2, z−1/2; (ii) x+1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5325).

References

  1. Davies, G. M., Adams, H. & Ward, M. D. (2005). Acta Cryst. C61, m485–m487. [DOI] [PubMed]
  2. Davies, G. M., Jeffery, J. C. & Ward, M. D. (2003). New J. Chem. 27, 1550–1553.
  3. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  4. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  5. Rigaku (2006). PROCESS-AUTO Rigaku Americas Corporation, The Woodlands, Texas, USA.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811037585/xu5325sup1.cif

e-67-m1408-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037585/xu5325Isup2.hkl

e-67-m1408-Isup2.hkl (161.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES