Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):m1436–m1437. doi: 10.1107/S1600536811038037

Poly[[tetra-μ3-acetato-hexa-μ2-acetato­diaqua-μ2-oxalato-tetra­lanthanum(III)] dihydrate]

Wen-Jing Di a, Shao-Min Lan a, Qun Zhang a, Yun-Xiao Liang a,*
PMCID: PMC3201431  PMID: 22064832

Abstract

The title compound, {[La4(CH3CO2)10(C2O4)(H2O)2]·2H2O}n, exhibits a two-dimensional layered structure with the oxalate and acetate ligands acting as bridges. The asymmetric unit contains two crystallographically independent lanthanum(III) ions, half of an oxalate ligand, five acetate ligands, one coordinated water mol­ecule and one uncoordinated water mol­ecule. The coordination numbers of the two La ions are 9 and 10. Adjacent layers of the structure, which extend parallel to (100), are linked by O–H⋯O hydrogen bonds and are also held together by van der Waals inter­actions between the CH3 groups of the acetate anions.

Related literature

For properties of lanthanide compounds with metal-organic framework structures, see: Zhu et al. (2006); Deng et al. (2009); Bünzli & Piguet (2005); Zhang et al. (2008). For metal oxalates, see: Kustaryono et al. (2010); Roméro & Trombe (1999); Yu et al. (2006); Ohba et al. (1993). For lanthanide oxalates obtained from oxalate-containing starting materials, see: Zhang et al. (2009); Trombe et al. (2005). For lanthanide oxalates with oxalate formed in the course of the synthesis by decomposition of organic compounds or other unconventional reactions, see: Koner & Goldberg (2009); Li et al. (2003); Min & Lee (2002); Mohapatra et al. (2009). For oxidation of acetate to oxalate, see: Zieliński (1983). For La—O bond lengths, see: Trombe & Roméro (2000); Deng et al. (2009). For coordination modes of acetate groups, see: Zhang et al. (2009); Dan et al. (2006); Koner & Goldberg (2009); Mazurek et al. (1985). graphic file with name e-67-m1436-scheme1.jpg

Experimental

Crystal data

  • [La4(C2H3O2)10(C2O4)(H2O)2]·2H2O

  • M r = 653.08

  • Monoclinic, Inline graphic

  • a = 9.4139 (19) Å

  • b = 13.310 (3) Å

  • c = 16.087 (3) Å

  • β = 103.10 (3)°

  • V = 1963.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.36 mm−1

  • T = 295 K

  • 0.19 × 0.18 × 0.18 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.454, T max = 0.456

  • 14917 measured reflections

  • 3432 independent reflections

  • 3185 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.019

  • wR(F 2) = 0.042

  • S = 1.12

  • 3432 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg & Putz, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811038037/qk2021sup1.cif

e-67-m1436-sup1.cif (31.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038037/qk2021Isup2.hkl

e-67-m1436-Isup2.hkl (168.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13A⋯O14 0.82 1.84 2.654 (4) 176
O13—H13B⋯O9i 0.82 2.01 2.831 (3) 176
O14—H14B⋯O9ii 0.87 2.12 2.921 (4) 152.9
O14—H14A⋯O5iii 0.86 1.90 2.761 (4) 174.3

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Ningbo Natural Science Foundation (grant No. 2009 A610052) and the K. C. Wong Magna Fund in Ningbo University.

supplementary crystallographic information

Comment

Recently, lanthanide metal-organic frameworks have attracted considerable attention due to their interesting properties, such as porosity (Zhu et al., 2006), luminescence (Deng et al., 2009; Bünzli & Piguet, 2005) and magnetism (Zhang et al., 2008). The interest in mixed-ligand lanthanide oxalates is due to: first, lanthanide ions have large size, high and variable coordination numbers and flexible coordination environments; second, oxalate, as a bisbidentate ligand, has a strong coordination ability to metal ions (Kustaryono et al., 2010; Roméro & Trombe, 1999; Yu et al., 2006; Ohba et al., 1993). Most of the known lanthanide oxalates were prepared by hydrothermal reactions of various oxalate salts or of mixtures containing free oxalic acid and other reagents (Zhang et al., 2009; Trombe et al., 2005), while in a few instances the oxalate was generated by chance via an in situ decomposition of organic reagents (Koner & Goldberg, 2009; Li et al., 2003; Mohapatra et al., 2009). In one case a metal-assisted reduction of CO2 was invoked to explain an unexpected oxalate formation (Min & Lee, 2002).

We report here the synthesis and crystal structure of a new lanthanum oxalate acetate, where the oxalate was formed in situ under hydrothermal conditions presumably by an redox reaction of copper(II) acetate under concomitant formation of Cu2O (see Experimental). When the reaction was carried out without copper(II) acetate, different products were obtained. Oxidation of acetate to oxalate has been reported (Zieliński, 1983).

As shown in Fig. 1, the asymmetric unit of (I) contains two La ions, a half oxalate anion, five acetate groups, one coordinated water molecule, and one noncoordinated water molecule. The two crystallographically independent lanthanum atoms, La1 and La2, are nine- and ten-coordinated by oxygen atoms. The La1 ion is coordinated by seven acetate oxygen atoms (one acetate in chelating fashion) and two oxygen atoms O1 and O2 of a chelating centrosymmetric oxalate group. The La—O bond distances vary from 2.476 (3) to 2.727 (2) Å (see supplementary materials). The La1—O bond distances of the oxalate group are 2.505 (2) Å and 2.519 (2) Å. The La2 ion is coordinated by nine acetate oxygen atoms (three acetate groups in chelating fashion) and by a water molecule (H2O13) in terminal position. The La2—O bond distances vary from 2.427 (3) to 2.802 (2) Å. The La—O bond distance of the coordinating water molecule is 2.517 (3) Å. All La—O bond distances of (I) are in the normal range for La(III) ions (Trombe & Roméro, 2000; Deng et al., 2009). In the crystal structure of (I), each centrosymmetric bisbidentate oxalate ligand bridges two neighbouring La1 ions. The acetate groups have three different coordination modes: Firstly, the acetate group is µ322-bridging (the group chelates one La and links with each oxygen to a second and third La). Such coordination has been observed previously (Zhang et al., 2009; Dan et al., 2006). Secondly, the acetate group chelates one La ion and binds with one of its two O to a second La. Such coordination mode of lanthanide acetates has been previously observed (Koner & Goldberg, 2009; Dan et al., 2006). Thirdly, an acetate ion bridges two metal ions with each oxygen bonded to one La. Such coordination mode has also been reported previously (Mazurek et al., 1985).

As shown in Fig. 2, the title compound possesses a two-dimensional polymeric layered structure parallel to (100). The layer contains as a characteristic feature 10-membered oval rings of La atoms linked by the acetate groups. Each of these rings is subdivided in two centrosymmetric halves by a central oxalate bridge, which reinforces the layer. While the central parts of the layers are formed by the La ions and the carboxyl groups of acetate and oxalate anions, the outer parts of the layers are formed by the CH3 groups of the acetate groups and by the La-coordinating water molecules. Therefore, perpendicular to (100) the layers are mutually held together by van der Waals contacts between the CH3 groups and by the noncoordinating water molecule H2O14, each of which links two layers via one accepted and two donated O—H···O hydrogen bonds (Table 1). This leads to the formation of a three-dimensional supramolecular network shown in Fig. 3.

Experimental

Copper acetate monohydrate (>98%, Shanghai Zhenxing Reagent Factory), lanthanum acetate hydrate (99.99%, Crystal Pure Reagent Co., Ltd. Shanghai), borax(>99.5%, Chemical Co., Ltd. Wuxi Jiani), acetic acid (>99.5%, Sinopharm Chemical Reagent Co., Ltd.) were used without further purification.

The mixture of copper acetate monohydrate (0.097 g, 0.5 mmol), lanthanum acetate hydrate (0.318 g, 1 mmol), borax (0.381 g, 1 mmol), acetic acid (0.2 ml) and deionized water (7 ml), was placed in a 23 ml Teflon reactor and stirred for 20 min in air, then heated at 453 K for 5 d, followed by cooling to room temperature at a rate of 5K/h. Colorless transparent X-ray quality single crystals of compound (I) and red single crystals of Cu2O were obtained, which were used for X-ray diffraction analysis.

Refinement

The H atoms of the methyl groups were located from the difference Fourier map and were constrained to ride on their parent atoms with C—H = 0.96 Å, and with Uiso = 1.5 Ueq(parent atom). The water H atoms were placed in geometric positions and refined with a riding model, O—H = 0.82 Å for the coordinated water, O—H ≈ 0.86 Å for the noncoordinated water.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres. [Symmetry codes: (i) –x+1, –y+1, –z+2; (ii) x, –y+3/2, z–1/2; (iii) –x+1, y–1/2, –z+3/2; (iv) –x+1, y + 1/2, –z+3/2; (v) –x+1, –y+2, –z+2.

Fig. 2.

Fig. 2.

A view, along the a axis, showing the two-dimensional layered structure. H atoms and noncoordinated water molecules between the layers have been omitted for clarity.

Fig. 3.

Fig. 3.

The three-dimensional structure of (I), viewed down the c axis. Hydrogen bonds are indicated by dashed lines.

Crystal data

[La4(C2H3O2)10(C2O4)(H2O)2]·2H2O F(000) = 1244
Mr = 653.08 Dx = 2.210 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3432 reflections
a = 9.4139 (19) Å θ = 3.0–25.0°
b = 13.310 (3) Å µ = 4.36 mm1
c = 16.087 (3) Å T = 295 K
β = 103.10 (3)° Block, colourless
V = 1963.2 (7) Å3 0.19 × 0.18 × 0.18 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 3432 independent reflections
Radiation source: fine-focus sealed tube 3185 reflections with I > 2σ(I)
graphite Rint = 0.023
ω scans θmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan (ABSCOR; Higashi,1995) h = −11→11
Tmin = 0.454, Tmax = 0.456 k = −15→15
14917 measured reflections l = −19→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019 H-atom parameters constrained
wR(F2) = 0.042 w = 1/[σ2(Fo2) + (0.014P)2 + 3.2282P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max = 0.002
3432 reflections Δρmax = 0.56 e Å3
245 parameters Δρmin = −0.40 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00041 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
La1 0.49400 (2) 0.626091 (13) 0.826328 (11) 0.01839 (7)
La2 0.43860 (2) 0.927787 (13) 0.868342 (11) 0.01851 (7)
O1 0.3617 (3) 0.57173 (19) 0.93738 (15) 0.0334 (6)
O2 0.3667 (3) 0.4876 (2) 1.05838 (16) 0.0388 (6)
O3 0.7514 (3) 0.6156 (2) 0.81474 (18) 0.0488 (8)
O4 0.7413 (4) 0.4615 (3) 0.76263 (18) 0.0636 (10)
O5 0.2212 (3) 0.64689 (19) 0.75919 (16) 0.0370 (6)
O6 0.2988 (3) 0.76927 (17) 0.84850 (14) 0.0282 (5)
O7 0.4657 (3) 0.89359 (17) 1.16394 (13) 0.0291 (6)
O8 0.4577 (3) 0.91183 (17) 1.02914 (13) 0.0267 (5)
O9 0.7158 (3) 0.90241 (17) 0.93121 (15) 0.0299 (6)
O10 0.6023 (3) 0.75914 (17) 0.93639 (13) 0.0272 (5)
O11 0.5756 (3) 0.95427 (17) 0.73455 (15) 0.0335 (6)
O12 0.5291 (3) 0.80015 (16) 0.76449 (14) 0.0275 (5)
O13 0.2161 (3) 1.0002 (2) 0.90822 (16) 0.0474 (8)
H13B 0.2400 1.0278 0.9549 0.071*
H13A 0.1270 0.9998 0.8919 0.071*
O14 −0.0721 (3) 1.0087 (3) 0.8562 (2) 0.0745 (12)
H14B −0.1085 0.9687 0.8892 0.050*
H14A −0.1241 1.0501 0.8208 0.050*
C1 0.4214 (4) 0.5171 (2) 0.9990 (2) 0.0258 (7)
C2 0.8037 (4) 0.5293 (3) 0.8105 (2) 0.0347 (9)
C3 0.9496 (5) 0.5054 (4) 0.8655 (3) 0.0589 (13)
H3A 0.9749 0.4372 0.8556 0.088*
H3B 0.9467 0.5134 0.9244 0.088*
H3C 1.0212 0.5500 0.8520 0.088*
C4 0.1955 (4) 0.7242 (3) 0.7973 (2) 0.0268 (8)
C5 0.0446 (5) 0.7640 (3) 0.7823 (3) 0.0584 (13)
H5A 0.0469 0.8360 0.7797 0.088*
H5B 0.0011 0.7436 0.8281 0.088*
H5C −0.0119 0.7381 0.7293 0.088*
C6 0.4177 (4) 0.8653 (2) 1.08777 (19) 0.0206 (7)
C7 0.3107 (5) 0.7813 (3) 1.0678 (2) 0.0392 (9)
H7A 0.2863 0.7697 1.0074 0.059*
H7B 0.2241 0.7985 1.0867 0.059*
H7C 0.3528 0.7215 1.0966 0.059*
C8 0.7178 (4) 0.8098 (3) 0.95129 (19) 0.0257 (8)
C9 0.8593 (5) 0.7623 (3) 0.9952 (3) 0.0455 (10)
H9A 0.8595 0.6930 0.9788 0.068*
H9B 0.8705 0.7669 1.0558 0.068*
H9C 0.9385 0.7967 0.9789 0.068*
C10 0.5884 (4) 0.8614 (2) 0.72301 (19) 0.0229 (7)
C11 0.6738 (4) 0.8243 (3) 0.6616 (2) 0.0365 (9)
H11A 0.6250 0.8430 0.6047 0.055*
H11B 0.6818 0.7525 0.6655 0.055*
H11C 0.7695 0.8536 0.6752 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
La1 0.02665 (12) 0.01320 (10) 0.01550 (10) 0.00021 (7) 0.00519 (7) 0.00054 (6)
La2 0.02568 (12) 0.01433 (10) 0.01519 (10) −0.00034 (7) 0.00396 (7) −0.00131 (6)
O1 0.0374 (16) 0.0368 (15) 0.0278 (13) 0.0104 (12) 0.0111 (11) 0.0146 (11)
O2 0.0411 (17) 0.0468 (17) 0.0327 (14) 0.0106 (13) 0.0172 (12) 0.0183 (12)
O3 0.0396 (18) 0.060 (2) 0.0522 (18) 0.0180 (15) 0.0222 (14) 0.0200 (14)
O4 0.067 (2) 0.084 (3) 0.0305 (16) −0.0347 (19) −0.0072 (14) −0.0020 (15)
O5 0.0349 (16) 0.0358 (15) 0.0365 (15) −0.0001 (12) 0.0004 (11) −0.0111 (11)
O6 0.0304 (14) 0.0234 (13) 0.0297 (13) −0.0051 (10) 0.0046 (10) −0.0019 (10)
O7 0.0483 (16) 0.0218 (12) 0.0159 (12) −0.0054 (11) 0.0047 (10) −0.0012 (9)
O8 0.0405 (15) 0.0239 (12) 0.0173 (12) −0.0002 (11) 0.0096 (10) 0.0007 (9)
O9 0.0332 (15) 0.0246 (13) 0.0314 (13) −0.0015 (11) 0.0067 (11) −0.0018 (10)
O10 0.0318 (15) 0.0261 (13) 0.0221 (12) −0.0036 (11) 0.0029 (10) −0.0047 (9)
O11 0.0561 (18) 0.0160 (12) 0.0325 (14) 0.0026 (11) 0.0183 (12) 0.0011 (10)
O12 0.0460 (16) 0.0160 (12) 0.0240 (12) −0.0007 (11) 0.0152 (11) −0.0013 (9)
O13 0.0280 (16) 0.072 (2) 0.0382 (15) 0.0102 (14) 0.0003 (11) −0.0260 (14)
O14 0.0296 (18) 0.093 (3) 0.097 (3) 0.0079 (17) 0.0056 (17) 0.062 (2)
C1 0.035 (2) 0.0217 (18) 0.0212 (17) −0.0014 (15) 0.0080 (14) 0.0011 (13)
C2 0.033 (2) 0.052 (3) 0.0205 (18) −0.0039 (19) 0.0083 (15) 0.0007 (16)
C3 0.045 (3) 0.052 (3) 0.069 (3) 0.007 (2) −0.009 (2) −0.011 (2)
C4 0.029 (2) 0.0226 (18) 0.0282 (18) −0.0024 (15) 0.0064 (15) 0.0049 (14)
C5 0.030 (3) 0.044 (3) 0.099 (4) 0.002 (2) 0.011 (2) −0.006 (3)
C6 0.0277 (19) 0.0150 (16) 0.0190 (17) 0.0046 (13) 0.0055 (13) −0.0003 (12)
C7 0.049 (3) 0.035 (2) 0.033 (2) −0.0146 (19) 0.0088 (17) −0.0027 (16)
C8 0.031 (2) 0.029 (2) 0.0175 (16) 0.0030 (16) 0.0068 (13) −0.0052 (13)
C9 0.040 (3) 0.045 (3) 0.048 (2) 0.010 (2) 0.0007 (19) 0.0001 (19)
C10 0.034 (2) 0.0177 (17) 0.0168 (16) 0.0020 (14) 0.0047 (13) 0.0012 (12)
C11 0.044 (2) 0.032 (2) 0.040 (2) 0.0031 (18) 0.0233 (18) 0.0015 (16)

Geometric parameters (Å, °)

La1—O3 2.476 (3) O8—La2v 2.739 (2)
La1—O1 2.505 (2) O9—C8 1.273 (4)
La1—O11i 2.515 (2) O10—C8 1.256 (4)
La1—O2ii 2.519 (2) O11—C10 1.260 (4)
La1—O10 2.548 (2) O11—La1iv 2.515 (2)
La1—O5 2.565 (3) O12—C10 1.261 (4)
La1—O12 2.572 (2) O13—H13B 0.8200
La1—O7iii 2.578 (2) O13—H13A 0.8200
La1—O6 2.727 (2) O14—H14B 0.8733
La2—O4iv 2.427 (3) O14—H14A 0.8611
La2—O6 2.469 (2) C1—C1ii 1.542 (7)
La2—O13 2.517 (3) C2—C3 1.490 (6)
La2—O8 2.561 (2) C3—H3A 0.9600
La2—O9 2.598 (3) C3—H3B 0.9600
La2—O7v 2.636 (2) C3—H3C 0.9600
La2—O12 2.655 (2) C4—C5 1.484 (5)
La2—O8v 2.739 (2) C5—H5A 0.9600
La2—O11 2.771 (2) C5—H5B 0.9600
La2—O10 2.802 (2) C5—H5C 0.9600
O1—C1 1.254 (4) C6—C7 1.491 (5)
O2—C1 1.247 (4) C7—H7A 0.9600
O2—La1ii 2.519 (2) C7—H7B 0.9600
O3—C2 1.258 (5) C7—H7C 0.9600
O4—C2 1.244 (5) C8—C9 1.498 (5)
O4—La2i 2.427 (3) C9—H9A 0.9600
O5—C4 1.250 (4) C9—H9B 0.9600
O6—C4 1.272 (4) C9—H9C 0.9600
O7—C6 1.263 (4) C10—C11 1.491 (5)
O7—La1vi 2.578 (2) C11—H11A 0.9600
O7—La2v 2.636 (2) C11—H11B 0.9600
O8—C6 1.255 (4) C11—H11C 0.9600
O3—La1—O1 133.67 (9) C4—O5—La1 99.7 (2)
O3—La1—O11i 95.29 (10) C4—O6—La2 142.5 (2)
O1—La1—O11i 83.53 (8) C4—O6—La1 91.4 (2)
O3—La1—O2ii 70.52 (9) La2—O6—La1 105.00 (8)
O1—La1—O2ii 63.98 (8) C6—O7—La1vi 152.2 (2)
O11i—La1—O2ii 77.69 (9) C6—O7—La2v 98.07 (18)
O3—La1—O10 81.21 (10) La1vi—O7—La2v 109.26 (8)
O1—La1—O10 83.72 (8) C6—O8—La2 146.7 (2)
O11i—La1—O10 158.48 (8) C6—O8—La2v 93.35 (18)
O2ii—La1—O10 81.16 (9) La2—O8—La2v 118.52 (8)
O3—La1—O5 151.38 (9) C8—O9—La2 100.4 (2)
O1—La1—O5 73.70 (9) C8—O10—La1 134.3 (2)
O11i—La1—O5 77.68 (8) C8—O10—La2 91.1 (2)
O2ii—La1—O5 132.77 (9) La1—O10—La2 100.79 (8)
O10—La1—O5 114.99 (8) C10—O11—La1iv 149.3 (2)
O3—La1—O12 78.93 (9) C10—O11—La2 93.83 (19)
O1—La1—O12 131.63 (8) La1iv—O11—La2 106.98 (8)
O11i—La1—O12 135.50 (7) C10—O12—La1 153.9 (2)
O2ii—La1—O12 137.28 (9) C10—O12—La2 99.38 (18)
O10—La1—O12 64.94 (7) La1—O12—La2 104.19 (8)
O5—La1—O12 86.80 (8) La2—O13—H13B 109.5
O3—La1—O7iii 78.23 (9) La2—O13—H13A 139.9
O1—La1—O7iii 137.68 (9) H13B—O13—H13A 110.2
O11i—La1—O7iii 63.59 (7) H14B—O14—H14A 123.3
O2ii—La1—O7iii 127.01 (8) O2—C1—O1 126.8 (3)
O10—La1—O7iii 135.05 (8) O2—C1—C1ii 116.8 (4)
O5—La1—O7iii 73.79 (9) O1—C1—C1ii 116.4 (4)
O12—La1—O7iii 72.09 (7) O4—C2—O3 124.0 (4)
O3—La1—O6 138.55 (9) O4—C2—C3 117.1 (4)
O1—La1—O6 69.50 (7) O3—C2—C3 118.9 (4)
O11i—La1—O6 124.24 (8) C2—C3—H3A 109.5
O2ii—La1—O6 125.26 (8) C2—C3—H3B 109.5
O10—La1—O6 66.35 (7) H3A—C3—H3B 109.5
O5—La1—O6 48.66 (7) C2—C3—H3C 109.5
O12—La1—O6 64.57 (7) H3A—C3—H3C 109.5
O7iii—La1—O6 106.60 (7) H3B—C3—H3C 109.5
O4iv—La2—O6 78.42 (11) O5—C4—O6 120.1 (3)
O4iv—La2—O13 72.15 (10) O5—C4—C5 119.9 (3)
O6—La2—O13 84.84 (9) O6—C4—C5 120.0 (3)
O4iv—La2—O8 140.15 (10) O5—C4—La1 56.36 (18)
O6—La2—O8 88.45 (8) O6—C4—La1 63.83 (18)
O13—La2—O8 69.29 (9) C5—C4—La1 175.4 (3)
O4iv—La2—O9 143.46 (10) C4—C5—H5A 109.5
O6—La2—O9 113.47 (8) C4—C5—H5B 109.5
O13—La2—O9 140.44 (8) H5A—C5—H5B 109.5
O8—La2—O9 76.21 (8) C4—C5—H5C 109.5
O4iv—La2—O7v 82.21 (11) H5A—C5—H5C 109.5
O6—La2—O7v 160.30 (7) H5B—C5—H5C 109.5
O13—La2—O7v 92.65 (9) O8—C6—O7 118.7 (3)
O8—La2—O7v 108.97 (7) O8—C6—C7 120.8 (3)
O9—La2—O7v 80.56 (8) O7—C6—C7 120.5 (3)
O4iv—La2—O12 80.35 (9) O8—C6—La2v 62.63 (16)
O6—La2—O12 67.02 (7) O7—C6—La2v 57.95 (16)
O13—La2—O12 144.06 (8) C7—C6—La2v 163.9 (2)
O8—La2—O12 128.57 (7) C6—C7—H7A 109.5
O9—La2—O12 74.00 (8) C6—C7—H7B 109.5
O7v—La2—O12 106.28 (7) H7A—C7—H7B 109.5
O4iv—La2—O8v 117.51 (10) C6—C7—H7C 109.5
O6—La2—O8v 148.30 (7) H7A—C7—H7C 109.5
O13—La2—O8v 75.62 (8) H7B—C7—H7C 109.5
O8—La2—O8v 61.48 (8) O10—C8—O9 120.6 (3)
O9—La2—O8v 71.19 (8) O10—C8—C9 120.1 (3)
O7v—La2—O8v 47.50 (7) O9—C8—C9 119.2 (3)
O12—La2—O8v 139.14 (7) O10—C8—La2 64.91 (18)
O4iv—La2—O11 70.01 (10) O9—C8—La2 55.73 (17)
O6—La2—O11 109.68 (7) C9—C8—La2 174.4 (3)
O13—La2—O11 135.23 (9) C8—C9—H9A 109.5
O8—La2—O11 148.94 (8) C8—C9—H9B 109.5
O9—La2—O11 73.48 (8) H9A—C9—H9B 109.5
O7v—La2—O11 59.48 (7) C8—C9—H9C 109.5
O12—La2—O11 47.18 (7) H9A—C9—H9C 109.5
O8v—La2—O11 101.74 (7) H9B—C9—H9C 109.5
O4iv—La2—O10 134.52 (9) O11—C10—O12 119.2 (3)
O6—La2—O10 66.16 (7) O11—C10—C11 120.4 (3)
O13—La2—O10 128.54 (9) O12—C10—C11 120.4 (3)
O8—La2—O10 68.43 (7) O11—C10—La2 62.41 (17)
O9—La2—O10 47.82 (7) O12—C10—La2 57.11 (16)
O7v—La2—O10 128.13 (8) C11—C10—La2 173.2 (2)
O12—La2—O10 60.43 (7) C10—C11—H11A 109.5
O8v—La2—O10 107.45 (7) C10—C11—H11B 109.5
O11—La2—O10 95.38 (7) H11A—C11—H11B 109.5
C1—O1—La1 121.6 (2) C10—C11—H11C 109.5
C1—O2—La1ii 121.1 (2) H11A—C11—H11C 109.5
C2—O3—La1 117.3 (3) H11B—C11—H11C 109.5
C2—O4—La2i 144.2 (3)

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+1, −y+1, −z+2; (iii) x, −y+3/2, z−1/2; (iv) −x+1, y+1/2, −z+3/2; (v) −x+1, −y+2, −z+2; (vi) x, −y+3/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O13—H13A···O14 0.82 1.84 2.654 (4) 176.
O13—H13B···O9v 0.82 2.01 2.831 (3) 176.
O14—H14B···O9vii 0.87 2.12 2.921 (4) 152.9
O14—H14A···O5viii 0.86 1.90 2.761 (4) 174.3

Symmetry codes: (v) −x+1, −y+2, −z+2; (vii) x−1, y, z; (viii) −x, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QK2021).

References

  1. Brandenburg, K. & Putz, H. (2008). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bünzli, J.-C. G. & Piguet, C. (2005). Chem. Soc. Rev. 34, 1048–1077. [DOI] [PubMed]
  3. Dan, M., Cheetham, A. K. & Rao, C. N. R. (2006). Inorg. Chem. 45, 8227–8238. [DOI] [PubMed]
  4. Deng, H., Qiu, Y. C., Li, Y. H., Liu, Z. H. & Guillou, O. (2009). Inorg. Chim. Acta, 362, 1797–1804.
  5. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  6. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  7. Koner, R. & Goldberg, I. (2009). Acta Cryst. C65, m160–m164. [DOI] [PubMed]
  8. Kustaryono, D., Kerbellec, N., Calvez, G., Freslon, S., Daiguebonne, C. & Guillou, O. (2010). Cryst. Growth Des. 10, 775–781.
  9. Li, X., Cao, R., Sun, D. F., Shi, Q., Bi, W. H. & Hong, M. C. (2003). Inorg. Chem. Commun. 6, 815–818.
  10. Mazurek, W., Kennedy, B. J., Murray, K. S., O’connor, M. J., Rodgers, J. R., Snow, M. R., Wedd, A. G. & Zwack, P. R. (1985). Inorg. Chem. 24, 3258–3264.
  11. Min, D. & Lee, S. W. (2002). Inorg. Chem. Commun. 5, 978–983.
  12. Mohapatra, S., Vayasmudri, S., Mostafa, G. & Maji, T. K. (2009). J. Mol. Struct. 932, 123–128.
  13. Ohba, M., Tamaki, H., Matsumoto, N. & Okawa, H. (1993). Inorg. Chem. 32, 5385–5390.
  14. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  15. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  16. Roméro, S. & Trombe, J. C. (1999). Polyhedron, 18, 1653–1659.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Trombe, J. C., Jaud, J. & Galy, J. (2005). J. Solid State Chem. 178, 1094–1103.
  19. Trombe, J. C. & Roméro, S. (2000). Solid State Sci 2, 279–283.
  20. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  21. Yu, J. H., Hou, Q., Bi, M. H., Lü, Z. L., Zhang, X., Qu, X. J., Lu, J. & Xu, J. Q. (2006). J. Mol. Struct. 800, 69–73.
  22. Zhang, X. J., Xing, Y. H., Han, J., Ge, M. F. & Niu, S. Y. (2008). Z. Anorg. Allg. Chem. 634, 1765–1769.
  23. Zhang, X. J., Xing, Y. H., Wang, C. G., Han, J., Li, J., Ge, M. F., Zeng, X. Q. & Niu, S. Y. (2009). Inorg. Chim. Acta, 362, 1058–1064.
  24. Zhu, W. H., Wang, Z. M. & Gao, S. (2006). Dalton Trans. pp. 765–768. [DOI] [PubMed]
  25. Zieliński, M. (1983). J. Radioanal. Chem., 80, 237–246.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811038037/qk2021sup1.cif

e-67-m1436-sup1.cif (31.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038037/qk2021Isup2.hkl

e-67-m1436-Isup2.hkl (168.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES