Abstract
The title compound, {[La4(CH3CO2)10(C2O4)(H2O)2]·2H2O}n, exhibits a two-dimensional layered structure with the oxalate and acetate ligands acting as bridges. The asymmetric unit contains two crystallographically independent lanthanum(III) ions, half of an oxalate ligand, five acetate ligands, one coordinated water molecule and one uncoordinated water molecule. The coordination numbers of the two La ions are 9 and 10. Adjacent layers of the structure, which extend parallel to (100), are linked by O–H⋯O hydrogen bonds and are also held together by van der Waals interactions between the CH3 groups of the acetate anions.
Related literature
For properties of lanthanide compounds with metal-organic framework structures, see: Zhu et al. (2006 ▶); Deng et al. (2009 ▶); Bünzli & Piguet (2005 ▶); Zhang et al. (2008 ▶). For metal oxalates, see: Kustaryono et al. (2010 ▶); Roméro & Trombe (1999 ▶); Yu et al. (2006 ▶); Ohba et al. (1993 ▶). For lanthanide oxalates obtained from oxalate-containing starting materials, see: Zhang et al. (2009 ▶); Trombe et al. (2005 ▶). For lanthanide oxalates with oxalate formed in the course of the synthesis by decomposition of organic compounds or other unconventional reactions, see: Koner & Goldberg (2009 ▶); Li et al. (2003 ▶); Min & Lee (2002 ▶); Mohapatra et al. (2009 ▶). For oxidation of acetate to oxalate, see: Zieliński (1983 ▶). For La—O bond lengths, see: Trombe & Roméro (2000 ▶); Deng et al. (2009 ▶). For coordination modes of acetate groups, see: Zhang et al. (2009 ▶); Dan et al. (2006 ▶); Koner & Goldberg (2009 ▶); Mazurek et al. (1985 ▶).
Experimental
Crystal data
[La4(C2H3O2)10(C2O4)(H2O)2]·2H2O
M r = 653.08
Monoclinic,
a = 9.4139 (19) Å
b = 13.310 (3) Å
c = 16.087 (3) Å
β = 103.10 (3)°
V = 1963.2 (7) Å3
Z = 4
Mo Kα radiation
μ = 4.36 mm−1
T = 295 K
0.19 × 0.18 × 0.18 mm
Data collection
Rigaku R-AXIS RAPID diffractometer
Absorption correction: multi-scan (ABSCOR; Higashi, 1995 ▶) T min = 0.454, T max = 0.456
14917 measured reflections
3432 independent reflections
3185 reflections with I > 2σ(I)
R int = 0.023
Refinement
R[F 2 > 2σ(F 2)] = 0.019
wR(F 2) = 0.042
S = 1.12
3432 reflections
245 parameters
H-atom parameters constrained
Δρmax = 0.56 e Å−3
Δρmin = −0.40 e Å−3
Data collection: RAPID-AUTO (Rigaku, 1998 ▶); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEPII (Johnson, 1976 ▶) and DIAMOND (Brandenburg & Putz, 2008 ▶); software used to prepare material for publication: publCIF (Westrip, 2010 ▶).
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811038037/qk2021sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038037/qk2021Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O13—H13A⋯O14 | 0.82 | 1.84 | 2.654 (4) | 176 |
| O13—H13B⋯O9i | 0.82 | 2.01 | 2.831 (3) | 176 |
| O14—H14B⋯O9ii | 0.87 | 2.12 | 2.921 (4) | 152.9 |
| O14—H14A⋯O5iii | 0.86 | 1.90 | 2.761 (4) | 174.3 |
Symmetry codes: (i)
; (ii)
; (iii)
.
Acknowledgments
This work was supported by the Ningbo Natural Science Foundation (grant No. 2009 A610052) and the K. C. Wong Magna Fund in Ningbo University.
supplementary crystallographic information
Comment
Recently, lanthanide metal-organic frameworks have attracted considerable attention due to their interesting properties, such as porosity (Zhu et al., 2006), luminescence (Deng et al., 2009; Bünzli & Piguet, 2005) and magnetism (Zhang et al., 2008). The interest in mixed-ligand lanthanide oxalates is due to: first, lanthanide ions have large size, high and variable coordination numbers and flexible coordination environments; second, oxalate, as a bisbidentate ligand, has a strong coordination ability to metal ions (Kustaryono et al., 2010; Roméro & Trombe, 1999; Yu et al., 2006; Ohba et al., 1993). Most of the known lanthanide oxalates were prepared by hydrothermal reactions of various oxalate salts or of mixtures containing free oxalic acid and other reagents (Zhang et al., 2009; Trombe et al., 2005), while in a few instances the oxalate was generated by chance via an in situ decomposition of organic reagents (Koner & Goldberg, 2009; Li et al., 2003; Mohapatra et al., 2009). In one case a metal-assisted reduction of CO2 was invoked to explain an unexpected oxalate formation (Min & Lee, 2002).
We report here the synthesis and crystal structure of a new lanthanum oxalate acetate, where the oxalate was formed in situ under hydrothermal conditions presumably by an redox reaction of copper(II) acetate under concomitant formation of Cu2O (see Experimental). When the reaction was carried out without copper(II) acetate, different products were obtained. Oxidation of acetate to oxalate has been reported (Zieliński, 1983).
As shown in Fig. 1, the asymmetric unit of (I) contains two La ions, a half oxalate anion, five acetate groups, one coordinated water molecule, and one noncoordinated water molecule. The two crystallographically independent lanthanum atoms, La1 and La2, are nine- and ten-coordinated by oxygen atoms. The La1 ion is coordinated by seven acetate oxygen atoms (one acetate in chelating fashion) and two oxygen atoms O1 and O2 of a chelating centrosymmetric oxalate group. The La—O bond distances vary from 2.476 (3) to 2.727 (2) Å (see supplementary materials). The La1—O bond distances of the oxalate group are 2.505 (2) Å and 2.519 (2) Å. The La2 ion is coordinated by nine acetate oxygen atoms (three acetate groups in chelating fashion) and by a water molecule (H2O13) in terminal position. The La2—O bond distances vary from 2.427 (3) to 2.802 (2) Å. The La—O bond distance of the coordinating water molecule is 2.517 (3) Å. All La—O bond distances of (I) are in the normal range for La(III) ions (Trombe & Roméro, 2000; Deng et al., 2009). In the crystal structure of (I), each centrosymmetric bisbidentate oxalate ligand bridges two neighbouring La1 ions. The acetate groups have three different coordination modes: Firstly, the acetate group is µ3-η2-η2-bridging (the group chelates one La and links with each oxygen to a second and third La). Such coordination has been observed previously (Zhang et al., 2009; Dan et al., 2006). Secondly, the acetate group chelates one La ion and binds with one of its two O to a second La. Such coordination mode of lanthanide acetates has been previously observed (Koner & Goldberg, 2009; Dan et al., 2006). Thirdly, an acetate ion bridges two metal ions with each oxygen bonded to one La. Such coordination mode has also been reported previously (Mazurek et al., 1985).
As shown in Fig. 2, the title compound possesses a two-dimensional polymeric layered structure parallel to (100). The layer contains as a characteristic feature 10-membered oval rings of La atoms linked by the acetate groups. Each of these rings is subdivided in two centrosymmetric halves by a central oxalate bridge, which reinforces the layer. While the central parts of the layers are formed by the La ions and the carboxyl groups of acetate and oxalate anions, the outer parts of the layers are formed by the CH3 groups of the acetate groups and by the La-coordinating water molecules. Therefore, perpendicular to (100) the layers are mutually held together by van der Waals contacts between the CH3 groups and by the noncoordinating water molecule H2O14, each of which links two layers via one accepted and two donated O—H···O hydrogen bonds (Table 1). This leads to the formation of a three-dimensional supramolecular network shown in Fig. 3.
Experimental
Copper acetate monohydrate (>98%, Shanghai Zhenxing Reagent Factory), lanthanum acetate hydrate (99.99%, Crystal Pure Reagent Co., Ltd. Shanghai), borax(>99.5%, Chemical Co., Ltd. Wuxi Jiani), acetic acid (>99.5%, Sinopharm Chemical Reagent Co., Ltd.) were used without further purification.
The mixture of copper acetate monohydrate (0.097 g, 0.5 mmol), lanthanum acetate hydrate (0.318 g, 1 mmol), borax (0.381 g, 1 mmol), acetic acid (0.2 ml) and deionized water (7 ml), was placed in a 23 ml Teflon reactor and stirred for 20 min in air, then heated at 453 K for 5 d, followed by cooling to room temperature at a rate of 5K/h. Colorless transparent X-ray quality single crystals of compound (I) and red single crystals of Cu2O were obtained, which were used for X-ray diffraction analysis.
Refinement
The H atoms of the methyl groups were located from the difference Fourier map and were constrained to ride on their parent atoms with C—H = 0.96 Å, and with Uiso = 1.5 Ueq(parent atom). The water H atoms were placed in geometric positions and refined with a riding model, O—H = 0.82 Å for the coordinated water, O—H ≈ 0.86 Å for the noncoordinated water.
Figures
Fig. 1.
The asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres. [Symmetry codes: (i) –x+1, –y+1, –z+2; (ii) x, –y+3/2, z–1/2; (iii) –x+1, y–1/2, –z+3/2; (iv) –x+1, y + 1/2, –z+3/2; (v) –x+1, –y+2, –z+2.
Fig. 2.
A view, along the a axis, showing the two-dimensional layered structure. H atoms and noncoordinated water molecules between the layers have been omitted for clarity.
Fig. 3.
The three-dimensional structure of (I), viewed down the c axis. Hydrogen bonds are indicated by dashed lines.
Crystal data
| [La4(C2H3O2)10(C2O4)(H2O)2]·2H2O | F(000) = 1244 |
| Mr = 653.08 | Dx = 2.210 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 3432 reflections |
| a = 9.4139 (19) Å | θ = 3.0–25.0° |
| b = 13.310 (3) Å | µ = 4.36 mm−1 |
| c = 16.087 (3) Å | T = 295 K |
| β = 103.10 (3)° | Block, colourless |
| V = 1963.2 (7) Å3 | 0.19 × 0.18 × 0.18 mm |
| Z = 4 |
Data collection
| Rigaku R-AXIS RAPID diffractometer | 3432 independent reflections |
| Radiation source: fine-focus sealed tube | 3185 reflections with I > 2σ(I) |
| graphite | Rint = 0.023 |
| ω scans | θmax = 25.0°, θmin = 3.0° |
| Absorption correction: multi-scan (ABSCOR; Higashi,1995) | h = −11→11 |
| Tmin = 0.454, Tmax = 0.456 | k = −15→15 |
| 14917 measured reflections | l = −19→18 |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.019 | H-atom parameters constrained |
| wR(F2) = 0.042 | w = 1/[σ2(Fo2) + (0.014P)2 + 3.2282P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.12 | (Δ/σ)max = 0.002 |
| 3432 reflections | Δρmax = 0.56 e Å−3 |
| 245 parameters | Δρmin = −0.40 e Å−3 |
| 0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00041 (8) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| La1 | 0.49400 (2) | 0.626091 (13) | 0.826328 (11) | 0.01839 (7) | |
| La2 | 0.43860 (2) | 0.927787 (13) | 0.868342 (11) | 0.01851 (7) | |
| O1 | 0.3617 (3) | 0.57173 (19) | 0.93738 (15) | 0.0334 (6) | |
| O2 | 0.3667 (3) | 0.4876 (2) | 1.05838 (16) | 0.0388 (6) | |
| O3 | 0.7514 (3) | 0.6156 (2) | 0.81474 (18) | 0.0488 (8) | |
| O4 | 0.7413 (4) | 0.4615 (3) | 0.76263 (18) | 0.0636 (10) | |
| O5 | 0.2212 (3) | 0.64689 (19) | 0.75919 (16) | 0.0370 (6) | |
| O6 | 0.2988 (3) | 0.76927 (17) | 0.84850 (14) | 0.0282 (5) | |
| O7 | 0.4657 (3) | 0.89359 (17) | 1.16394 (13) | 0.0291 (6) | |
| O8 | 0.4577 (3) | 0.91183 (17) | 1.02914 (13) | 0.0267 (5) | |
| O9 | 0.7158 (3) | 0.90241 (17) | 0.93121 (15) | 0.0299 (6) | |
| O10 | 0.6023 (3) | 0.75914 (17) | 0.93639 (13) | 0.0272 (5) | |
| O11 | 0.5756 (3) | 0.95427 (17) | 0.73455 (15) | 0.0335 (6) | |
| O12 | 0.5291 (3) | 0.80015 (16) | 0.76449 (14) | 0.0275 (5) | |
| O13 | 0.2161 (3) | 1.0002 (2) | 0.90822 (16) | 0.0474 (8) | |
| H13B | 0.2400 | 1.0278 | 0.9549 | 0.071* | |
| H13A | 0.1270 | 0.9998 | 0.8919 | 0.071* | |
| O14 | −0.0721 (3) | 1.0087 (3) | 0.8562 (2) | 0.0745 (12) | |
| H14B | −0.1085 | 0.9687 | 0.8892 | 0.050* | |
| H14A | −0.1241 | 1.0501 | 0.8208 | 0.050* | |
| C1 | 0.4214 (4) | 0.5171 (2) | 0.9990 (2) | 0.0258 (7) | |
| C2 | 0.8037 (4) | 0.5293 (3) | 0.8105 (2) | 0.0347 (9) | |
| C3 | 0.9496 (5) | 0.5054 (4) | 0.8655 (3) | 0.0589 (13) | |
| H3A | 0.9749 | 0.4372 | 0.8556 | 0.088* | |
| H3B | 0.9467 | 0.5134 | 0.9244 | 0.088* | |
| H3C | 1.0212 | 0.5500 | 0.8520 | 0.088* | |
| C4 | 0.1955 (4) | 0.7242 (3) | 0.7973 (2) | 0.0268 (8) | |
| C5 | 0.0446 (5) | 0.7640 (3) | 0.7823 (3) | 0.0584 (13) | |
| H5A | 0.0469 | 0.8360 | 0.7797 | 0.088* | |
| H5B | 0.0011 | 0.7436 | 0.8281 | 0.088* | |
| H5C | −0.0119 | 0.7381 | 0.7293 | 0.088* | |
| C6 | 0.4177 (4) | 0.8653 (2) | 1.08777 (19) | 0.0206 (7) | |
| C7 | 0.3107 (5) | 0.7813 (3) | 1.0678 (2) | 0.0392 (9) | |
| H7A | 0.2863 | 0.7697 | 1.0074 | 0.059* | |
| H7B | 0.2241 | 0.7985 | 1.0867 | 0.059* | |
| H7C | 0.3528 | 0.7215 | 1.0966 | 0.059* | |
| C8 | 0.7178 (4) | 0.8098 (3) | 0.95129 (19) | 0.0257 (8) | |
| C9 | 0.8593 (5) | 0.7623 (3) | 0.9952 (3) | 0.0455 (10) | |
| H9A | 0.8595 | 0.6930 | 0.9788 | 0.068* | |
| H9B | 0.8705 | 0.7669 | 1.0558 | 0.068* | |
| H9C | 0.9385 | 0.7967 | 0.9789 | 0.068* | |
| C10 | 0.5884 (4) | 0.8614 (2) | 0.72301 (19) | 0.0229 (7) | |
| C11 | 0.6738 (4) | 0.8243 (3) | 0.6616 (2) | 0.0365 (9) | |
| H11A | 0.6250 | 0.8430 | 0.6047 | 0.055* | |
| H11B | 0.6818 | 0.7525 | 0.6655 | 0.055* | |
| H11C | 0.7695 | 0.8536 | 0.6752 | 0.055* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| La1 | 0.02665 (12) | 0.01320 (10) | 0.01550 (10) | 0.00021 (7) | 0.00519 (7) | 0.00054 (6) |
| La2 | 0.02568 (12) | 0.01433 (10) | 0.01519 (10) | −0.00034 (7) | 0.00396 (7) | −0.00131 (6) |
| O1 | 0.0374 (16) | 0.0368 (15) | 0.0278 (13) | 0.0104 (12) | 0.0111 (11) | 0.0146 (11) |
| O2 | 0.0411 (17) | 0.0468 (17) | 0.0327 (14) | 0.0106 (13) | 0.0172 (12) | 0.0183 (12) |
| O3 | 0.0396 (18) | 0.060 (2) | 0.0522 (18) | 0.0180 (15) | 0.0222 (14) | 0.0200 (14) |
| O4 | 0.067 (2) | 0.084 (3) | 0.0305 (16) | −0.0347 (19) | −0.0072 (14) | −0.0020 (15) |
| O5 | 0.0349 (16) | 0.0358 (15) | 0.0365 (15) | −0.0001 (12) | 0.0004 (11) | −0.0111 (11) |
| O6 | 0.0304 (14) | 0.0234 (13) | 0.0297 (13) | −0.0051 (10) | 0.0046 (10) | −0.0019 (10) |
| O7 | 0.0483 (16) | 0.0218 (12) | 0.0159 (12) | −0.0054 (11) | 0.0047 (10) | −0.0012 (9) |
| O8 | 0.0405 (15) | 0.0239 (12) | 0.0173 (12) | −0.0002 (11) | 0.0096 (10) | 0.0007 (9) |
| O9 | 0.0332 (15) | 0.0246 (13) | 0.0314 (13) | −0.0015 (11) | 0.0067 (11) | −0.0018 (10) |
| O10 | 0.0318 (15) | 0.0261 (13) | 0.0221 (12) | −0.0036 (11) | 0.0029 (10) | −0.0047 (9) |
| O11 | 0.0561 (18) | 0.0160 (12) | 0.0325 (14) | 0.0026 (11) | 0.0183 (12) | 0.0011 (10) |
| O12 | 0.0460 (16) | 0.0160 (12) | 0.0240 (12) | −0.0007 (11) | 0.0152 (11) | −0.0013 (9) |
| O13 | 0.0280 (16) | 0.072 (2) | 0.0382 (15) | 0.0102 (14) | 0.0003 (11) | −0.0260 (14) |
| O14 | 0.0296 (18) | 0.093 (3) | 0.097 (3) | 0.0079 (17) | 0.0056 (17) | 0.062 (2) |
| C1 | 0.035 (2) | 0.0217 (18) | 0.0212 (17) | −0.0014 (15) | 0.0080 (14) | 0.0011 (13) |
| C2 | 0.033 (2) | 0.052 (3) | 0.0205 (18) | −0.0039 (19) | 0.0083 (15) | 0.0007 (16) |
| C3 | 0.045 (3) | 0.052 (3) | 0.069 (3) | 0.007 (2) | −0.009 (2) | −0.011 (2) |
| C4 | 0.029 (2) | 0.0226 (18) | 0.0282 (18) | −0.0024 (15) | 0.0064 (15) | 0.0049 (14) |
| C5 | 0.030 (3) | 0.044 (3) | 0.099 (4) | 0.002 (2) | 0.011 (2) | −0.006 (3) |
| C6 | 0.0277 (19) | 0.0150 (16) | 0.0190 (17) | 0.0046 (13) | 0.0055 (13) | −0.0003 (12) |
| C7 | 0.049 (3) | 0.035 (2) | 0.033 (2) | −0.0146 (19) | 0.0088 (17) | −0.0027 (16) |
| C8 | 0.031 (2) | 0.029 (2) | 0.0175 (16) | 0.0030 (16) | 0.0068 (13) | −0.0052 (13) |
| C9 | 0.040 (3) | 0.045 (3) | 0.048 (2) | 0.010 (2) | 0.0007 (19) | 0.0001 (19) |
| C10 | 0.034 (2) | 0.0177 (17) | 0.0168 (16) | 0.0020 (14) | 0.0047 (13) | 0.0012 (12) |
| C11 | 0.044 (2) | 0.032 (2) | 0.040 (2) | 0.0031 (18) | 0.0233 (18) | 0.0015 (16) |
Geometric parameters (Å, °)
| La1—O3 | 2.476 (3) | O8—La2v | 2.739 (2) |
| La1—O1 | 2.505 (2) | O9—C8 | 1.273 (4) |
| La1—O11i | 2.515 (2) | O10—C8 | 1.256 (4) |
| La1—O2ii | 2.519 (2) | O11—C10 | 1.260 (4) |
| La1—O10 | 2.548 (2) | O11—La1iv | 2.515 (2) |
| La1—O5 | 2.565 (3) | O12—C10 | 1.261 (4) |
| La1—O12 | 2.572 (2) | O13—H13B | 0.8200 |
| La1—O7iii | 2.578 (2) | O13—H13A | 0.8200 |
| La1—O6 | 2.727 (2) | O14—H14B | 0.8733 |
| La2—O4iv | 2.427 (3) | O14—H14A | 0.8611 |
| La2—O6 | 2.469 (2) | C1—C1ii | 1.542 (7) |
| La2—O13 | 2.517 (3) | C2—C3 | 1.490 (6) |
| La2—O8 | 2.561 (2) | C3—H3A | 0.9600 |
| La2—O9 | 2.598 (3) | C3—H3B | 0.9600 |
| La2—O7v | 2.636 (2) | C3—H3C | 0.9600 |
| La2—O12 | 2.655 (2) | C4—C5 | 1.484 (5) |
| La2—O8v | 2.739 (2) | C5—H5A | 0.9600 |
| La2—O11 | 2.771 (2) | C5—H5B | 0.9600 |
| La2—O10 | 2.802 (2) | C5—H5C | 0.9600 |
| O1—C1 | 1.254 (4) | C6—C7 | 1.491 (5) |
| O2—C1 | 1.247 (4) | C7—H7A | 0.9600 |
| O2—La1ii | 2.519 (2) | C7—H7B | 0.9600 |
| O3—C2 | 1.258 (5) | C7—H7C | 0.9600 |
| O4—C2 | 1.244 (5) | C8—C9 | 1.498 (5) |
| O4—La2i | 2.427 (3) | C9—H9A | 0.9600 |
| O5—C4 | 1.250 (4) | C9—H9B | 0.9600 |
| O6—C4 | 1.272 (4) | C9—H9C | 0.9600 |
| O7—C6 | 1.263 (4) | C10—C11 | 1.491 (5) |
| O7—La1vi | 2.578 (2) | C11—H11A | 0.9600 |
| O7—La2v | 2.636 (2) | C11—H11B | 0.9600 |
| O8—C6 | 1.255 (4) | C11—H11C | 0.9600 |
| O3—La1—O1 | 133.67 (9) | C4—O5—La1 | 99.7 (2) |
| O3—La1—O11i | 95.29 (10) | C4—O6—La2 | 142.5 (2) |
| O1—La1—O11i | 83.53 (8) | C4—O6—La1 | 91.4 (2) |
| O3—La1—O2ii | 70.52 (9) | La2—O6—La1 | 105.00 (8) |
| O1—La1—O2ii | 63.98 (8) | C6—O7—La1vi | 152.2 (2) |
| O11i—La1—O2ii | 77.69 (9) | C6—O7—La2v | 98.07 (18) |
| O3—La1—O10 | 81.21 (10) | La1vi—O7—La2v | 109.26 (8) |
| O1—La1—O10 | 83.72 (8) | C6—O8—La2 | 146.7 (2) |
| O11i—La1—O10 | 158.48 (8) | C6—O8—La2v | 93.35 (18) |
| O2ii—La1—O10 | 81.16 (9) | La2—O8—La2v | 118.52 (8) |
| O3—La1—O5 | 151.38 (9) | C8—O9—La2 | 100.4 (2) |
| O1—La1—O5 | 73.70 (9) | C8—O10—La1 | 134.3 (2) |
| O11i—La1—O5 | 77.68 (8) | C8—O10—La2 | 91.1 (2) |
| O2ii—La1—O5 | 132.77 (9) | La1—O10—La2 | 100.79 (8) |
| O10—La1—O5 | 114.99 (8) | C10—O11—La1iv | 149.3 (2) |
| O3—La1—O12 | 78.93 (9) | C10—O11—La2 | 93.83 (19) |
| O1—La1—O12 | 131.63 (8) | La1iv—O11—La2 | 106.98 (8) |
| O11i—La1—O12 | 135.50 (7) | C10—O12—La1 | 153.9 (2) |
| O2ii—La1—O12 | 137.28 (9) | C10—O12—La2 | 99.38 (18) |
| O10—La1—O12 | 64.94 (7) | La1—O12—La2 | 104.19 (8) |
| O5—La1—O12 | 86.80 (8) | La2—O13—H13B | 109.5 |
| O3—La1—O7iii | 78.23 (9) | La2—O13—H13A | 139.9 |
| O1—La1—O7iii | 137.68 (9) | H13B—O13—H13A | 110.2 |
| O11i—La1—O7iii | 63.59 (7) | H14B—O14—H14A | 123.3 |
| O2ii—La1—O7iii | 127.01 (8) | O2—C1—O1 | 126.8 (3) |
| O10—La1—O7iii | 135.05 (8) | O2—C1—C1ii | 116.8 (4) |
| O5—La1—O7iii | 73.79 (9) | O1—C1—C1ii | 116.4 (4) |
| O12—La1—O7iii | 72.09 (7) | O4—C2—O3 | 124.0 (4) |
| O3—La1—O6 | 138.55 (9) | O4—C2—C3 | 117.1 (4) |
| O1—La1—O6 | 69.50 (7) | O3—C2—C3 | 118.9 (4) |
| O11i—La1—O6 | 124.24 (8) | C2—C3—H3A | 109.5 |
| O2ii—La1—O6 | 125.26 (8) | C2—C3—H3B | 109.5 |
| O10—La1—O6 | 66.35 (7) | H3A—C3—H3B | 109.5 |
| O5—La1—O6 | 48.66 (7) | C2—C3—H3C | 109.5 |
| O12—La1—O6 | 64.57 (7) | H3A—C3—H3C | 109.5 |
| O7iii—La1—O6 | 106.60 (7) | H3B—C3—H3C | 109.5 |
| O4iv—La2—O6 | 78.42 (11) | O5—C4—O6 | 120.1 (3) |
| O4iv—La2—O13 | 72.15 (10) | O5—C4—C5 | 119.9 (3) |
| O6—La2—O13 | 84.84 (9) | O6—C4—C5 | 120.0 (3) |
| O4iv—La2—O8 | 140.15 (10) | O5—C4—La1 | 56.36 (18) |
| O6—La2—O8 | 88.45 (8) | O6—C4—La1 | 63.83 (18) |
| O13—La2—O8 | 69.29 (9) | C5—C4—La1 | 175.4 (3) |
| O4iv—La2—O9 | 143.46 (10) | C4—C5—H5A | 109.5 |
| O6—La2—O9 | 113.47 (8) | C4—C5—H5B | 109.5 |
| O13—La2—O9 | 140.44 (8) | H5A—C5—H5B | 109.5 |
| O8—La2—O9 | 76.21 (8) | C4—C5—H5C | 109.5 |
| O4iv—La2—O7v | 82.21 (11) | H5A—C5—H5C | 109.5 |
| O6—La2—O7v | 160.30 (7) | H5B—C5—H5C | 109.5 |
| O13—La2—O7v | 92.65 (9) | O8—C6—O7 | 118.7 (3) |
| O8—La2—O7v | 108.97 (7) | O8—C6—C7 | 120.8 (3) |
| O9—La2—O7v | 80.56 (8) | O7—C6—C7 | 120.5 (3) |
| O4iv—La2—O12 | 80.35 (9) | O8—C6—La2v | 62.63 (16) |
| O6—La2—O12 | 67.02 (7) | O7—C6—La2v | 57.95 (16) |
| O13—La2—O12 | 144.06 (8) | C7—C6—La2v | 163.9 (2) |
| O8—La2—O12 | 128.57 (7) | C6—C7—H7A | 109.5 |
| O9—La2—O12 | 74.00 (8) | C6—C7—H7B | 109.5 |
| O7v—La2—O12 | 106.28 (7) | H7A—C7—H7B | 109.5 |
| O4iv—La2—O8v | 117.51 (10) | C6—C7—H7C | 109.5 |
| O6—La2—O8v | 148.30 (7) | H7A—C7—H7C | 109.5 |
| O13—La2—O8v | 75.62 (8) | H7B—C7—H7C | 109.5 |
| O8—La2—O8v | 61.48 (8) | O10—C8—O9 | 120.6 (3) |
| O9—La2—O8v | 71.19 (8) | O10—C8—C9 | 120.1 (3) |
| O7v—La2—O8v | 47.50 (7) | O9—C8—C9 | 119.2 (3) |
| O12—La2—O8v | 139.14 (7) | O10—C8—La2 | 64.91 (18) |
| O4iv—La2—O11 | 70.01 (10) | O9—C8—La2 | 55.73 (17) |
| O6—La2—O11 | 109.68 (7) | C9—C8—La2 | 174.4 (3) |
| O13—La2—O11 | 135.23 (9) | C8—C9—H9A | 109.5 |
| O8—La2—O11 | 148.94 (8) | C8—C9—H9B | 109.5 |
| O9—La2—O11 | 73.48 (8) | H9A—C9—H9B | 109.5 |
| O7v—La2—O11 | 59.48 (7) | C8—C9—H9C | 109.5 |
| O12—La2—O11 | 47.18 (7) | H9A—C9—H9C | 109.5 |
| O8v—La2—O11 | 101.74 (7) | H9B—C9—H9C | 109.5 |
| O4iv—La2—O10 | 134.52 (9) | O11—C10—O12 | 119.2 (3) |
| O6—La2—O10 | 66.16 (7) | O11—C10—C11 | 120.4 (3) |
| O13—La2—O10 | 128.54 (9) | O12—C10—C11 | 120.4 (3) |
| O8—La2—O10 | 68.43 (7) | O11—C10—La2 | 62.41 (17) |
| O9—La2—O10 | 47.82 (7) | O12—C10—La2 | 57.11 (16) |
| O7v—La2—O10 | 128.13 (8) | C11—C10—La2 | 173.2 (2) |
| O12—La2—O10 | 60.43 (7) | C10—C11—H11A | 109.5 |
| O8v—La2—O10 | 107.45 (7) | C10—C11—H11B | 109.5 |
| O11—La2—O10 | 95.38 (7) | H11A—C11—H11B | 109.5 |
| C1—O1—La1 | 121.6 (2) | C10—C11—H11C | 109.5 |
| C1—O2—La1ii | 121.1 (2) | H11A—C11—H11C | 109.5 |
| C2—O3—La1 | 117.3 (3) | H11B—C11—H11C | 109.5 |
| C2—O4—La2i | 144.2 (3) |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+1, −y+1, −z+2; (iii) x, −y+3/2, z−1/2; (iv) −x+1, y+1/2, −z+3/2; (v) −x+1, −y+2, −z+2; (vi) x, −y+3/2, z+1/2.
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O13—H13A···O14 | 0.82 | 1.84 | 2.654 (4) | 176. |
| O13—H13B···O9v | 0.82 | 2.01 | 2.831 (3) | 176. |
| O14—H14B···O9vii | 0.87 | 2.12 | 2.921 (4) | 152.9 |
| O14—H14A···O5viii | 0.86 | 1.90 | 2.761 (4) | 174.3 |
Symmetry codes: (v) −x+1, −y+2, −z+2; (vii) x−1, y, z; (viii) −x, y+1/2, −z+3/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QK2021).
References
- Brandenburg, K. & Putz, H. (2008). DIAMOND Crystal Impact GbR, Bonn, Germany.
- Bünzli, J.-C. G. & Piguet, C. (2005). Chem. Soc. Rev. 34, 1048–1077. [DOI] [PubMed]
- Dan, M., Cheetham, A. K. & Rao, C. N. R. (2006). Inorg. Chem. 45, 8227–8238. [DOI] [PubMed]
- Deng, H., Qiu, Y. C., Li, Y. H., Liu, Z. H. & Guillou, O. (2009). Inorg. Chim. Acta, 362, 1797–1804.
- Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Koner, R. & Goldberg, I. (2009). Acta Cryst. C65, m160–m164. [DOI] [PubMed]
- Kustaryono, D., Kerbellec, N., Calvez, G., Freslon, S., Daiguebonne, C. & Guillou, O. (2010). Cryst. Growth Des. 10, 775–781.
- Li, X., Cao, R., Sun, D. F., Shi, Q., Bi, W. H. & Hong, M. C. (2003). Inorg. Chem. Commun. 6, 815–818.
- Mazurek, W., Kennedy, B. J., Murray, K. S., O’connor, M. J., Rodgers, J. R., Snow, M. R., Wedd, A. G. & Zwack, P. R. (1985). Inorg. Chem. 24, 3258–3264.
- Min, D. & Lee, S. W. (2002). Inorg. Chem. Commun. 5, 978–983.
- Mohapatra, S., Vayasmudri, S., Mostafa, G. & Maji, T. K. (2009). J. Mol. Struct. 932, 123–128.
- Ohba, M., Tamaki, H., Matsumoto, N. & Okawa, H. (1993). Inorg. Chem. 32, 5385–5390.
- Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
- Roméro, S. & Trombe, J. C. (1999). Polyhedron, 18, 1653–1659.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Trombe, J. C., Jaud, J. & Galy, J. (2005). J. Solid State Chem. 178, 1094–1103.
- Trombe, J. C. & Roméro, S. (2000). Solid State Sci 2, 279–283.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Yu, J. H., Hou, Q., Bi, M. H., Lü, Z. L., Zhang, X., Qu, X. J., Lu, J. & Xu, J. Q. (2006). J. Mol. Struct. 800, 69–73.
- Zhang, X. J., Xing, Y. H., Han, J., Ge, M. F. & Niu, S. Y. (2008). Z. Anorg. Allg. Chem. 634, 1765–1769.
- Zhang, X. J., Xing, Y. H., Wang, C. G., Han, J., Li, J., Ge, M. F., Zeng, X. Q. & Niu, S. Y. (2009). Inorg. Chim. Acta, 362, 1058–1064.
- Zhu, W. H., Wang, Z. M. & Gao, S. (2006). Dalton Trans. pp. 765–768. [DOI] [PubMed]
- Zieliński, M. (1983). J. Radioanal. Chem., 80, 237–246.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811038037/qk2021sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811038037/qk2021Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report



