Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 17;67(Pt 10):o2651–o2652. doi: 10.1107/S1600536811036798

2,3-Dibromo-3-(4-chloro­phen­yl)-1-(2-hy­droxy­phen­yl)propan-1-one

Hoong-Kun Fun a,*,, Wan-Sin Loh a,§, B K Sarojini b, V Musthafa Khaleel b, B Narayana c
PMCID: PMC3201456  PMID: 22064869

Abstract

In the title mol­ecule, C15H11Br2ClO2, an S(6) ring motif is formed via an intra­molecular O—H⋯O hydrogen bond. The dihedral angle formed between the chloro- and hy­droxy-substituted benzene rings is 34.10 (15)°. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into chains along the c axis.

Related literature

For applications of chalcone compounds, see: Liu et al. (2003); Nielson et al. (1998); Rajas et al. (2002); Dinkova-Kostova et al. (1998); Goto et al. (1991); Uchida et al. (1998); Tam et al. (1989); Indira et al. (2002); Sarojini et al. (2006). For related structures, see: Butcher, Yathirajan, Anilkumar et al. (2006); Butcher, Yathirajan, Sarojini et al. (2006); Harrison et al. (2005); Yathirajan, Mayekar et al. (2007); Yathirajan, Vijesh et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-67-o2651-scheme1.jpg

Experimental

Crystal data

  • C15H11Br2ClO2

  • M r = 418.51

  • Monoclinic, Inline graphic

  • a = 29.075 (3) Å

  • b = 9.2358 (10) Å

  • c = 11.4374 (12) Å

  • β = 103.290 (2)°

  • V = 2989.0 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.60 mm−1

  • T = 297 K

  • 0.39 × 0.36 × 0.22 mm

Data collection

  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.218, T max = 0.379

  • 16663 measured reflections

  • 5375 independent reflections

  • 3337 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.122

  • S = 1.04

  • 5375 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811036798/lh5331sup1.cif

e-67-o2651-sup1.cif (17.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036798/lh5331Isup2.hkl

e-67-o2651-Isup2.hkl (263.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036798/lh5331Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2 0.80 1.87 2.591 (3) 150
C11—H11A⋯O2i 0.93 2.53 3.416 (4) 160

Symmetry code: (i) Inline graphic.

Acknowledgments

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a research fellowship. VMK thanks P. A. College of Engineering for research facilities.

supplementary crystallographic information

Comment

For a structurally simple group of compounds, chalcones display an impressive array of biological activities, among which antimalarial (Liu et al., 2003), antiprotozoal (Nielson et al., 1998), nitric oxide inhibition (Rajas et al., 2002) and anticancer activities (Dinkova-Kostova et al., 1998) have been reported in the literature. Among several organic compounds reported for non-linear optical (NLO) properties, chalcone derivatives are notable materials for their excellent blue light transmittance and good crystallizability. They provide a necessary configuration to show NLO properties, with two planar rings connected through a conjugated double bond (Goto et al., 1991; Uchida et al., 1998; Tam et al., 1989; Indira et al., 2002; Sarojini et al., 2006). The substitution of a bromo group on either of the phenyl rings can influence the non-centrosymmetric crystal packing. The bromo group can obviously improve the molecular first-order hyperpolarizabilities and can effectively reduce dipole-dipole interactions between the molecules. Chalcone derivatives usually have a lower melting temperature, which can be a drawback when we use these crystals in optical instruments. Chalcone dibromides usually have higher melting points and are thermally stable. Only a few structures of these compounds have been reported (Butcher, Yathirajan, Anilkumar et al., 2006; Butcher, Yathirajan, Sarojini et al.,2006; Harrison et al., 2005; Yathirajan, Mayekar et al., 2007; Yathirajan, Vijesh et al., 2007). In continuation to our studies on crystal structures of chalcones, we report the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1), an S(6) ring motif (Bernstein et al., 1995) is formed via the intramolecular O1—H1O1···O2 hydrogen bond (Table 1). The dihedral angle formed between the chloro-substituted benzene ring (C1–C6) and hydroxy-substituted benzene ring (C10–C15) is 34.10 (15)°.

In the crystal packing (Fig. 2), intermolecular C11—H11A···O2i hydrogen bonds (Table 1) link the molecules into chains along the c axis.

Experimental

(2E)-1-(2-Hydroxyphenyl)-3-(4-chlorophenyl)prop-2-en-1-one (0.01 mol) was treated with bromine in acetic acid (30%) until the orange colour of the solution persisted. After stirring for half an hour, the contents were poured onto crushed ice. The resulting solid mass was collected by filtration. The compound was dried and recrystallized from ethanol. Crystals suitable for structure determination were obtained from acetone by slow evaporation (m. p. = 395–397 K). Composition: Found (Calculated) for C15H11Br2ClO2, C: 43.19 (43.05); H: 2.68 (2.65).

Refinement

H1O1 was located in a difference Fourier map and was fixed in its found position with Uiso(H) = 1.5 Ueq(O) [O–H = 0.7971 Å]. The remaining H atoms were positioned geometrically and refined using the riding model with Uiso(H) = 1.2 or 1.5 Ueq(C) [C–H = 0.93 to 0.98 Å]. Seven outliners were omitted for the final refinement, -22 0 2, -21 1 2, -9 1 1, -20 0 2, 1 1 0, 2 0 0 and -5 1 8.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The dashed line shows an intramolecular hydrogen bond.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the b axis. Weak C—H···O hydrogen bonds are shown as dashed lines.

Crystal data

C15H11Br2ClO2 F(000) = 1632
Mr = 418.51 Dx = 1.860 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 4431 reflections
a = 29.075 (3) Å θ = 2.9–29.1°
b = 9.2358 (10) Å µ = 5.60 mm1
c = 11.4374 (12) Å T = 297 K
β = 103.290 (2)° Block, yellow
V = 2989.0 (6) Å3 0.39 × 0.36 × 0.22 mm
Z = 8

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 5375 independent reflections
Radiation source: fine-focus sealed tube 3337 reflections with I > 2σ(I)
graphite Rint = 0.034
φ and ω scans θmax = 32.6°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −43→39
Tmin = 0.218, Tmax = 0.379 k = −13→13
16663 measured reflections l = −13→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0657P)2] where P = (Fo2 + 2Fc2)/3
5375 reflections (Δ/σ)max = 0.001
181 parameters Δρmax = 0.61 e Å3
0 restraints Δρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.04064 (3) 0.29705 (9) 0.14615 (9) 0.0677 (2)
Br1 0.191164 (10) 0.81997 (3) 0.36623 (3) 0.05335 (11)
Br2 0.046011 (11) 0.98145 (4) 0.41259 (3) 0.06342 (12)
O1 0.19186 (10) 1.3218 (2) 0.57890 (18) 0.0611 (6)
H1O1 0.1812 1.2476 0.5965 0.092*
O2 0.15388 (9) 1.0666 (2) 0.55101 (17) 0.0574 (5)
C1 0.06311 (12) 0.7159 (3) 0.2247 (3) 0.0545 (7)
H1A 0.0577 0.8040 0.1845 0.065*
C2 0.04955 (11) 0.5874 (3) 0.1622 (3) 0.0553 (7)
H2A 0.0355 0.5891 0.0805 0.066*
C3 0.05732 (10) 0.4580 (3) 0.2236 (3) 0.0480 (6)
C4 0.07828 (10) 0.4529 (3) 0.3435 (3) 0.0480 (6)
H4A 0.0835 0.3645 0.3832 0.058*
C5 0.09170 (10) 0.5816 (3) 0.4055 (3) 0.0469 (6)
H5A 0.1056 0.5791 0.4873 0.056*
C6 0.08443 (9) 0.7138 (3) 0.3460 (2) 0.0422 (5)
C7 0.10038 (10) 0.8494 (3) 0.4158 (3) 0.0444 (6)
H7A 0.1148 0.8237 0.4993 0.053*
C8 0.13502 (9) 0.9403 (3) 0.3658 (2) 0.0417 (5)
H8A 0.1204 0.9719 0.2839 0.050*
C9 0.15471 (10) 1.0703 (3) 0.4438 (2) 0.0421 (5)
C10 0.17415 (9) 1.1927 (2) 0.3898 (2) 0.0376 (5)
C11 0.17591 (11) 1.1946 (3) 0.2682 (2) 0.0481 (6)
H11A 0.1641 1.1165 0.2191 0.058*
C12 0.19496 (12) 1.3112 (3) 0.2210 (3) 0.0550 (7)
H12A 0.1959 1.3116 0.1403 0.066*
C13 0.21269 (11) 1.4279 (3) 0.2937 (3) 0.0545 (7)
H13A 0.2253 1.5066 0.2611 0.065*
C14 0.21187 (10) 1.4284 (3) 0.4115 (3) 0.0516 (7)
H14A 0.2242 1.5071 0.4593 0.062*
C15 0.19263 (10) 1.3118 (3) 0.4619 (2) 0.0428 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0831 (6) 0.0495 (4) 0.0769 (5) −0.0197 (4) 0.0312 (4) −0.0233 (4)
Br1 0.05194 (17) 0.04197 (15) 0.0691 (2) 0.00312 (11) 0.02003 (14) −0.00637 (12)
Br2 0.05503 (19) 0.05123 (18) 0.0874 (3) 0.00816 (13) 0.02336 (16) −0.00960 (15)
O1 0.0985 (17) 0.0433 (10) 0.0428 (11) −0.0141 (10) 0.0186 (11) −0.0098 (8)
O2 0.0898 (16) 0.0454 (10) 0.0388 (10) −0.0148 (10) 0.0190 (10) −0.0032 (8)
C1 0.0681 (18) 0.0395 (13) 0.0523 (17) −0.0053 (13) 0.0062 (14) 0.0032 (12)
C2 0.0684 (18) 0.0489 (15) 0.0468 (16) −0.0067 (13) 0.0092 (13) −0.0065 (12)
C3 0.0495 (14) 0.0417 (13) 0.0570 (17) −0.0074 (11) 0.0206 (12) −0.0129 (12)
C4 0.0531 (15) 0.0315 (11) 0.0615 (18) −0.0039 (10) 0.0174 (13) 0.0012 (11)
C5 0.0507 (14) 0.0390 (12) 0.0507 (15) −0.0021 (11) 0.0111 (11) 0.0028 (11)
C6 0.0475 (13) 0.0345 (11) 0.0454 (14) −0.0047 (10) 0.0121 (11) −0.0022 (10)
C7 0.0536 (14) 0.0328 (11) 0.0476 (14) −0.0016 (10) 0.0132 (11) 0.0000 (10)
C8 0.0507 (13) 0.0330 (11) 0.0418 (13) −0.0013 (10) 0.0118 (11) −0.0011 (9)
C9 0.0561 (14) 0.0320 (10) 0.0365 (13) −0.0020 (10) 0.0076 (11) −0.0007 (9)
C10 0.0464 (12) 0.0305 (10) 0.0354 (12) −0.0008 (9) 0.0083 (10) −0.0001 (9)
C11 0.0611 (16) 0.0437 (13) 0.0388 (14) −0.0058 (12) 0.0100 (12) −0.0031 (10)
C12 0.0691 (18) 0.0549 (16) 0.0433 (15) −0.0072 (14) 0.0178 (13) 0.0084 (12)
C13 0.0631 (17) 0.0412 (13) 0.0581 (18) −0.0073 (12) 0.0119 (14) 0.0105 (12)
C14 0.0586 (16) 0.0306 (11) 0.0623 (18) −0.0067 (11) 0.0077 (13) −0.0024 (11)
C15 0.0513 (14) 0.0319 (11) 0.0432 (14) 0.0005 (10) 0.0065 (11) −0.0002 (9)

Geometric parameters (Å, °)

Cl1—C3 1.741 (3) C6—C7 1.501 (3)
Br1—C8 1.974 (3) C7—C8 1.520 (4)
Br2—C7 1.990 (3) C7—H7A 0.9800
O1—C15 1.347 (3) C8—C9 1.527 (3)
O1—H1O1 0.7971 C8—H8A 0.9800
O2—C9 1.232 (3) C9—C10 1.463 (3)
C1—C6 1.383 (4) C10—C11 1.403 (4)
C1—C2 1.395 (4) C10—C15 1.406 (3)
C1—H1A 0.9300 C11—C12 1.376 (4)
C2—C3 1.378 (4) C11—H11A 0.9300
C2—H2A 0.9300 C12—C13 1.386 (4)
C3—C4 1.367 (4) C12—H12A 0.9300
C4—C5 1.393 (4) C13—C14 1.353 (4)
C4—H4A 0.9300 C13—H13A 0.9300
C5—C6 1.390 (4) C14—C15 1.398 (4)
C5—H5A 0.9300 C14—H14A 0.9300
C15—O1—H1O1 106.8 C7—C8—Br1 107.91 (17)
C6—C1—C2 120.7 (3) C9—C8—Br1 104.04 (17)
C6—C1—H1A 119.6 C7—C8—H8A 110.2
C2—C1—H1A 119.6 C9—C8—H8A 110.2
C3—C2—C1 118.9 (3) Br1—C8—H8A 110.2
C3—C2—H2A 120.6 O2—C9—C10 122.7 (2)
C1—C2—H2A 120.6 O2—C9—C8 118.0 (2)
C4—C3—C2 121.6 (2) C10—C9—C8 119.3 (2)
C4—C3—Cl1 119.2 (2) C11—C10—C15 118.4 (2)
C2—C3—Cl1 119.2 (2) C11—C10—C9 122.3 (2)
C3—C4—C5 119.3 (3) C15—C10—C9 119.3 (2)
C3—C4—H4A 120.3 C12—C11—C10 120.6 (3)
C5—C4—H4A 120.3 C12—C11—H11A 119.7
C6—C5—C4 120.4 (3) C10—C11—H11A 119.7
C6—C5—H5A 119.8 C11—C12—C13 120.0 (3)
C4—C5—H5A 119.8 C11—C12—H12A 120.0
C1—C6—C5 119.1 (2) C13—C12—H12A 120.0
C1—C6—C7 122.3 (2) C14—C13—C12 120.7 (3)
C5—C6—C7 118.6 (2) C14—C13—H13A 119.6
C6—C7—C8 114.2 (2) C12—C13—H13A 119.6
C6—C7—Br2 110.76 (19) C13—C14—C15 120.5 (3)
C8—C7—Br2 104.30 (16) C13—C14—H14A 119.7
C6—C7—H7A 109.1 C15—C14—H14A 119.7
C8—C7—H7A 109.1 O1—C15—C14 117.2 (2)
Br2—C7—H7A 109.1 O1—C15—C10 123.0 (2)
C7—C8—C9 113.9 (2) C14—C15—C10 119.7 (3)
C6—C1—C2—C3 0.7 (5) Br1—C8—C9—O2 −94.9 (3)
C1—C2—C3—C4 −0.6 (5) C7—C8—C9—C10 −158.4 (2)
C1—C2—C3—Cl1 −179.8 (3) Br1—C8—C9—C10 84.4 (2)
C2—C3—C4—C5 0.7 (4) O2—C9—C10—C11 178.6 (3)
Cl1—C3—C4—C5 179.9 (2) C8—C9—C10—C11 −0.7 (4)
C3—C4—C5—C6 −0.8 (4) O2—C9—C10—C15 −0.2 (4)
C2—C1—C6—C5 −0.8 (5) C8—C9—C10—C15 −179.5 (2)
C2—C1—C6—C7 178.8 (3) C15—C10—C11—C12 −0.5 (4)
C4—C5—C6—C1 0.9 (4) C9—C10—C11—C12 −179.3 (3)
C4—C5—C6—C7 −178.7 (3) C10—C11—C12—C13 0.1 (5)
C1—C6—C7—C8 −56.8 (4) C11—C12—C13—C14 0.5 (5)
C5—C6—C7—C8 122.8 (3) C12—C13—C14—C15 −0.7 (5)
C1—C6—C7—Br2 60.6 (3) C13—C14—C15—O1 −178.2 (3)
C5—C6—C7—Br2 −119.8 (2) C13—C14—C15—C10 0.3 (4)
C6—C7—C8—C9 −174.5 (2) C11—C10—C15—O1 178.7 (3)
Br2—C7—C8—C9 64.5 (2) C9—C10—C15—O1 −2.5 (4)
C6—C7—C8—Br1 −59.5 (3) C11—C10—C15—C14 0.3 (4)
Br2—C7—C8—Br1 179.45 (11) C9—C10—C15—C14 179.2 (3)
C7—C8—C9—O2 22.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1O1···O2 0.80 1.87 2.591 (3) 150
C11—H11A···O2i 0.93 2.53 3.416 (4) 160.

Symmetry codes: (i) x, −y+2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5331).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Butcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o2525–o2527.
  4. Butcher, R. J., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Mithun, A. (2006). Acta Cryst. E62, o1629–o1630.
  5. Dinkova-Kostova, A. T., Abey-gunawardana, C. & Talalay, P. (1998). J. Med. Chem. 41, 5287–5296. [DOI] [PubMed]
  6. Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688–698.
  7. Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Anilkumar, H. G. (2005). Acta Cryst. C61, o728–o730. [DOI] [PubMed]
  8. Indira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214.
  9. Liu, M., Wilairat, P., Cropft, S. L., Tan, A. L. C. & Go, M. I. (2003). Bioorg. Med. Chem. 11, 2729–2738. [DOI] [PubMed]
  10. Nielson, S. F., Christensen, S. B., Cruciani, G., Kharazmi, A. & Liljefors, T. (1998). J. Med. Chem. 41, 4819–4832. [DOI] [PubMed]
  11. Rajas, J., Paya, M., Domingues, J. N. & Ferrandiz, M. L. (2002). Bioorg. Med. Chem. Lett. 12, 1951–1954. [DOI] [PubMed]
  12. Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54–59.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Tam, W., Guerin, B., Calabrese, J. C. & Stevenson, S. H. (1989). Chem. Phys. Lett. 154, 93–96.
  16. Uchida, T., Kozowa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1988). Mol. Cryst. Liq. Cryst. 315, 135–140.
  17. Yathirajan, H. S., Mayekar, A. N., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o827–o828.
  18. Yathirajan, H. S., Vijesh, A. M., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o2198–o2199.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811036798/lh5331sup1.cif

e-67-o2651-sup1.cif (17.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811036798/lh5331Isup2.hkl

e-67-o2651-Isup2.hkl (263.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811036798/lh5331Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES