Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 14;67(Pt 10):m1349–m1350. doi: 10.1107/S160053681103604X

(μ-2,2′-Bipyrimidine-κ4 N 1,N 1′:N 3,N 3′)bis­[triaqua­(sulfato-κO)manganese(II)]

Kwang Ha a,*
PMCID: PMC3201432  PMID: 22064892

Abstract

The title complex, [Mn2(SO4)2(C8H6N4)(H2O)6], is the second monoclinic polymorph [De Munno et al. (1995). Inorg. Chem. 34, 408–411; Hong et al. (1996). Polyhedron, 15, 447–452]. The asymmetric unit contains two crystallographically independent half-mol­ecules of the binuclear MnII complex; an inversion centre is located at the centroid of each complex. The two MnII atoms in each complex mol­ecules are bridged by a bis-chelating 2,2′-bipyrimidine (bpym) ligand and each MnII atom is six-coordinated in a considerably distorted octa­hedral environment defined by two N atoms of the bridging bpym ligand and four O atoms from one sulfato anionic ligand and three water mol­ecules. In the crystal, the complex mol­ecules are linked by O—H⋯O hydrogen bonds between the water and sulfato ligands, forming a three-dimensional network.

Related literature

For the crystal structure of the title complex in the same space group but with different cell parameters, see: De Munno et al. (1995); Hong et al. (1996). For the synthesis and crystal structure of [Mn2(H2O)8(bpym)](SO4)2·2H2O, see: Ha (2011).graphic file with name e-67-m1349-scheme1.jpg

Experimental

Crystal data

  • [Mn2(SO4)2(C8H6N4)(H2O)6]

  • M r = 568.26

  • Monoclinic, Inline graphic

  • a = 12.4401 (18) Å

  • b = 13.2640 (19) Å

  • c = 12.8951 (18) Å

  • β = 117.199 (3)°

  • V = 1892.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.64 mm−1

  • T = 200 K

  • 0.33 × 0.23 × 0.20 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.505, T max = 0.721

  • 13624 measured reflections

  • 4652 independent reflections

  • 3069 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.110

  • S = 1.08

  • 4652 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681103604X/is2772sup1.cif

e-67-m1349-sup1.cif (22.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103604X/is2772Isup2.hkl

e-67-m1349-Isup2.hkl (227.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Mn1—O4 2.103 (2)
Mn1—O2 2.1295 (19)
Mn1—O1 2.172 (2)
Mn1—O3 2.190 (2)
Mn1—N1 2.303 (2)
Mn1—N2 2.308 (2)
Mn2—O11 2.105 (2)
Mn2—O9 2.1327 (19)
Mn2—O8 2.181 (2)
Mn2—O10 2.184 (2)
Mn2—N3 2.287 (2)
Mn2—N4 2.332 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O6i 0.84 1.88 2.709 (3) 170
O1—H1B⋯O12ii 0.84 1.90 2.700 (3) 160
O2—H2A⋯O13iii 0.84 1.86 2.655 (3) 158
O2—H2B⋯O14i 0.84 1.98 2.804 (3) 168
O3—H3A⋯O12iii 0.84 2.60 3.434 (4) 175
O3—H3B⋯O14iv 0.84 1.93 2.721 (3) 157
O8—H8A⋯O13v 0.84 1.91 2.745 (3) 177
O8—H8B⋯O5ii 0.84 1.93 2.766 (3) 173
O9—H9A⋯O6 0.84 1.80 2.636 (3) 178
O9—H9B⋯O4i 0.84 2.06 2.839 (3) 153
O10—H10A⋯O5 0.84 1.98 2.804 (3) 165
O10—H10B⋯O7vi 0.84 1.87 2.705 (3) 174

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626).

supplementary crystallographic information

Comment

The asymmetric unit of the title complex, [Mn2(SO4)2(H2O)6(bpym)] (where bpym is 2,2'-bipyrimidine, C8H6N4), contains two crystallographically independent half-molecules of the dinuclear MnII complex; an inversion centre is located at the centroid of each complex (Fig. 1). The two complexes are chemically identical, but somewhat different in geometry. The crystal structures of the complex were previously reported in the same space group P21/n (De Munno et al., 1995; Hong et al., 1996). The structure presented here is essentially the same as the published, however, the components of a unit cell and the cell parameters are quite different. Each asymmetric unit of the reported structures contains one half-molecule of the dinuclear complex.

In both complexes, two MnII ions are bridged by a bis-chelating bpym ligand to form a dinuclear MnII complex. Each MnII atom is six-coordinated in a considerably distorted octahedral environment defined by two N atoms of the bridging bpym ligand, and four O atoms from one sulfato anionic ligand and three water molecules. However, in the previously reported crystal structure of the analogous dinuclear cationic complex [Mn2(H2O)8(bpym)](SO4)2.2H2O, its single crystals were obtained from a water solution at 50 °C, each MnII atom is coordinated by two N atoms from bpym ligand and four O atoms from four water molecules (Ha, 2011).

The main contributions to the distortion of the octahedron are the tight N—Mn—N chelate angles [71.50 (8) and 71.46 (8)°] and the bulky SO4 groups, which results in non-linear trans axes [<N1—Mn1—O2 = 157.90 (9)° and <N3—Mn2—O9 = 155.79 (9)°], whereas the apical O1—Mn1—O3 and O8—Mn2—O10 bonds are roughly linear with the bond angles of 175.80 (9)° and 176.15 (8)°, respectively. In the two complexes, however, the apical N—Mn—O(SO4) bond angles are fairly different with <N2—Mn1—O4 = 178.47 (8)° and <N4—Mn2—O11 = 160.35 (8)°, because the coordination modes of the SO4 anions are somewhat different. Atom O4 in the complex with atom Mn1 occupies the equatorial position, but atom O11 in the other complex is inclined considerably to the equatorial plane. The Mn—N and Mn—O bond lengths are roughly equivalent, respectively (Table 1). The geometry of the SO4 ligands are nearly tetrahedral with the O—S—O bond angles of 107.83 (13)–111.48 (16)°, and the S—O bond distances are almost equal with 1.437 (2)–1.477 (2) Å. In the crystal structure, the complexes are linked by O—H···O hydrogen bonds between the water and sulfato ligands, forming a three-dimensional network (Fig. 2, Table 2). In addition, the complexes display numerous intermolecular π–π interactions between adjacent pyrimidine rings, the shortest ring centroid-centroid distance being 3.704 (2) Å.

Experimental

MnSO4.H2O (0.1688 g, 0.999 mmol) and 2,2'-bipyrimidine (0.1587 g, 1.003 mmol) in H2O (20 ml) were refluxed for 1 h. After evaporation of the solvent, the residue was washed with ether and dried at 50 °C, to give a light yellow powder (0.3152 g) (Ha, 2011). Crystals suitable for X-ray analysis were obtained by slow evaporation from a mixture of water and dimethyl sulfoxide (DMSO) at 90 °C.

Refinement

Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The H atoms of the water ligands were located in a difference Fourier map then allowed to ride on their parent O atoms in the final cycles of refinement, with O—H = 0.84 Å and Uiso(H) = 1.5 Ueq(O). The highest peak (0.75 e Å-3) and the deepest hole (-0.62 e Å-3) in the difference Fourier map are located 0.86 Å and 0.72 Å from the atoms O14 and Mn2, respectively.

Figures

Fig. 1.

Fig. 1.

The structure of the title complex, with displacement ellipsoids drawn at the 30% probability level for non-H atoms; H atoms are shown as small circles of arbitrary radius. Unlabelled atoms are generated by the application of the inversion centres.

Fig. 2.

Fig. 2.

View of the unit-cell contents of the title complex. Hydrogen-bond interactions are drawn with dashed lines.

Crystal data

[Mn2(SO4)2(C8H6N4)(H2O)6] F(000) = 1152
Mr = 568.26 Dx = 1.994 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4745 reflections
a = 12.4401 (18) Å θ = 2.4–28.3°
b = 13.2640 (19) Å µ = 1.64 mm1
c = 12.8951 (18) Å T = 200 K
β = 117.199 (3)° Block, pale yellow
V = 1892.5 (5) Å3 0.33 × 0.23 × 0.20 mm
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer 4652 independent reflections
Radiation source: fine-focus sealed tube 3069 reflections with I > 2σ(I)
graphite Rint = 0.042
φ and ω scans θmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −16→14
Tmin = 0.505, Tmax = 0.721 k = −13→17
13624 measured reflections l = −17→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0451P)2] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
4652 reflections Δρmax = 0.75 e Å3
272 parameters Δρmin = −0.62 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0063 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.26775 (4) 0.05409 (3) 0.60729 (4) 0.01696 (14)
S1 0.43118 (6) 0.18859 (5) 0.50146 (6) 0.01596 (18)
O1 0.28486 (19) −0.08475 (16) 0.52677 (18) 0.0272 (5)
H1A 0.3524 −0.1059 0.5363 0.041*
H1B 0.2528 −0.1369 0.5374 0.041*
O2 0.39400 (18) 0.00236 (15) 0.77569 (16) 0.0239 (5)
H2A 0.4336 0.0382 0.8348 0.036*
H2B 0.4169 −0.0568 0.7983 0.036*
O3 0.24123 (19) 0.18829 (16) 0.69190 (18) 0.0307 (6)
H3A 0.2758 0.2102 0.7606 0.046*
H3B 0.1933 0.2374 0.6692 0.046*
O4 0.4044 (2) 0.12401 (17) 0.57997 (19) 0.0335 (6)
O5 0.31606 (19) 0.22742 (16) 0.40891 (18) 0.0271 (5)
O6 0.49194 (19) 0.12919 (17) 0.44799 (18) 0.0319 (6)
O7 0.5076 (2) 0.27128 (16) 0.56795 (18) 0.0310 (6)
N1 0.0832 (2) 0.07677 (17) 0.44664 (19) 0.0175 (5)
N2 0.1216 (2) −0.02504 (17) 0.64137 (19) 0.0167 (5)
C1 0.0618 (3) 0.1279 (2) 0.3487 (2) 0.0223 (7)
H1 0.1259 0.1646 0.3456 0.027*
C2 −0.0501 (3) 0.1283 (2) 0.2535 (3) 0.0232 (7)
H2 −0.0643 0.1642 0.1847 0.028*
C3 0.1404 (3) −0.0753 (2) 0.7387 (2) 0.0205 (6)
H3 0.2185 −0.0739 0.8038 0.025*
C4 −0.0104 (2) 0.0281 (2) 0.4461 (2) 0.0138 (6)
Mn2 0.27208 (4) 0.03864 (3) 0.10592 (4) 0.01670 (14)
S2 0.43943 (6) 0.17926 (5) 0.01112 (6) 0.01673 (18)
O8 0.28871 (19) −0.10874 (15) 0.03961 (18) 0.0263 (5)
H8A 0.3584 −0.1216 0.0483 0.039*
H8B 0.2573 −0.1559 0.0599 0.039*
O9 0.38962 (18) −0.00536 (16) 0.28077 (16) 0.0247 (5)
H9A 0.4206 0.0376 0.3343 0.037*
H9B 0.4414 −0.0517 0.3015 0.037*
O10 0.24556 (18) 0.18206 (15) 0.17427 (17) 0.0251 (5)
H10A 0.2581 0.2050 0.2395 0.038*
H10B 0.1723 0.1983 0.1458 0.038*
O11 0.3665 (2) 0.09401 (16) 0.01777 (19) 0.0291 (5)
O12 0.3684 (2) 0.26991 (19) −0.0240 (2) 0.0554 (8)
O13 0.4819 (2) 0.15436 (17) −0.07476 (18) 0.0305 (6)
O14 0.5442 (2) 0.19069 (18) 0.12602 (18) 0.0377 (6)
N3 0.0900 (2) 0.06865 (17) −0.05238 (19) 0.0161 (5)
N4 0.1205 (2) −0.03640 (17) 0.1383 (2) 0.0170 (5)
C5 0.0733 (3) 0.1240 (2) −0.1460 (2) 0.0204 (6)
H5 0.1409 0.1552 −0.1483 0.025*
C6 −0.0389 (3) 0.1363 (2) −0.2376 (2) 0.0225 (7)
H6 −0.0503 0.1753 −0.3037 0.027*
C7 0.1351 (3) −0.0905 (2) 0.2315 (2) 0.0208 (7)
H7 0.2137 −0.0973 0.2949 0.025*
C8 −0.0082 (3) 0.0289 (2) −0.0528 (2) 0.0146 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.0130 (3) 0.0182 (3) 0.0180 (2) −0.00137 (17) 0.0057 (2) 0.00144 (18)
S1 0.0154 (4) 0.0149 (4) 0.0181 (4) −0.0013 (3) 0.0081 (3) −0.0016 (3)
O1 0.0226 (12) 0.0219 (12) 0.0391 (13) −0.0005 (9) 0.0158 (11) −0.0065 (10)
O2 0.0209 (12) 0.0226 (12) 0.0184 (10) 0.0019 (9) 0.0005 (9) −0.0004 (9)
O3 0.0274 (13) 0.0243 (13) 0.0301 (12) 0.0048 (9) 0.0044 (10) −0.0059 (10)
O4 0.0257 (13) 0.0330 (14) 0.0454 (14) 0.0004 (10) 0.0194 (11) 0.0163 (11)
O5 0.0227 (13) 0.0285 (13) 0.0274 (12) 0.0052 (9) 0.0091 (10) 0.0014 (10)
O6 0.0221 (13) 0.0362 (14) 0.0367 (13) 0.0021 (10) 0.0130 (11) −0.0127 (11)
O7 0.0291 (14) 0.0299 (13) 0.0341 (12) −0.0108 (10) 0.0144 (11) −0.0113 (10)
N1 0.0174 (13) 0.0167 (13) 0.0178 (12) −0.0015 (10) 0.0076 (11) 0.0005 (10)
N2 0.0147 (13) 0.0183 (13) 0.0158 (12) −0.0005 (9) 0.0058 (10) 0.0011 (10)
C1 0.0209 (17) 0.0226 (16) 0.0243 (16) 0.0012 (12) 0.0113 (14) 0.0040 (13)
C2 0.0277 (18) 0.0235 (17) 0.0195 (15) 0.0006 (13) 0.0118 (14) 0.0040 (13)
C3 0.0189 (16) 0.0230 (16) 0.0160 (14) 0.0007 (12) 0.0048 (12) 0.0018 (12)
C4 0.0126 (14) 0.0151 (14) 0.0145 (14) −0.0007 (10) 0.0067 (11) −0.0016 (11)
Mn2 0.0142 (3) 0.0182 (3) 0.0166 (2) −0.00171 (17) 0.00615 (19) −0.00021 (18)
S2 0.0169 (4) 0.0160 (4) 0.0193 (4) 0.0012 (3) 0.0100 (3) 0.0013 (3)
O8 0.0253 (13) 0.0193 (12) 0.0411 (13) −0.0016 (9) 0.0213 (11) −0.0029 (10)
O9 0.0182 (12) 0.0269 (12) 0.0195 (11) 0.0052 (9) 0.0004 (9) −0.0004 (9)
O10 0.0206 (12) 0.0254 (12) 0.0248 (11) 0.0008 (9) 0.0064 (10) −0.0066 (9)
O11 0.0297 (13) 0.0260 (13) 0.0358 (13) −0.0068 (9) 0.0186 (11) −0.0001 (10)
O12 0.0575 (19) 0.0369 (16) 0.090 (2) 0.0299 (13) 0.0495 (18) 0.0336 (15)
O13 0.0343 (14) 0.0358 (14) 0.0312 (12) −0.0135 (10) 0.0236 (11) −0.0124 (10)
O14 0.0369 (15) 0.0439 (16) 0.0240 (12) −0.0175 (11) 0.0068 (11) −0.0047 (11)
N3 0.0154 (13) 0.0156 (12) 0.0170 (12) −0.0024 (9) 0.0070 (10) −0.0001 (10)
N4 0.0153 (13) 0.0191 (13) 0.0162 (12) 0.0015 (9) 0.0070 (10) 0.0008 (10)
C5 0.0228 (17) 0.0199 (16) 0.0232 (15) −0.0019 (12) 0.0145 (13) 0.0036 (13)
C6 0.0251 (18) 0.0240 (17) 0.0204 (15) 0.0040 (13) 0.0120 (14) 0.0087 (13)
C7 0.0224 (17) 0.0205 (16) 0.0165 (14) 0.0032 (12) 0.0062 (13) 0.0054 (12)
C8 0.0174 (15) 0.0116 (14) 0.0145 (14) −0.0008 (10) 0.0071 (12) −0.0015 (11)

Geometric parameters (Å, °)

Mn1—O4 2.103 (2) Mn2—O11 2.105 (2)
Mn1—O2 2.1295 (19) Mn2—O9 2.1327 (19)
Mn1—O1 2.172 (2) Mn2—O8 2.181 (2)
Mn1—O3 2.190 (2) Mn2—O10 2.184 (2)
Mn1—N1 2.303 (2) Mn2—N3 2.287 (2)
Mn1—N2 2.308 (2) Mn2—N4 2.332 (2)
S1—O7 1.448 (2) S2—O12 1.437 (2)
S1—O6 1.464 (2) S2—O13 1.466 (2)
S1—O4 1.476 (2) S2—O14 1.467 (2)
S1—O5 1.476 (2) S2—O11 1.477 (2)
O1—H1A 0.8400 O8—H8A 0.8400
O1—H1B 0.8400 O8—H8B 0.8400
O2—H2A 0.8400 O9—H9A 0.8400
O2—H2B 0.8400 O9—H9B 0.8400
O3—H3A 0.8400 O10—H10A 0.8400
O3—H3B 0.8400 O10—H10B 0.8400
N1—C4 1.328 (3) N3—C8 1.328 (3)
N1—C1 1.348 (4) N3—C5 1.345 (3)
N2—C4i 1.327 (3) N4—C8ii 1.330 (3)
N2—C3 1.344 (4) N4—C7 1.339 (3)
C1—C2 1.372 (4) C5—C6 1.365 (4)
C1—H1 0.9500 C5—H5 0.9500
C2—C3i 1.368 (4) C6—C7ii 1.376 (4)
C2—H2 0.9500 C6—H6 0.9500
C3—H3 0.9500 C7—H7 0.9500
C4—C4i 1.492 (5) C8—C8ii 1.494 (5)
O4—Mn1—O2 92.12 (8) O11—Mn2—O9 112.59 (9)
O4—Mn1—O1 91.74 (9) O11—Mn2—O8 85.68 (8)
O2—Mn1—O1 91.52 (8) O9—Mn2—O8 91.55 (8)
O4—Mn1—O3 92.43 (9) O11—Mn2—O10 97.96 (8)
O2—Mn1—O3 87.86 (8) O9—Mn2—O10 88.21 (8)
O1—Mn1—O3 175.80 (9) O8—Mn2—O10 176.15 (8)
O4—Mn1—N1 109.97 (9) O11—Mn2—N3 91.54 (9)
O2—Mn1—N1 157.90 (9) O9—Mn2—N3 155.79 (9)
O1—Mn1—N1 87.48 (8) O8—Mn2—N3 92.22 (8)
O3—Mn1—N1 91.53 (8) O10—Mn2—N3 86.44 (8)
O4—Mn1—N2 178.47 (8) O11—Mn2—N4 160.35 (8)
O2—Mn1—N2 86.41 (8) O9—Mn2—N4 85.05 (8)
O1—Mn1—N2 87.90 (8) O8—Mn2—N4 85.24 (8)
O3—Mn1—N2 87.92 (9) O10—Mn2—N4 90.92 (8)
N1—Mn1—N2 71.50 (8) N3—Mn2—N4 71.46 (8)
O7—S1—O6 110.25 (13) O12—S2—O13 109.38 (15)
O7—S1—O4 109.04 (13) O12—S2—O14 111.48 (16)
O6—S1—O4 109.73 (14) O13—S2—O14 109.04 (14)
O7—S1—O5 110.26 (13) O12—S2—O11 110.72 (15)
O6—S1—O5 109.03 (12) O13—S2—O11 108.32 (13)
O4—S1—O5 108.51 (13) O14—S2—O11 107.83 (13)
Mn1—O1—H1A 121.6 Mn2—O8—H8A 114.0
Mn1—O1—H1B 117.5 Mn2—O8—H8B 113.8
H1A—O1—H1B 102.6 H8A—O8—H8B 114.0
Mn1—O2—H2A 126.6 Mn2—O9—H9A 121.2
Mn1—O2—H2B 129.0 Mn2—O9—H9B 126.3
H2A—O2—H2B 104.4 H9A—O9—H9B 103.7
Mn1—O3—H3A 133.3 Mn2—O10—H10A 136.6
Mn1—O3—H3B 134.5 Mn2—O10—H10B 112.3
H3A—O3—H3B 92.2 H10A—O10—H10B 90.8
S1—O4—Mn1 145.49 (14) S2—O11—Mn2 143.88 (14)
C4—N1—C1 116.2 (2) C8—N3—C5 116.6 (2)
C4—N1—Mn1 116.88 (18) C8—N3—Mn2 117.95 (18)
C1—N1—Mn1 126.6 (2) C5—N3—Mn2 125.42 (19)
C4i—N2—C3 116.6 (2) C8ii—N4—C7 116.3 (3)
C4i—N2—Mn1 117.25 (18) C8ii—N4—Mn2 116.68 (18)
C3—N2—Mn1 125.96 (19) C7—N4—Mn2 126.9 (2)
N1—C1—C2 121.7 (3) N3—C5—C6 121.3 (3)
N1—C1—H1 119.2 N3—C5—H5 119.3
C2—C1—H1 119.2 C6—C5—H5 119.3
C3i—C2—C1 117.7 (3) C5—C6—C7ii 118.0 (3)
C3i—C2—H2 121.2 C5—C6—H6 121.0
C1—C2—H2 121.2 C7ii—C6—H6 121.0
N2—C3—C2i 121.7 (3) N4—C7—C6ii 121.6 (3)
N2—C3—H3 119.2 N4—C7—H7 119.2
C2i—C3—H3 119.2 C6ii—C7—H7 119.2
N2i—C4—N1 126.2 (2) N3—C8—N4ii 126.1 (2)
N2i—C4—C4i 116.5 (3) N3—C8—C8ii 117.3 (3)
N1—C4—C4i 117.4 (3) N4ii—C8—C8ii 116.6 (3)
O7—S1—O4—Mn1 127.8 (3) O14—S2—O11—Mn2 57.7 (3)
O6—S1—O4—Mn1 −111.4 (3) O9—Mn2—O11—S2 −70.5 (3)
O5—S1—O4—Mn1 7.7 (3) O8—Mn2—O11—S2 −160.4 (2)
O2—Mn1—O4—S1 −174.7 (3) O10—Mn2—O11—S2 20.9 (2)
O1—Mn1—O4—S1 93.7 (3) N3—Mn2—O11—S2 107.5 (2)
O3—Mn1—O4—S1 −86.7 (3) N4—Mn2—O11—S2 137.0 (2)
N1—Mn1—O4—S1 5.8 (3) O11—Mn2—N3—C8 167.6 (2)
O4—Mn1—N1—C4 173.38 (19) O9—Mn2—N3—C8 −16.9 (3)
O2—Mn1—N1—C4 −5.4 (4) O8—Mn2—N3—C8 81.9 (2)
O1—Mn1—N1—C4 82.4 (2) O10—Mn2—N3—C8 −94.5 (2)
O3—Mn1—N1—C4 −93.5 (2) N4—Mn2—N3—C8 −2.31 (19)
N2—Mn1—N1—C4 −6.18 (19) O11—Mn2—N3—C5 −12.6 (2)
O4—Mn1—N1—C1 −0.9 (3) O9—Mn2—N3—C5 162.9 (2)
O2—Mn1—N1—C1 −179.7 (2) O8—Mn2—N3—C5 −98.4 (2)
O1—Mn1—N1—C1 −91.8 (2) O10—Mn2—N3—C5 85.2 (2)
O3—Mn1—N1—C1 92.3 (2) N4—Mn2—N3—C5 177.4 (2)
N2—Mn1—N1—C1 179.5 (3) O11—Mn2—N4—C8ii −29.3 (4)
O2—Mn1—N2—C4i −173.7 (2) O9—Mn2—N4—C8ii 176.0 (2)
O1—Mn1—N2—C4i −82.0 (2) O8—Mn2—N4—C8ii −92.0 (2)
O3—Mn1—N2—C4i 98.4 (2) O10—Mn2—N4—C8ii 87.9 (2)
N1—Mn1—N2—C4i 6.04 (19) N3—Mn2—N4—C8ii 1.92 (19)
O2—Mn1—N2—C3 0.8 (2) O11—Mn2—N4—C7 147.2 (3)
O1—Mn1—N2—C3 92.4 (2) O9—Mn2—N4—C7 −7.5 (2)
O3—Mn1—N2—C3 −87.2 (2) O8—Mn2—N4—C7 84.5 (2)
N1—Mn1—N2—C3 −179.5 (2) O10—Mn2—N4—C7 −95.6 (2)
C4—N1—C1—C2 −0.9 (4) N3—Mn2—N4—C7 178.5 (2)
Mn1—N1—C1—C2 173.5 (2) C8—N3—C5—C6 −1.5 (4)
N1—C1—C2—C3i 0.4 (4) Mn2—N3—C5—C6 178.8 (2)
C4i—N2—C3—C2i 1.1 (4) N3—C5—C6—C7ii 0.2 (4)
Mn1—N2—C3—C2i −173.4 (2) C8ii—N4—C7—C6ii 0.6 (4)
C1—N1—C4—N2i 0.3 (4) Mn2—N4—C7—C6ii −176.0 (2)
Mn1—N1—C4—N2i −174.6 (2) C5—N3—C8—N4ii 2.0 (4)
C1—N1—C4—C4i −179.3 (3) Mn2—N3—C8—N4ii −178.3 (2)
Mn1—N1—C4—C4i 5.8 (4) C5—N3—C8—C8ii −177.3 (3)
O12—S2—O11—Mn2 −64.5 (3) Mn2—N3—C8—C8ii 2.4 (4)
O13—S2—O11—Mn2 175.6 (2)

Symmetry codes: (i) −x, −y, −z+1; (ii) −x, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O6iii 0.84 1.88 2.709 (3) 170.
O1—H1B···O12iv 0.84 1.90 2.700 (3) 160.
O2—H2A···O13v 0.84 1.86 2.655 (3) 158.
O2—H2B···O14iii 0.84 1.98 2.804 (3) 168.
O3—H3A···O12v 0.84 2.60 3.434 (4) 175.
O3—H3B···O14vi 0.84 1.93 2.721 (3) 157.
O8—H8A···O13vii 0.84 1.91 2.745 (3) 177.
O8—H8B···O5iv 0.84 1.93 2.766 (3) 173.
O9—H9A···O6 0.84 1.80 2.636 (3) 178.
O9—H9B···O4iii 0.84 2.06 2.839 (3) 153.
O10—H10A···O5 0.84 1.98 2.804 (3) 165.
O10—H10B···O7viii 0.84 1.87 2.705 (3) 174.

Symmetry codes: (iii) −x+1, −y, −z+1; (iv) −x+1/2, y−1/2, −z+1/2; (v) x, y, z+1; (vi) x−1/2, −y+1/2, z+1/2; (vii) −x+1, −y, −z; (viii) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2772).

References

  1. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. De Munno, G., Ruiz, R., Lloret, F., Faus, J., Sessoli, R. & Julve, M. (1995). Inorg. Chem. 34, 408–411.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Ha, K. (2011). Z. Kristallogr. New Cryst. Struct. 226, 313–314.
  5. Hong, D. M., Chu, Y. Y. & Wei, H. H. (1996). Polyhedron, 15, 447–452.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681103604X/is2772sup1.cif

e-67-m1349-sup1.cif (22.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103604X/is2772Isup2.hkl

e-67-m1349-Isup2.hkl (227.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES