Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):o2630. doi: 10.1107/S1600536811036567

1,8-Bis(4-meth­oxy-3-nitro­phen­yl)naphthalene

Panchami Prabhakaran a,*, Vedavati G Puranik b, Gangadhar J Sanjayan a
PMCID: PMC3201427  PMID: 22064710

Abstract

Mol­ecules of the title compound, C24H18N2O6, are located on a twofold rotation axis passing through through the central C—C bond of the naphthalene ring system. The mol­ecular conformation is characterized by a roughly coplanar arrangement of the two substituted phenyl rings [dihedral angle 18.53 (5)°]. These two aryl rings are each twisted by 65.40 (5)° from the plane of the naphthyl unit.

Related literature

For use of the title compound as a building block for the synthesis of multidentate ligands, see: Sabater et al. (2005); Baruah et al. (2007); Prabhakaran et al. (2009). For the synthesis of the title compound, see: Letsinger et al. (1965); Li et al. (2005).graphic file with name e-67-o2630-scheme1.jpg

Experimental

Crystal data

  • C24H18N2O6

  • M r = 430.40

  • Tetragonal, Inline graphic

  • a = 13.3038 (9) Å

  • c = 22.7868 (11) Å

  • V = 4033.1 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.35 × 0.24 × 0.12 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003) T min = 0.965, T max = 0.988

  • 9753 measured reflections

  • 959 independent reflections

  • 918 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.088

  • S = 1.07

  • 959 reflections

  • 156 parameters

  • 1 restraint

  • Only H-atom displacement parameters refined

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: pyMOL (DeLano, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811036567/bt5623sup1.cif

e-67-o2630-sup1.cif (16.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036567/bt5623Isup2.hkl

e-67-o2630-Isup2.hkl (90.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036567/bt5623Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the International Foundation for Science (IFS), Sweden, for funding and Tia Jacobs, University of Leeds, England, for helpful discussions.

supplementary crystallographic information

Comment

Rigid building blocks with novel structural features are of considerable interest in designing functional solids. The biaryl based title compound has been synthesized and we report herein its crystal structure. It can be used as a building block for the synthesis of multidentate ligands (Sabater et al., 2005), foldamer synthesis (Baruah et al., 2007; Prabhakaran et al., 2009) and as a bridging unit in the design of molecules with antiparallel orientation.

The title molecule adopts a 'co-facial' structural architecture (Fig. 1). The two aryl rings are almost parallel orientation to each other and are nearly perpendicular to the rigid naphthyl unit. NO2 groups appended on the aryl rings are in anti orientation which are in contrast to the corresponding bis formyl derivative (Sabater et al., 2005).

Experimental

1,8-naphthalene diboronic acid was synthesized according to the literature procedure (Letsinger et al., 1965). A sealed tube containing 1,8-naphthalene diboronic acid (1 g, 4.6 mmol, 1 equiv.), 4-iodo-1-methoxy-2-nitro benzene (3.87 g, 13.8 mmol, 3 equiv.), DABCO (24 mol%), pottassium carbonate (7 equiv.), TBAB (0.1 equiv.) and Pd(OAc)2 (12 mol%) in PEG-400 (4 ml) was subjected to suzuki coupling using a standard procedure (Li et al., 2005). After heating at 110 degree centigrade for 15 h, the tube was broken and the reaction mixture was taken in DCM. The organic layer was washed with dil HCl and the crude product was extracted into the organic layer. Work-up and purification of the crude product by column chromatography afforded an yellow solid (35%). Yellow needle shaped single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution in a Ethyl acetate -light petroleum ether mixture at room temperature.

Refinement

All the H atoms were located in a difference Fourier map and refined freely. No atoms heavier than Si were present and a meaningless Flack parameter was obtained, -0.7 (17). Therefore 877 Friedel pairs were merged before final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Crystal data

C24H18N2O6 Dx = 1.418 Mg m3
Mr = 430.40 Melting point: 494 K
Tetragonal, I41cd Mo Kα radiation, λ = 0.71073 Å
Hall symbol: I 4bw -2c Cell parameters from 4285 reflections
a = 13.3038 (9) Å θ = 2.8–27.5°
c = 22.7868 (11) Å µ = 0.10 mm1
V = 4033.1 (6) Å3 T = 293 K
Z = 8 Needle, yellow
F(000) = 1792 0.35 × 0.24 × 0.12 mm

Data collection

Bruker SMART CCD area-detector diffractometer 959 independent reflections
Radiation source: fine-focus sealed tube 918 reflections with I > 2σ(I)
graphite Rint = 0.023
ω Scan scans θmax = 25.5°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −12→16
Tmin = 0.965, Tmax = 0.988 k = −16→14
9753 measured reflections l = −25→27

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088 Only H-atom displacement parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.8056P] where P = (Fo2 + 2Fc2)/3
959 reflections (Δ/σ)max = 0.001
156 parameters Δρmax = 0.19 e Å3
1 restraint Δρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.82311 (12) 0.58354 (11) 0.35152 (7) 0.0469 (4)
O2 0.76244 (14) 0.63612 (12) 0.32705 (7) 0.0833 (6)
O3 0.85433 (18) 0.60222 (14) 0.40005 (7) 0.0931 (7)
O4 0.86899 (11) 0.40341 (10) 0.40686 (6) 0.0546 (4)
C1 0.92726 (13) 0.43673 (14) 0.16094 (8) 0.0426 (4)
C2 0.86451 (15) 0.37792 (16) 0.12783 (10) 0.0533 (5)
H2 0.8188 0.3365 0.1470 0.057 (6)*
C3 0.86637 (18) 0.37761 (19) 0.06630 (10) 0.0624 (6)
H3 0.8232 0.3362 0.0452 0.054 (6)*
C4 1.06781 (17) 0.56135 (18) 0.03803 (9) 0.0603 (6)
H4 1.0675 0.5600 −0.0028 0.052 (6)*
C5 1.0000 0.5000 0.06919 (11) 0.0483 (6)
C6 1.0000 0.5000 0.13242 (11) 0.0416 (5)
C7 0.91362 (12) 0.42884 (13) 0.22606 (7) 0.0398 (4)
C8 0.87701 (11) 0.50813 (12) 0.25959 (7) 0.0373 (4)
H8 0.8617 0.5689 0.2416 0.033 (4)*
C9 0.86311 (12) 0.49760 (12) 0.31946 (7) 0.0384 (4)
C10 0.88427 (12) 0.40744 (13) 0.34828 (8) 0.0417 (4)
C11 0.91814 (14) 0.32758 (13) 0.31419 (9) 0.0460 (4)
H11 0.9317 0.2660 0.3318 0.056 (5)*
C12 0.93181 (13) 0.33873 (14) 0.25471 (8) 0.0455 (4)
H12 0.9540 0.2839 0.2330 0.042 (5)*
C13 0.89059 (19) 0.31077 (18) 0.43594 (9) 0.0624 (6)
H13A 0.8490 0.2585 0.4200 0.069 (7)*
H13B 0.8772 0.3177 0.4771 0.083 (8)*
H13C 0.9601 0.2938 0.4302 0.067 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0583 (9) 0.0482 (8) 0.0342 (8) 0.0077 (7) −0.0010 (7) 0.0013 (6)
O2 0.1003 (13) 0.0813 (11) 0.0682 (11) 0.0486 (10) −0.0270 (10) −0.0212 (9)
O3 0.1602 (18) 0.0772 (12) 0.0417 (10) 0.0396 (12) −0.0298 (11) −0.0138 (8)
O4 0.0720 (9) 0.0572 (8) 0.0347 (7) 0.0103 (6) 0.0072 (6) 0.0128 (6)
C1 0.0463 (9) 0.0471 (9) 0.0345 (9) 0.0074 (7) −0.0020 (7) −0.0019 (7)
C2 0.0553 (11) 0.0579 (12) 0.0467 (10) 0.0007 (9) −0.0051 (10) −0.0060 (9)
C3 0.0673 (13) 0.0728 (14) 0.0470 (12) 0.0058 (10) −0.0176 (11) −0.0178 (10)
C4 0.0719 (13) 0.0799 (15) 0.0292 (9) 0.0164 (12) 0.0086 (9) 0.0108 (10)
C5 0.0563 (15) 0.0583 (15) 0.0305 (14) 0.0153 (11) 0.000 0.000
C6 0.0476 (13) 0.0499 (13) 0.0274 (11) 0.0130 (11) 0.000 0.000
C7 0.0386 (8) 0.0464 (10) 0.0343 (9) −0.0015 (7) −0.0013 (7) 0.0012 (7)
C8 0.0370 (8) 0.0414 (8) 0.0335 (8) 0.0013 (6) −0.0048 (7) 0.0050 (7)
C9 0.0377 (8) 0.0433 (9) 0.0342 (9) 0.0009 (6) −0.0013 (7) −0.0010 (7)
C10 0.0416 (9) 0.0457 (9) 0.0380 (9) 0.0016 (7) 0.0002 (8) 0.0064 (7)
C11 0.0541 (10) 0.0381 (9) 0.0457 (11) 0.0020 (7) 0.0009 (8) 0.0097 (7)
C12 0.0506 (10) 0.0417 (9) 0.0442 (10) 0.0015 (7) 0.0005 (8) −0.0036 (8)
C13 0.0770 (15) 0.0650 (13) 0.0452 (13) 0.0061 (11) 0.0006 (10) 0.0205 (10)

Geometric parameters (Å, °)

N1—O2 1.205 (2) C5—C4i 1.409 (3)
N1—O3 1.207 (2) C5—C6 1.441 (3)
N1—C9 1.457 (2) C6—C1i 1.438 (2)
O4—C10 1.351 (2) C7—C12 1.386 (3)
O4—C13 1.428 (3) C7—C8 1.390 (2)
C1—C2 1.371 (3) C8—C9 1.384 (2)
C1—C6 1.438 (2) C8—H8 0.9300
C1—C7 1.499 (2) C9—C10 1.396 (2)
C2—C3 1.402 (3) C10—C11 1.391 (3)
C2—H2 0.9300 C11—C12 1.376 (3)
C3—C4i 1.357 (3) C11—H11 0.9300
C3—H3 0.9300 C12—H12 0.9300
C4—C3i 1.357 (3) C13—H13A 0.9600
C4—C5 1.409 (3) C13—H13B 0.9600
C4—H4 0.9300 C13—H13C 0.9600
O2—N1—O3 122.34 (16) C12—C7—C1 120.37 (16)
O2—N1—C9 117.92 (15) C8—C7—C1 122.23 (15)
O3—N1—C9 119.67 (16) C9—C8—C7 120.78 (15)
C10—O4—C13 117.53 (15) C9—C8—H8 119.6
C2—C1—C6 119.70 (18) C7—C8—H8 119.6
C2—C1—C7 115.55 (17) C8—C9—C10 121.58 (15)
C6—C1—C7 124.75 (16) C8—C9—N1 117.62 (14)
C1—C2—C3 122.8 (2) C10—C9—N1 120.79 (15)
C1—C2—H2 118.6 O4—C10—C11 124.76 (15)
C3—C2—H2 118.6 O4—C10—C9 117.93 (15)
C4i—C3—C2 119.0 (2) C11—C10—C9 117.31 (16)
C4i—C3—H3 120.5 C12—C11—C10 120.71 (17)
C2—C3—H3 120.5 C12—C11—H11 119.6
C3i—C4—C5 121.4 (2) C10—C11—H11 119.6
C3i—C4—H4 119.3 C11—C12—C7 122.28 (17)
C5—C4—H4 119.3 C11—C12—H12 118.9
C4—C5—C4i 119.5 (3) C7—C12—H12 118.9
C4—C5—C6 120.27 (13) O4—C13—H13A 109.5
C4i—C5—C6 120.27 (13) O4—C13—H13B 109.5
C1i—C6—C1 126.3 (2) H13A—C13—H13B 109.5
C1i—C6—C5 116.87 (11) O4—C13—H13C 109.5
C1—C6—C5 116.87 (11) H13A—C13—H13C 109.5
C12—C7—C8 117.29 (15) H13B—C13—H13C 109.5
C6—C1—C2—C3 −1.2 (3) C1—C7—C8—C9 178.49 (14)
C7—C1—C2—C3 178.96 (19) C7—C8—C9—C10 −0.6 (2)
C1—C2—C3—C4i −0.7 (3) C7—C8—C9—N1 −179.13 (15)
C3i—C4—C5—C4i 179.3 (2) O2—N1—C9—C8 34.9 (2)
C3i—C4—C5—C6 −0.7 (2) O3—N1—C9—C8 −142.0 (2)
C2—C1—C6—C1i −177.96 (18) O2—N1—C9—C10 −143.71 (18)
C7—C1—C6—C1i 1.86 (12) O3—N1—C9—C10 39.4 (3)
C2—C1—C6—C5 2.04 (18) C13—O4—C10—C11 0.9 (3)
C7—C1—C6—C5 −178.14 (12) C13—O4—C10—C9 179.84 (18)
C4—C5—C6—C1i −1.12 (13) C8—C9—C10—O4 179.78 (15)
C4i—C5—C6—C1i 178.88 (13) N1—C9—C10—O4 −1.7 (2)
C4—C5—C6—C1 178.88 (13) C8—C9—C10—C11 −1.2 (2)
C4i—C5—C6—C1 −1.12 (13) N1—C9—C10—C11 177.28 (16)
C2—C1—C7—C12 63.6 (2) O4—C10—C11—C12 −179.82 (18)
C6—C1—C7—C12 −116.24 (17) C9—C10—C11—C12 1.3 (3)
C2—C1—C7—C8 −112.50 (19) C10—C11—C12—C7 0.5 (3)
C6—C1—C7—C8 67.7 (2) C8—C7—C12—C11 −2.3 (3)
C12—C7—C8—C9 2.3 (2) C1—C7—C12—C11 −178.55 (17)

Symmetry codes: (i) −x+2, −y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5623).

References

  1. Baruah, P. K., Gonnade, R., Rajamohanan, P. R., Hofmann, H.-J. & Sanjayan, G. J. (2007). J. Org. Chem. 72, 5077–5084. [DOI] [PubMed]
  2. Bruker (2003). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. DeLano, W. L. (2004). The pyMOL Molecular Graphics System. http://www.pyMOLorg.
  4. Letsinger, R. L., Smith, J. M., Gilpin, J. & MacLean, D. B. (1965). J. Org. Chem. 30, 807–812.
  5. Li, J.-H., Liu, W.-J. & Xie, Y.-X. (2005). J. Org. Chem. 70, 5409–5412. [DOI] [PubMed]
  6. Prabhakaran, P., Puranik, V. G., Chandran, J. N., Rajamohanan, P. R., Hofmann, H.-J. & Sanjayan, G. J. (2009). Chem. Commun. pp. 3446–3448. [DOI] [PubMed]
  7. Sabater, L., Guillot, R. & Aukauloo, A. (2005). Tetrahedron Lett. 46, 8201–8209.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811036567/bt5623sup1.cif

e-67-o2630-sup1.cif (16.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036567/bt5623Isup2.hkl

e-67-o2630-Isup2.hkl (90.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036567/bt5623Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES