Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):o2812. doi: 10.1107/S1600536811039663

(Z)-Methyl 2-bromo­methyl-3-(2-chloro­phen­yl)acrylate

R Madhanraj a, S Vijayakumar b, R Selvakumar c, M Bakthadoss c, S Murugavel d,*
PMCID: PMC3201457  PMID: 22064911

Abstract

In the title compound, C11H10BrClO2, the dihedral angle between the benzene ring and the plane of the acrylate unit is 62.1 (1)°. The crystal packing is stabilzed by inter­molecular C—H⋯O hydrogen bonds and C—Cl⋯π inter­actions [Cl⋯centroid = 3.829 (1) Å and C—Cl⋯centroid = 165.3 (1)°].

Related literature

For background to the applications of acrylates, see: de Fraine & Martin (1991); Zhang & Ji (1992). For related structures, see: Wang et al. (2011); Ren et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-67-o2812-scheme1.jpg

Experimental

Crystal data

  • C11H10BrClO2

  • M r = 289.55

  • Monoclinic, Inline graphic

  • a = 10.0657 (7) Å

  • b = 10.2174 (7) Å

  • c = 11.3598 (7) Å

  • β = 97.649 (2)°

  • V = 1157.91 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.76 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.16 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.390, T max = 0.548

  • 14580 measured reflections

  • 3336 independent reflections

  • 2139 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.089

  • S = 0.99

  • 3336 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811039663/kj2189sup1.cif

e-67-o2812-sup1.cif (15.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039663/kj2189Isup2.hkl

e-67-o2812-Isup2.hkl (160.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039663/kj2189Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.48 3.373 (3) 162

Symmetry code: (i) Inline graphic.

Acknowledgments

SM thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

supplementary crystallographic information

Comment

Acrylate and its derivatives are important compounds because of their agrochemical and medical applications (de Fraine et al., 1991; Zhang & Ji, 1992). We report herein the crystal structure of the title compound (Fig. 1). The acrylate plane (C7/C8/C10/C11/O1/O2) forms a dihedral angle of 62.1 (1)° with the benzene ring (C1—C6). The geometric parameters of the title molecule agree well with those reported for similar structures (Wang et al., 2011, Ren et al., 2008).

The molecule is stabilized by weak intramolecular C7—H7···O2 hydrogen bond which generates an S(5) ring motif (Bernstein et al., 1995). The crystal packing is stabilzed by intermolecular C—H···O hydrogen bonds. Atom C2 in the molecule at (x, y, z) donates one proton to atom O1 at (-1+x, y, z), forming a C(8) chain along the a axis (Fig. 2). The crystal packing is further stabilized by C—Cl···π interactions involving chlorine Cl1 and benzene ring (C1—C6), with a Cl···centroid(Cgii) distance of 3.829 (1) Å and a C1—Cl1···Cgii angle of 165.3 (1)° (symmetry code as in Fig. 2).

Experimental

To a stirred solution of methyl 2-((2-chlorophenyl)(hydroxy)methyl)acrylate (4.42 mmol, 1g) in dichloro methane (DCM) was added a 48% hydrobromic acid (8.84 mmol, 0.71 g) solution and then a concentrated sulphuric acid solution (catalytic amount) at 273 K. After stirring overnight at room temperature, the mixture was diluted with DCM and water. The aqueous phase was extracted twice with DCM. The combined organic phase was washed twice with water an then dried with sodium sulphate. Removal of the solvent led to the crude product which was purified through a pad of silica gel (100—200 mesh) using ethylacetate and hexanes (1:9) as solvents. The pure title compound was obtained as a colorless solid (1.14 g, 90%). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethylacetate solution at room temperature.

Refinement

All the H atoms were positioned geometrically, with C—H = 0.93 - 0.98 Å and constrained to ride on their parent atom, with Uiso(H)=1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the intermolecular C—H···O and C—Cl···π interactions (dotted lines) in the crystal structure of the title compound. H atoms not involved in intermolecular interactions were omitted. Cg denotes centroid of the C1—C6 benzene ring [Symmetry code: (i) -1+x, y, z; (ii) x, 1/2-y, 1/2+z.]

Crystal data

C11H10BrClO2 F(000) = 576
Mr = 289.55 Dx = 1.661 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3345 reflections
a = 10.0657 (7) Å θ = 2.0–29.9°
b = 10.2174 (7) Å µ = 3.76 mm1
c = 11.3598 (7) Å T = 293 K
β = 97.649 (2)° Block, yellow
V = 1157.91 (13) Å3 0.24 × 0.22 × 0.16 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 3336 independent reflections
Radiation source: fine-focus sealed tube 2139 reflections with I > 2σ(I)
graphite Rint = 0.034
Detector resolution: 10.0 pixels mm-1 θmax = 29.9°, θmin = 2.0°
ω scans h = −14→14
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −14→14
Tmin = 0.390, Tmax = 0.548 l = −15→15
14580 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0394P)2 + 0.4461P] where P = (Fo2 + 2Fc2)/3
3336 reflections (Δ/σ)max = 0.001
137 parameters Δρmax = 0.57 e Å3
0 restraints Δρmin = −0.54 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.83211 (3) 0.03430 (3) 0.63091 (2) 0.06228 (12)
Cl1 0.43126 (7) 0.24881 (8) 1.00168 (6) 0.06382 (19)
O2 0.91325 (15) 0.14097 (17) 1.01998 (13) 0.0471 (4)
C1 0.4117 (2) 0.1427 (2) 0.8812 (2) 0.0437 (5)
C6 0.5234 (2) 0.0869 (2) 0.84130 (19) 0.0391 (5)
C7 0.6602 (2) 0.1162 (2) 0.89910 (19) 0.0381 (5)
H7 0.6767 0.1091 0.9814 0.046*
C8 0.7621 (2) 0.1522 (2) 0.84211 (18) 0.0358 (4)
C10 0.8961 (2) 0.1833 (2) 0.90868 (18) 0.0387 (5)
O1 0.98111 (17) 0.2408 (2) 0.86463 (16) 0.0634 (5)
C9 0.7514 (2) 0.1773 (2) 0.71290 (19) 0.0439 (5)
H9A 0.7964 0.2589 0.6994 0.053*
H9B 0.6578 0.1863 0.6804 0.053*
C5 0.4999 (3) 0.0026 (2) 0.7449 (2) 0.0504 (6)
H5 0.5724 −0.0379 0.7171 0.061*
C2 0.2834 (2) 0.1184 (3) 0.8258 (2) 0.0552 (6)
H2 0.2102 0.1580 0.8533 0.066*
C3 0.2648 (3) 0.0354 (3) 0.7298 (3) 0.0602 (7)
H3 0.1786 0.0187 0.6922 0.072*
C11 1.0420 (2) 0.1709 (3) 1.0877 (2) 0.0585 (7)
H11A 1.1113 0.1245 1.0547 0.088*
H11B 1.0416 0.1447 1.1688 0.088*
H11C 1.0583 0.2633 1.0845 0.088*
C4 0.3727 (3) −0.0228 (3) 0.6893 (3) 0.0576 (7)
H4 0.3599 −0.0792 0.6246 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.06623 (19) 0.0758 (2) 0.04610 (15) −0.00412 (14) 0.01240 (12) −0.01212 (13)
Cl1 0.0517 (4) 0.0854 (5) 0.0558 (4) 0.0079 (3) 0.0125 (3) −0.0115 (3)
O2 0.0394 (8) 0.0644 (11) 0.0359 (8) 0.0020 (8) −0.0008 (6) −0.0001 (7)
C1 0.0385 (11) 0.0485 (14) 0.0449 (12) 0.0006 (10) 0.0091 (9) 0.0080 (10)
C6 0.0320 (10) 0.0409 (12) 0.0442 (11) −0.0023 (9) 0.0042 (8) 0.0075 (10)
C7 0.0343 (10) 0.0416 (13) 0.0381 (10) 0.0038 (9) 0.0032 (8) 0.0036 (9)
C8 0.0309 (10) 0.0375 (12) 0.0383 (10) 0.0040 (9) 0.0023 (8) 0.0034 (9)
C10 0.0333 (10) 0.0448 (13) 0.0380 (10) 0.0053 (9) 0.0053 (8) −0.0013 (9)
O1 0.0381 (9) 0.0980 (15) 0.0530 (10) −0.0153 (9) 0.0023 (7) 0.0131 (10)
C9 0.0365 (11) 0.0537 (14) 0.0406 (11) 0.0007 (10) 0.0015 (9) 0.0071 (10)
C5 0.0447 (13) 0.0450 (14) 0.0617 (15) −0.0032 (11) 0.0073 (11) −0.0004 (11)
C2 0.0329 (11) 0.0706 (18) 0.0627 (15) 0.0017 (12) 0.0087 (10) 0.0129 (14)
C3 0.0400 (13) 0.0667 (18) 0.0700 (17) −0.0132 (13) −0.0064 (12) 0.0111 (14)
C11 0.0447 (13) 0.082 (2) 0.0447 (13) 0.0099 (13) −0.0091 (10) −0.0104 (13)
C4 0.0533 (15) 0.0524 (16) 0.0642 (16) −0.0124 (13) −0.0026 (12) −0.0010 (13)

Geometric parameters (Å, °)

Br1—C9 1.966 (2) C9—H9A 0.9700
Cl1—C1 1.737 (3) C9—H9B 0.9700
O2—C10 1.326 (3) C5—C4 1.375 (4)
O2—C11 1.449 (3) C5—H5 0.9300
C1—C2 1.381 (3) C2—C3 1.375 (4)
C1—C6 1.389 (3) C2—H2 0.9300
C6—C5 1.389 (4) C3—C4 1.371 (4)
C6—C7 1.475 (3) C3—H3 0.9300
C7—C8 1.336 (3) C11—H11A 0.9600
C7—H7 0.9300 C11—H11B 0.9600
C8—C9 1.480 (3) C11—H11C 0.9600
C8—C10 1.490 (3) C4—H4 0.9300
C10—O1 1.201 (3)
C10—O2—C11 115.55 (19) Br1—C9—H9B 109.4
C2—C1—C6 121.7 (2) H9A—C9—H9B 108.0
C2—C1—Cl1 118.14 (19) C4—C5—C6 121.9 (3)
C6—C1—Cl1 120.10 (18) C4—C5—H5 119.0
C1—C6—C5 116.9 (2) C6—C5—H5 119.0
C1—C6—C7 121.3 (2) C3—C2—C1 119.5 (2)
C5—C6—C7 121.8 (2) C3—C2—H2 120.3
C8—C7—C6 124.9 (2) C1—C2—H2 120.3
C8—C7—H7 117.6 C4—C3—C2 120.2 (2)
C6—C7—H7 117.6 C4—C3—H3 119.9
C7—C8—C9 124.71 (19) C2—C3—H3 119.9
C7—C8—C10 120.97 (19) O2—C11—H11A 109.5
C9—C8—C10 114.06 (18) O2—C11—H11B 109.5
O1—C10—O2 123.2 (2) H11A—C11—H11B 109.5
O1—C10—C8 122.7 (2) O2—C11—H11C 109.5
O2—C10—C8 114.11 (18) H11A—C11—H11C 109.5
C8—C9—Br1 111.16 (15) H11B—C11—H11C 109.5
C8—C9—H9A 109.4 C3—C4—C5 119.7 (3)
Br1—C9—H9A 109.4 C3—C4—H4 120.2
C8—C9—H9B 109.4 C5—C4—H4 120.2
C2—C1—C6—C5 −1.7 (3) C7—C8—C10—O2 16.2 (3)
Cl1—C1—C6—C5 179.72 (18) C9—C8—C10—O2 −169.36 (19)
C2—C1—C6—C7 178.3 (2) C7—C8—C9—Br1 −106.0 (2)
Cl1—C1—C6—C7 −0.2 (3) C10—C8—C9—Br1 79.8 (2)
C1—C6—C7—C8 −130.5 (2) C1—C6—C5—C4 1.4 (4)
C5—C6—C7—C8 49.6 (3) C7—C6—C5—C4 −178.6 (2)
C6—C7—C8—C9 4.5 (4) C6—C1—C2—C3 1.1 (4)
C6—C7—C8—C10 178.3 (2) Cl1—C1—C2—C3 179.6 (2)
C11—O2—C10—O1 1.2 (3) C1—C2—C3—C4 0.0 (4)
C11—O2—C10—C8 −179.3 (2) C2—C3—C4—C5 −0.3 (4)
C7—C8—C10—O1 −164.3 (2) C6—C5—C4—C3 −0.5 (4)
C9—C8—C10—O1 10.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7···O2 0.93 2.39 2.740 (3) 102
C2—H2···O1i 0.93 2.48 3.373 (3) 162

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2189).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
  2. Bruker (2004). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Fraine, P. J. de & Martin, A. (1991). US Patent No. 5 055 471.
  5. Ren, X.-L., Zhang, H.-R., Wang, W.-D., Tao, R.-J. & He, H.-W. (2008). Acta Cryst. E64, o6. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Wang, L., Meng, F.-Y., Lin, C.-W., Chen, H.-Y. & Luo, X. (2011). Acta Cryst. E67, o354. [DOI] [PMC free article] [PubMed]
  10. Zhang, L. P. & Ji, Z. Z. (1992). Acta Pharm. Sin. 27, 817–823.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811039663/kj2189sup1.cif

e-67-o2812-sup1.cif (15.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811039663/kj2189Isup2.hkl

e-67-o2812-Isup2.hkl (160.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811039663/kj2189Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES