Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2805. doi: 10.1107/S160053681103933X

5-Chloro-3-cyclo­pentyl­sulfonyl-2-methyl-1-benzofuran

Pil Ja Seo a, Hong Dae Choi a, Byeng Wha Son b, Uk Lee b,*
PMCID: PMC3201441  PMID: 22058829

Abstract

In the title compound, C14H15ClO3S, the cyclo­penyl ring adopts an envelope conformation. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds into dual chains propagating in [100]. The dual chains arise from pairs of the same or different hydrogen bonds between adjacent molecules.

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the crystal structures of related compounds, see: Seo et al. (2011a ,b ).graphic file with name e-67-o2805-scheme1.jpg

Experimental

Crystal data

  • C14H15ClO3S

  • M r = 298.77

  • Triclinic, Inline graphic

  • a = 7.4833 (8) Å

  • b = 8.7888 (9) Å

  • c = 10.9061 (10) Å

  • α = 66.919 (5)°

  • β = 82.848 (6)°

  • γ = 82.689 (6)°

  • V = 652.31 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 173 K

  • 0.39 × 0.27 × 0.22 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.844, T max = 0.905

  • 11884 measured reflections

  • 3252 independent reflections

  • 2721 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.143

  • S = 1.05

  • 3252 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.73 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681103933X/cv5153sup1.cif

e-67-o2805-sup1.cif (24.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103933X/cv5153Isup2.hkl

e-67-o2805-Isup2.hkl (159.5KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681103933X/cv5153Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.95 2.51 3.420 (2) 160
C12—H12A⋯O2ii 0.99 2.59 3.557 (2) 167
C13—H13B⋯O3ii 0.99 2.61 3.516 (3) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Recently, many compounds containing a benzofuran moiety have received much attention because of their valuable pharmacological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009, Galal et al., 2009, Khan et al., 2005). These benzofuran derivatives occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing study of benzofuran derivatives containing either 3-cyclopentylsulfinyl (Seo et al., 2011a) or 3-cyclopentylsulfonyl (Seo et al., 2011b) substituents, we report herein the crystal structure of the title compound (I).

In (I) (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.005 (2) Å from the least-squares plane defined by the nine constituent atoms. The cyclopentyl ring is in the envelope form. In the crystal structure (Fig. 2), weak intermolecular C—H···O hydrogen bonds (Table 1) link molecules into dual chains propagated in [100] (Fig. 2).

Experimental

77% 3-Chloroperoxybenzoic acid (560 mg, 2.5 mmol) was added in small portions to a stirred solution of 5-chloro-3-cyclopentylsulfanyl-2-methyl-1-benzofuran (320 mg, 1.2 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 8h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 4:1 v/v) to afford the title compound as a colorless solid [yield 70%, m.p. 412–413 K; Rf = 0.46 (hexane–ethyl acetate, 4:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl, 1.00 Å for methine, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. Uiso(H) =1.2Ueq(C) for aryl, methine and methylene, and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the C—H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound [symmetry codes: (i) - x, - y + 2, - z + 1; (ii) x + 1, y, z; (iii) x - 1, y, z.] H atoms non-participating in hydrogen-bonding were omitted for clarity.

Crystal data

C14H15ClO3S Z = 2
Mr = 298.77 F(000) = 312
Triclinic, P1 Dx = 1.521 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.4833 (8) Å Cell parameters from 5081 reflections
b = 8.7888 (9) Å θ = 2.5–28.2°
c = 10.9061 (10) Å µ = 0.45 mm1
α = 66.919 (5)° T = 173 K
β = 82.848 (6)° Block, colourless
γ = 82.689 (6)° 0.39 × 0.27 × 0.22 mm
V = 652.31 (11) Å3

Data collection

Bruker SMART APEXII CCD diffractometer 3252 independent reflections
Radiation source: rotating anode 2721 reflections with I > 2σ(I)
graphite multilayer Rint = 0.046
Detector resolution: 10.0 pixels mm-1 θmax = 28.4°, θmin = 2.0°
φ and ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −11→11
Tmin = 0.844, Tmax = 0.905 l = −14→14
11884 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: difference Fourier map
wR(F2) = 0.143 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
3252 reflections (Δ/σ)max = 0.001
173 parameters Δρmax = 0.44 e Å3
0 restraints Δρmin = −0.73 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.01806 (6) 0.70534 (5) 0.73025 (4) 0.02070 (15)
Cl1 0.22626 (7) 0.92775 (6) 0.13290 (4) 0.03364 (17)
O1 0.26706 (18) 0.34648 (14) 0.62681 (11) 0.0261 (3)
O2 −0.07756 (18) 0.60437 (16) 0.85224 (11) 0.0291 (3)
O3 −0.08387 (17) 0.83205 (15) 0.62857 (11) 0.0257 (3)
C1 0.1369 (2) 0.5756 (2) 0.65566 (15) 0.0210 (3)
C2 0.1864 (2) 0.6199 (2) 0.51383 (15) 0.0209 (3)
C3 0.1721 (2) 0.7648 (2) 0.39920 (15) 0.0225 (4)
H3 0.1194 0.8673 0.4030 0.027*
C4 0.2388 (3) 0.7506 (2) 0.28003 (16) 0.0243 (4)
C5 0.3159 (3) 0.6020 (2) 0.27022 (17) 0.0276 (4)
H5 0.3586 0.5994 0.1853 0.033*
C6 0.3301 (3) 0.4594 (2) 0.38371 (17) 0.0274 (4)
H6 0.3818 0.3568 0.3797 0.033*
C7 0.2654 (2) 0.4727 (2) 0.50369 (15) 0.0221 (4)
C8 0.1883 (2) 0.4117 (2) 0.71738 (16) 0.0245 (4)
C9 0.1791 (3) 0.2926 (2) 0.85921 (17) 0.0321 (4)
H9A 0.1229 0.3503 0.9169 0.048*
H9B 0.3015 0.2468 0.8848 0.048*
H9C 0.1068 0.2023 0.8693 0.048*
C10 0.1818 (2) 0.8010 (2) 0.77215 (15) 0.0232 (4)
H10 0.1163 0.8755 0.8158 0.028*
C11 0.3143 (3) 0.6800 (2) 0.86896 (17) 0.0295 (4)
H11A 0.2577 0.6388 0.9618 0.035*
H11B 0.3568 0.5842 0.8436 0.035*
C12 0.4688 (3) 0.7835 (3) 0.85509 (18) 0.0328 (4)
H12A 0.5859 0.7157 0.8595 0.039*
H12B 0.4556 0.8253 0.9281 0.039*
C13 0.4615 (3) 0.9290 (2) 0.71898 (19) 0.0327 (4)
H13A 0.4423 1.0361 0.7310 0.039*
H13B 0.5758 0.9276 0.6629 0.039*
C14 0.3028 (3) 0.9064 (2) 0.65330 (16) 0.0278 (4)
H14A 0.2385 1.0147 0.6028 0.033*
H14B 0.3446 0.8483 0.5920 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0169 (3) 0.0228 (2) 0.0204 (2) 0.00049 (18) −0.00042 (16) −0.00706 (17)
Cl1 0.0423 (3) 0.0320 (3) 0.0211 (2) −0.0046 (2) −0.00045 (19) −0.00445 (19)
O1 0.0293 (8) 0.0185 (6) 0.0285 (6) 0.0010 (5) −0.0056 (5) −0.0068 (5)
O2 0.0240 (7) 0.0365 (7) 0.0233 (6) −0.0060 (6) 0.0040 (5) −0.0084 (5)
O3 0.0214 (7) 0.0259 (6) 0.0272 (6) 0.0044 (5) −0.0051 (5) −0.0082 (5)
C1 0.0198 (9) 0.0212 (8) 0.0210 (7) −0.0016 (7) −0.0013 (6) −0.0070 (6)
C2 0.0180 (9) 0.0215 (8) 0.0235 (7) −0.0010 (7) −0.0017 (6) −0.0092 (6)
C3 0.0212 (9) 0.0217 (8) 0.0238 (7) −0.0002 (7) −0.0019 (6) −0.0085 (6)
C4 0.0233 (10) 0.0263 (8) 0.0218 (7) −0.0041 (7) −0.0018 (6) −0.0071 (6)
C5 0.0243 (10) 0.0352 (10) 0.0276 (8) −0.0022 (8) −0.0002 (7) −0.0175 (8)
C6 0.0263 (10) 0.0258 (8) 0.0350 (9) 0.0027 (8) −0.0045 (7) −0.0176 (7)
C7 0.0209 (9) 0.0193 (7) 0.0250 (7) −0.0007 (7) −0.0041 (6) −0.0070 (6)
C8 0.0221 (10) 0.0233 (8) 0.0272 (8) −0.0024 (7) −0.0039 (7) −0.0079 (7)
C9 0.0375 (12) 0.0222 (8) 0.0295 (8) −0.0025 (8) −0.0084 (8) −0.0007 (7)
C10 0.0202 (9) 0.0247 (8) 0.0245 (7) 0.0015 (7) −0.0009 (6) −0.0105 (7)
C11 0.0276 (11) 0.0326 (9) 0.0252 (8) −0.0018 (8) −0.0059 (7) −0.0068 (7)
C12 0.0241 (11) 0.0447 (11) 0.0293 (9) −0.0041 (9) −0.0041 (7) −0.0129 (8)
C13 0.0289 (12) 0.0274 (9) 0.0411 (10) −0.0038 (8) −0.0058 (8) −0.0109 (8)
C14 0.0267 (11) 0.0265 (8) 0.0266 (8) −0.0038 (8) −0.0033 (7) −0.0054 (7)

Geometric parameters (Å, °)

S1—O2 1.4382 (12) C8—C9 1.488 (2)
S1—O3 1.4415 (11) C9—H9A 0.9800
S1—C1 1.7441 (16) C9—H9B 0.9800
S1—C10 1.7664 (18) C9—H9C 0.9800
Cl1—C4 1.7463 (17) C10—C14 1.529 (2)
O1—C8 1.365 (2) C10—C11 1.530 (2)
O1—C7 1.3662 (18) C10—H10 1.0000
C1—C8 1.356 (2) C11—C12 1.517 (3)
C1—C2 1.450 (2) C11—H11A 0.9900
C2—C7 1.392 (2) C11—H11B 0.9900
C2—C3 1.395 (2) C12—C13 1.535 (3)
C3—C4 1.380 (2) C12—H12A 0.9900
C3—H3 0.9500 C12—H12B 0.9900
C4—C5 1.397 (3) C13—C14 1.531 (3)
C5—C6 1.378 (2) C13—H13A 0.9900
C5—H5 0.9500 C13—H13B 0.9900
C6—C7 1.381 (2) C14—H14A 0.9900
C6—H6 0.9500 C14—H14B 0.9900
O2—S1—O3 118.65 (8) C8—C9—H9C 109.5
O2—S1—C1 108.48 (8) H9A—C9—H9C 109.5
O3—S1—C1 106.51 (7) H9B—C9—H9C 109.5
O2—S1—C10 108.07 (8) C14—C10—C11 104.30 (15)
O3—S1—C10 108.11 (8) C14—C10—S1 114.73 (12)
C1—S1—C10 106.39 (8) C11—C10—S1 114.46 (12)
C8—O1—C7 106.90 (12) C14—C10—H10 107.7
C8—C1—C2 107.01 (14) C11—C10—H10 107.7
C8—C1—S1 126.67 (12) S1—C10—H10 107.7
C2—C1—S1 126.15 (12) C12—C11—C10 103.74 (15)
C7—C2—C3 120.01 (14) C12—C11—H11A 111.0
C7—C2—C1 104.43 (14) C10—C11—H11A 111.0
C3—C2—C1 135.56 (15) C12—C11—H11B 111.0
C4—C3—C2 116.08 (15) C10—C11—H11B 111.0
C4—C3—H3 122.0 H11A—C11—H11B 109.0
C2—C3—H3 122.0 C11—C12—C13 107.18 (15)
C3—C4—C5 123.68 (16) C11—C12—H12A 110.3
C3—C4—Cl1 118.36 (13) C13—C12—H12A 110.3
C5—C4—Cl1 117.96 (13) C11—C12—H12B 110.3
C6—C5—C4 120.02 (15) C13—C12—H12B 110.3
C6—C5—H5 120.0 H12A—C12—H12B 108.5
C4—C5—H5 120.0 C14—C13—C12 106.39 (17)
C5—C6—C7 116.75 (15) C14—C13—H13A 110.5
C5—C6—H6 121.6 C12—C13—H13A 110.5
C7—C6—H6 121.6 C14—C13—H13B 110.5
O1—C7—C6 125.78 (14) C12—C13—H13B 110.5
O1—C7—C2 110.78 (13) H13A—C13—H13B 108.6
C6—C7—C2 123.44 (15) C10—C14—C13 103.38 (14)
C1—C8—O1 110.88 (14) C10—C14—H14A 111.1
C1—C8—C9 134.00 (15) C13—C14—H14A 111.1
O1—C8—C9 115.11 (14) C10—C14—H14B 111.1
C8—C9—H9A 109.5 C13—C14—H14B 111.1
C8—C9—H9B 109.5 H14A—C14—H14B 109.1
H9A—C9—H9B 109.5
O2—S1—C1—C8 −22.22 (19) C1—C2—C7—O1 −0.2 (2)
O3—S1—C1—C8 −151.00 (17) C3—C2—C7—C6 −1.1 (3)
C10—S1—C1—C8 93.83 (18) C1—C2—C7—C6 179.06 (17)
O2—S1—C1—C2 152.39 (16) C2—C1—C8—O1 0.0 (2)
O3—S1—C1—C2 23.61 (18) S1—C1—C8—O1 175.43 (13)
C10—S1—C1—C2 −91.55 (17) C2—C1—C8—C9 179.0 (2)
C8—C1—C2—C7 0.1 (2) S1—C1—C8—C9 −5.5 (3)
S1—C1—C2—C7 −175.35 (14) C7—O1—C8—C1 −0.1 (2)
C8—C1—C2—C3 −179.7 (2) C7—O1—C8—C9 −179.37 (15)
S1—C1—C2—C3 4.8 (3) O2—S1—C10—C14 176.93 (11)
C7—C2—C3—C4 0.3 (3) O3—S1—C10—C14 −53.47 (13)
C1—C2—C3—C4 −179.85 (19) C1—S1—C10—C14 60.60 (13)
C2—C3—C4—C5 0.5 (3) O2—S1—C10—C11 56.38 (14)
C2—C3—C4—Cl1 −179.62 (13) O3—S1—C10—C11 −174.02 (12)
C3—C4—C5—C6 −0.6 (3) C1—S1—C10—C11 −59.95 (13)
Cl1—C4—C5—C6 179.48 (15) C14—C10—C11—C12 37.10 (17)
C4—C5—C6—C7 −0.1 (3) S1—C10—C11—C12 163.27 (12)
C8—O1—C7—C6 −179.05 (19) C10—C11—C12—C13 −22.06 (19)
C8—O1—C7—C2 0.2 (2) C11—C12—C13—C14 −1.1 (2)
C5—C6—C7—O1 −179.91 (17) C11—C10—C14—C13 −37.65 (17)
C5—C6—C7—C2 0.9 (3) S1—C10—C14—C13 −163.66 (12)
C3—C2—C7—O1 179.66 (15) C12—C13—C14—C10 23.73 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···O3i 0.95 2.51 3.420 (2) 160.
C12—H12A···O2ii 0.99 2.59 3.557 (2) 167.
C13—H13B···O3ii 0.99 2.61 3.516 (3) 153.

Symmetry codes: (i) −x, −y+2, −z+1; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5153).

References

  1. Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [DOI] [PubMed]
  2. Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195. [DOI] [PubMed]
  3. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett 19, 2420–2428. [DOI] [PubMed]
  7. Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem 13, 4796–4805. [DOI] [PubMed]
  8. Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2011a). Acta Cryst. E67, o1386. [DOI] [PMC free article] [PubMed]
  9. Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2011b). Acta Cryst. E67, o1689. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681103933X/cv5153sup1.cif

e-67-o2805-sup1.cif (24.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103933X/cv5153Isup2.hkl

e-67-o2805-Isup2.hkl (159.5KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681103933X/cv5153Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES