Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):o2646. doi: 10.1107/S1600536811036786

3-Methyl-5-phen­oxy-1-phenyl-1H-pyrazole-4-carbaldehyde

Tara Shahani a, Hoong-Kun Fun a,*,, Shobhitha Shetty b, Balakrishna Kalluraya b
PMCID: PMC3201428  PMID: 22064771

Abstract

In the title compound, C17H14N2O2, the pyrazole ring makes dihedral angles of 73.67 (4) and 45.99 (4)°, respectively, with the adjacent phenyl and phen­oxy rings. In the crystal, there are no classical hydrogen bonds, but a weak C—H⋯π inter­action is observed.

Related literature

For biological applications of pyrazole derivatives, see: Rai et al. (2008); Isloor et al. (2009); Girisha et al. (2010). For a related structure, see: Shahani et al. (2011). For bond-length data, see: Allen et al. (1987).graphic file with name e-67-o2646-scheme1.jpg

Experimental

Crystal data

  • C17H14N2O2

  • M r = 278.30

  • Monoclinic, Inline graphic

  • a = 8.6207 (1) Å

  • b = 7.1695 (1) Å

  • c = 22.9228 (3) Å

  • β = 99.168 (1)°

  • V = 1398.67 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.46 × 0.20 × 0.14 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.961, T max = 0.988

  • 24894 measured reflections

  • 6610 independent reflections

  • 5063 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.127

  • S = 1.06

  • 6610 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811036786/is2775sup1.cif

e-67-o2646-sup1.cif (18.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036786/is2775Isup2.hkl

e-67-o2646-Isup2.hkl (323.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036786/is2775Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11ACg1i 0.95 2.62 3.5052 (8) 156

Symmetry code: (i) Inline graphic.

Acknowledgments

HKF and TSH thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSH also thanks USM for the award of a research fellowship.

supplementary crystallographic information

Comment

Pyrazoles are a novel class of heterocyclic compounds possessing wide variety of application in the agrochemical and pharmaceutical industries. Derivatives of pyrazoles are found to show good antibacterial (Rai et al., 2008), anti-inflammatory and analgesic (Isloor et al., 2009) activities. In view of these observations and in continuation of our search for biologically active pyrazole derivatives, we herein report the crystal structure of 3-methyl-5-phenoxy-1-phenyl-1H-pyrazole-4-carbaldehyde. Reaction of 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde with phenol afforded 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde (Girisha et al., 2010).

The asymmetric unit of the title compound is shown in Fig. 1. The 1H-pyrazole (N1/N2/C7–C9) ring is essentially planar with a maximum deviation of 0.004 (1) Å for atom N1. The central pyrazole ring makes dihedral angles of 73.67 (4) and 45.99 (4)° with the terminal phenyl (C1–C6) and (C10–C15) rings, respectively. The bond lengths (Allen et al., 1987) and angles are within normal ranges and is comparable to a closely related structure (Shahani et al., 2011).

In the crystal packing (Fig. 2), there are no classical hydrogen bonds but stabilization is provided by weak C—H···π (Table 1) interactions, involving the centroid Cg1 of the C1–C6 ring.

Experimental

5-Chloro-3-methyl-1-phenyl-1H-pyrazol-4-carboxaldehyde (0.1 mol) and phenol (0.1 mol) was dissolved in 10 mL of dimethyl sulfoxide. To this solution, 5.6 g (0.1 mol) of potassium hydroxide was added. The reaction mixture was refluxed for 6 hrs and then was cooled to room temperature and poured to crushed ice. The solid product that separated was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement

All the H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and were refined using a riding model, with Uiso(H) =1.2 or 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the a axis.

Crystal data

C17H14N2O2 F(000) = 584
Mr = 278.30 Dx = 1.322 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7046 reflections
a = 8.6207 (1) Å θ = 3.7–36.0°
b = 7.1695 (1) Å µ = 0.09 mm1
c = 22.9228 (3) Å T = 100 K
β = 99.168 (1)° Block, colourless
V = 1398.67 (3) Å3 0.46 × 0.20 × 0.14 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 6610 independent reflections
Radiation source: fine-focus sealed tube 5063 reflections with I > 2σ(I)
graphite Rint = 0.035
φ and ω scans θmax = 36.1°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −14→14
Tmin = 0.961, Tmax = 0.988 k = −10→11
24894 measured reflections l = −37→37

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0667P)2 + 0.1411P] where P = (Fo2 + 2Fc2)/3
6610 reflections (Δ/σ)max = 0.001
191 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.05681 (7) 0.69565 (8) 0.13280 (3) 0.01742 (12)
O2 0.06804 (8) 0.18778 (10) 0.24152 (3) 0.02350 (14)
N1 −0.13873 (7) 0.51835 (10) 0.07691 (3) 0.01459 (12)
N2 −0.21777 (8) 0.35085 (10) 0.07780 (3) 0.01602 (12)
C1 −0.08495 (9) 0.74369 (12) 0.00220 (3) 0.01637 (14)
H1A 0.0246 0.7199 0.0118 0.020*
C2 −0.14204 (10) 0.87209 (12) −0.04165 (3) 0.01873 (15)
H2A −0.0707 0.9369 −0.0620 0.022*
C3 −0.30261 (10) 0.90625 (12) −0.05596 (3) 0.02026 (15)
H3A −0.3404 0.9951 −0.0856 0.024*
C4 −0.40764 (10) 0.81003 (12) −0.02678 (3) 0.01878 (15)
H4A −0.5173 0.8318 −0.0370 0.023*
C5 −0.35271 (9) 0.68226 (12) 0.01719 (3) 0.01632 (14)
H5A −0.4243 0.6168 0.0372 0.020*
C6 −0.19152 (9) 0.65081 (11) 0.03172 (3) 0.01421 (13)
C7 −0.14856 (9) 0.26348 (11) 0.12608 (3) 0.01569 (13)
C8 −0.02490 (8) 0.37265 (11) 0.15780 (3) 0.01490 (13)
C9 −0.02436 (8) 0.53407 (11) 0.12425 (3) 0.01441 (13)
C10 0.22016 (9) 0.68417 (11) 0.15060 (3) 0.01485 (13)
C11 0.30911 (9) 0.55321 (12) 0.12616 (3) 0.01733 (14)
H11A 0.2605 0.4651 0.0981 0.021*
C12 0.47161 (9) 0.55367 (13) 0.14369 (3) 0.01931 (15)
H12A 0.5342 0.4630 0.1281 0.023*
C13 0.54285 (10) 0.68545 (13) 0.18366 (4) 0.02145 (16)
H13A 0.6538 0.6863 0.1949 0.026*
C14 0.45058 (10) 0.81631 (13) 0.20720 (4) 0.02241 (17)
H14A 0.4992 0.9067 0.2344 0.027*
C15 0.28718 (10) 0.81597 (12) 0.19112 (3) 0.01855 (15)
H15A 0.2238 0.9038 0.2075 0.022*
C16 −0.20510 (10) 0.07608 (13) 0.14161 (4) 0.02157 (16)
H16A −0.2763 0.0253 0.1078 0.032*
H16B −0.2610 0.0877 0.1755 0.032*
H16C −0.1151 −0.0078 0.1518 0.032*
C17 0.07517 (9) 0.33089 (12) 0.21332 (3) 0.01724 (14)
H17A 0.1514 0.4212 0.2288 0.021*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0151 (2) 0.0131 (3) 0.0227 (2) −0.00067 (19) −0.00134 (19) −0.0014 (2)
O2 0.0227 (3) 0.0224 (3) 0.0238 (3) −0.0006 (2) −0.0010 (2) 0.0070 (2)
N1 0.0127 (2) 0.0135 (3) 0.0167 (2) −0.0012 (2) −0.00011 (19) 0.0005 (2)
N2 0.0139 (3) 0.0141 (3) 0.0194 (3) −0.0023 (2) 0.0007 (2) 0.0013 (2)
C1 0.0155 (3) 0.0157 (3) 0.0180 (3) −0.0027 (2) 0.0028 (2) −0.0014 (2)
C2 0.0222 (3) 0.0163 (4) 0.0179 (3) −0.0049 (3) 0.0038 (3) 0.0003 (3)
C3 0.0251 (4) 0.0160 (4) 0.0184 (3) −0.0009 (3) −0.0004 (3) 0.0022 (3)
C4 0.0173 (3) 0.0180 (4) 0.0197 (3) 0.0016 (3) −0.0012 (3) 0.0006 (3)
C5 0.0142 (3) 0.0176 (4) 0.0169 (3) −0.0006 (2) 0.0015 (2) 0.0008 (2)
C6 0.0143 (3) 0.0136 (3) 0.0144 (3) −0.0003 (2) 0.0013 (2) 0.0000 (2)
C7 0.0135 (3) 0.0149 (3) 0.0183 (3) 0.0003 (2) 0.0017 (2) 0.0013 (2)
C8 0.0136 (3) 0.0146 (3) 0.0160 (3) 0.0003 (2) 0.0008 (2) 0.0001 (2)
C9 0.0122 (3) 0.0143 (3) 0.0162 (3) −0.0003 (2) 0.0007 (2) −0.0018 (2)
C10 0.0138 (3) 0.0150 (3) 0.0151 (3) −0.0018 (2) 0.0004 (2) 0.0004 (2)
C11 0.0165 (3) 0.0183 (4) 0.0168 (3) −0.0016 (3) 0.0018 (2) −0.0028 (3)
C12 0.0166 (3) 0.0222 (4) 0.0196 (3) −0.0003 (3) 0.0044 (2) 0.0003 (3)
C13 0.0154 (3) 0.0261 (4) 0.0220 (3) −0.0046 (3) 0.0003 (3) 0.0010 (3)
C14 0.0207 (4) 0.0236 (4) 0.0215 (3) −0.0067 (3) −0.0009 (3) −0.0043 (3)
C15 0.0190 (3) 0.0175 (4) 0.0186 (3) −0.0034 (3) 0.0014 (2) −0.0036 (3)
C16 0.0189 (3) 0.0168 (4) 0.0274 (3) −0.0031 (3) −0.0011 (3) 0.0052 (3)
C17 0.0160 (3) 0.0179 (4) 0.0170 (3) 0.0013 (3) 0.0001 (2) 0.0007 (2)

Geometric parameters (Å, °)

O1—C9 1.3514 (10) C7—C16 1.4916 (12)
O1—C10 1.4047 (9) C8—C9 1.3899 (11)
O2—C17 1.2194 (10) C8—C17 1.4505 (10)
N1—C9 1.3496 (9) C10—C15 1.3850 (11)
N1—N2 1.3825 (10) C10—C11 1.3858 (11)
N1—C6 1.4254 (10) C11—C12 1.3945 (11)
N2—C7 1.3276 (10) C11—H11A 0.9500
C1—C2 1.3937 (11) C12—C13 1.3892 (12)
C1—C6 1.3942 (10) C12—H12A 0.9500
C1—H1A 0.9500 C13—C14 1.3931 (13)
C2—C3 1.3925 (12) C13—H13A 0.9500
C2—H2A 0.9500 C14—C15 1.3981 (12)
C3—C4 1.3914 (12) C14—H14A 0.9500
C3—H3A 0.9500 C15—H15A 0.9500
C4—C5 1.3882 (11) C16—H16A 0.9800
C4—H4A 0.9500 C16—H16B 0.9800
C5—C6 1.3947 (10) C16—H16C 0.9800
C5—H5A 0.9500 C17—H17A 0.9500
C7—C8 1.4250 (11)
C9—O1—C10 117.63 (6) N1—C9—C8 107.99 (7)
C9—N1—N2 111.06 (6) O1—C9—C8 132.91 (7)
C9—N1—C6 129.53 (7) C15—C10—C11 122.33 (7)
N2—N1—C6 119.24 (6) C15—C10—O1 116.53 (7)
C7—N2—N1 105.37 (6) C11—C10—O1 121.06 (7)
C2—C1—C6 118.77 (7) C10—C11—C12 118.50 (7)
C2—C1—H1A 120.6 C10—C11—H11A 120.8
C6—C1—H1A 120.6 C12—C11—H11A 120.8
C3—C2—C1 120.64 (7) C13—C12—C11 120.65 (8)
C3—C2—H2A 119.7 C13—C12—H12A 119.7
C1—C2—H2A 119.7 C11—C12—H12A 119.7
C4—C3—C2 119.88 (7) C12—C13—C14 119.59 (8)
C4—C3—H3A 120.1 C12—C13—H13A 120.2
C2—C3—H3A 120.1 C14—C13—H13A 120.2
C5—C4—C3 120.22 (7) C13—C14—C15 120.68 (8)
C5—C4—H4A 119.9 C13—C14—H14A 119.7
C3—C4—H4A 119.9 C15—C14—H14A 119.7
C4—C5—C6 119.46 (7) C10—C15—C14 118.23 (8)
C4—C5—H5A 120.3 C10—C15—H15A 120.9
C6—C5—H5A 120.3 C14—C15—H15A 120.9
C1—C6—C5 121.02 (7) C7—C16—H16A 109.5
C1—C6—N1 120.81 (7) C7—C16—H16B 109.5
C5—C6—N1 118.16 (7) H16A—C16—H16B 109.5
N2—C7—C8 111.50 (7) C7—C16—H16C 109.5
N2—C7—C16 120.23 (7) H16A—C16—H16C 109.5
C8—C7—C16 128.27 (7) H16B—C16—H16C 109.5
C9—C8—C7 104.08 (6) O2—C17—C8 124.45 (8)
C9—C8—C17 127.11 (7) O2—C17—H17A 117.8
C7—C8—C17 128.78 (7) C8—C17—H17A 117.8
N1—C9—O1 118.89 (7)
C9—N1—N2—C7 −0.74 (8) C6—N1—C9—O1 0.07 (12)
C6—N1—N2—C7 −176.34 (6) N2—N1—C9—C8 0.53 (9)
C6—C1—C2—C3 −0.36 (12) C6—N1—C9—C8 175.55 (7)
C1—C2—C3—C4 −0.75 (12) C10—O1—C9—N1 −137.81 (7)
C2—C3—C4—C5 1.03 (12) C10—O1—C9—C8 48.05 (11)
C3—C4—C5—C6 −0.20 (12) C7—C8—C9—N1 −0.11 (8)
C2—C1—C6—C5 1.21 (11) C17—C8—C9—N1 −178.21 (7)
C2—C1—C6—N1 −179.97 (7) C7—C8—C9—O1 174.49 (8)
C4—C5—C6—C1 −0.93 (12) C17—C8—C9—O1 −3.61 (14)
C4—C5—C6—N1 −179.79 (7) C9—O1—C10—C15 −142.16 (7)
C9—N1—C6—C1 49.63 (11) C9—O1—C10—C11 41.12 (10)
N2—N1—C6—C1 −135.69 (8) C15—C10—C11—C12 0.73 (12)
C9—N1—C6—C5 −131.51 (8) O1—C10—C11—C12 177.26 (7)
N2—N1—C6—C5 43.17 (10) C10—C11—C12—C13 −1.55 (12)
N1—N2—C7—C8 0.67 (9) C11—C12—C13—C14 1.12 (13)
N1—N2—C7—C16 179.53 (7) C12—C13—C14—C15 0.17 (13)
N2—C7—C8—C9 −0.37 (9) C11—C10—C15—C14 0.52 (12)
C16—C7—C8—C9 −179.11 (8) O1—C10—C15—C14 −176.16 (7)
N2—C7—C8—C17 177.70 (7) C13—C14—C15—C10 −0.97 (13)
C16—C7—C8—C17 −1.05 (14) C9—C8—C17—O2 178.74 (8)
N2—N1—C9—O1 −174.96 (6) C7—C8—C17—O2 1.10 (14)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.
D—H···A D—H H···A D···A D—H···A
C11—H11A···Cg1i 0.95 2.62 3.5052 (8) 156

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2775).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.
  3. Girisha, K. S., Kalluraya, B., Narayana, V. & Padmashree. (2010). Eur. J. Med. Chem. 45, 4640–4644. [DOI] [PubMed]
  4. Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787. [DOI] [PubMed]
  5. Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720. [DOI] [PubMed]
  6. Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Venkatesh, M. (2011). Acta Cryst. E67, o475. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811036786/is2775sup1.cif

e-67-o2646-sup1.cif (18.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036786/is2775Isup2.hkl

e-67-o2646-Isup2.hkl (323.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036786/is2775Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES