Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Sep 30;67(Pt 10):m1414. doi: 10.1107/S1600536811037810

cis-Aqua­bis­(2,2′-bipyrimidine-κ2 N 1,N 1′)iodidomanganese(II) iodide dihydrate

Kwang Ha a,*
PMCID: PMC3201460  PMID: 22065136

Abstract

The asymmetric unit of the title compound, [MnI(C8H6N4)2(H2O)]I·2H2O, contains a cationic MnII complex, an I anion and two solvent water mol­ecules. In the complex, the MnII ion is six-coordinated in a considerably distorted octa­hedral environment defined by four N atoms of the two chelating 2,2′-bipyrimidine (bpym) ligands, one I anion and one O atom of a water ligand. As a result of the different trans effects of the I and O atoms, the Mn—N bond trans to the I atom is slightly longer than the Mn—N bond trans to the O atom. The dihedral angle between the least-squares planes of the two bpym ligands [maximum deviation = 0.088 (4) Å] is 76.48 (6)°. In the crystal, the complex cation, the anion and the solvent water mol­ecules are linked by inter­molecular O—H⋯O, O—H⋯I and O—H⋯N hydrogen bonds.

Related literature

For the crystal structures of mononuclear 2,2′-bipyrimidine MnII complexes, see: Hong et al. (1996); Smith et al. (2001); Ha (2011).graphic file with name e-67-m1414-scheme1.jpg

Experimental

Crystal data

  • [MnI(C8H6N4)2(H2O)]I·2H2O

  • M r = 679.12

  • Monoclinic, Inline graphic

  • a = 14.2105 (12) Å

  • b = 21.5452 (19) Å

  • c = 7.7064 (7) Å

  • β = 102.063 (2)°

  • V = 2307.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.28 mm−1

  • T = 200 K

  • 0.25 × 0.23 × 0.11 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.838, T max = 1.000

  • 17004 measured reflections

  • 5707 independent reflections

  • 3555 reflections with I > 2σ(I)

  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.096

  • S = 1.05

  • 5707 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −1.15 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037810/aa2026sup1.cif

e-67-m1414-sup1.cif (22.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037810/aa2026Isup2.hkl

e-67-m1414-Isup2.hkl (279.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Mn1—O1 2.131 (3)
Mn1—N1 2.253 (4)
Mn1—N4 2.266 (4)
Mn1—N5 2.270 (4)
Mn1—N8 2.310 (4)
Mn1—I1 2.8070 (8)
N1—Mn1—N4 72.96 (13)
N5—Mn1—N8 72.47 (13)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2 0.84 1.93 2.753 (4) 166
O1—H1B⋯O2i 0.84 1.87 2.693 (4) 166
O2—H2A⋯I2 0.84 2.63 3.419 (3) 157
O2—H2B⋯N6ii 0.84 2.16 2.948 (5) 157
O2—H2B⋯N7ii 0.84 2.29 2.884 (5) 128
O3—H3A⋯I2 0.84 2.82 3.624 (4) 161
O3—H3B⋯I2iii 0.84 2.73 3.517 (4) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626).

supplementary crystallographic information

Comment

Mononuclear MnII complexes of 2,2'-bipyrimidine (bpym, C8H6N4) ligand, such as [Mn(bpym)2(H2O)2](ClO4)2.2H2O (Hong et al., 1996), [Mn(bpym)2(H2O)2](BF4)2.2H2O (Smith et al., 2001) and [MnBr2(bpym)2].CH3CN (Ha, 2011), have been investigated previously.

The asymmetric unit of the title compound, [MnI(bpym)2(H2O)]I.2H2O, contains a cationic MnII complex, an I- anion and two solvate water molecules (Fig. 1). In the complex, the MnII ion is six-coordinated in a considerably distorted octahedral environment defined by four N atoms of the two chelating bpym ligands, one I- anion and one O atom of a water ligand in a cis-N4IO coordination geometry. The main contribution to the distortion of the ocataheron is the tight N—Mn—N chelating angles (Table 1), which results in non-linear trans axes [<O1—Mn1—N1 = 167.23 (13)°, <I1—Mn1—N8 = 172.44 (9)° and <N4—Mn1—N5 = 158.58 (13)°]. The Mn—N(bpym) bond lengths are slightly different and longer than the Mn—O(H2O) bond (Table 1). Because of the different trans effects of the I and O atoms, the Mn1—N8 bond trans to the I atom is somewhat longer than the Mn1—N1 bond trans to the O atom. The dihedral angle between the least-squares planes of the two bpym ligands [maximum deviation = 0.088 (4) Å] is 76.48 (6)°. In the crystal structure, the complex, anion and solvate water molecules are linked by intermolecular O—H···O, O—H···I and O—H···N hydrogen bonds (Fig. 2, Table 2). In addition, the complexes display numerous inter- and intramolecular π-π interactions between adjacent pyrimidine rings, the shortest ring centroid-centroid distance being 3.611 (2) Å.

Experimental

To a solution of 2,2'-bipyrimidine (0.1587 g, 1.003 mmol) in acetone (40 ml) was added MnI2 (0.1540 g, 0.499 mmol) and refluxed for 3 h. The formed precipitate was separated by filtration, washed with acetone and dried at 50 °C, to give a yellow powder (0.0701 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a methanol solution.

Refinement

Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The H atoms of the water ligand and solvent molecules were located from Fourier difference maps then allowed to ride on their parent O atoms in the final cycles of refinement with O—H = 0.84 Å and Uiso(H) = 1.5 Ueq(O). The highest peak (0.97 e Å-3) and the deepest hole (-1.15 e Å-3) in the difference Fourier map are located 1.38 Å and 0.85 Å from the I1 atom, respectively.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, with displacement ellipsoids drawn at the 40% probability level for non-H atoms.

Fig. 2.

Fig. 2.

View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.

Crystal data

[MnI(C8H6N4)2(H2O)]I·2H2O F(000) = 1300
Mr = 679.12 Dx = 1.955 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5481 reflections
a = 14.2105 (12) Å θ = 2.4–28.0°
b = 21.5452 (19) Å µ = 3.28 mm1
c = 7.7064 (7) Å T = 200 K
β = 102.063 (2)° Stick, yellow
V = 2307.4 (4) Å3 0.25 × 0.23 × 0.11 mm
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer 5707 independent reflections
Radiation source: fine-focus sealed tube 3555 reflections with I > 2σ(I)
graphite Rint = 0.049
φ and ω scans θmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −18→18
Tmin = 0.838, Tmax = 1.000 k = −26→28
17004 measured reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0334P)2] where P = (Fo2 + 2Fc2)/3
5707 reflections (Δ/σ)max < 0.001
271 parameters Δρmax = 0.97 e Å3
0 restraints Δρmin = −1.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.74435 (5) 0.08340 (3) 0.70450 (9) 0.02828 (17)
I1 0.75344 (2) 0.159695 (15) 0.41319 (4) 0.03949 (11)
O1 0.6323 (2) 0.02672 (15) 0.5586 (4) 0.0387 (8)
H1A 0.5886 0.0426 0.4810 0.058*
H1B 0.6080 −0.0013 0.6111 0.058*
N1 0.8801 (2) 0.12304 (17) 0.8721 (5) 0.0308 (9)
N2 1.0506 (3) 0.11088 (19) 0.9524 (5) 0.0384 (10)
N3 1.0330 (2) −0.00162 (18) 0.7835 (5) 0.0333 (9)
N4 0.8656 (2) 0.01744 (17) 0.6830 (5) 0.0280 (8)
N5 0.6390 (2) 0.13700 (17) 0.8319 (5) 0.0298 (9)
N6 0.5241 (3) 0.12409 (18) 1.0153 (5) 0.0320 (9)
N7 0.6065 (3) 0.01418 (18) 1.1326 (5) 0.0327 (9)
N8 0.7162 (2) 0.02507 (17) 0.9400 (5) 0.0288 (8)
C1 0.8881 (4) 0.1778 (2) 0.9580 (7) 0.0403 (13)
H1 0.8314 0.2005 0.9628 0.048*
C2 0.9750 (4) 0.2017 (2) 1.0380 (7) 0.0462 (13)
H2 0.9801 0.2410 1.0946 0.055*
C3 1.0552 (4) 0.1664 (2) 1.0338 (7) 0.0457 (14)
H3 1.1164 0.1819 1.0907 0.055*
C4 0.9630 (3) 0.0922 (2) 0.8738 (6) 0.0277 (10)
C5 0.9540 (3) 0.0323 (2) 0.7750 (6) 0.0272 (10)
C6 1.0229 (4) −0.0540 (2) 0.6875 (6) 0.0376 (12)
H6 1.0779 −0.0792 0.6893 0.045*
C7 0.9364 (3) −0.0724 (2) 0.5873 (6) 0.0360 (11)
H7 0.9310 −0.1094 0.5188 0.043*
C8 0.8576 (3) −0.0356 (2) 0.5890 (6) 0.0333 (11)
H8 0.7963 −0.0479 0.5226 0.040*
C9 0.6009 (3) 0.1921 (2) 0.7805 (6) 0.0360 (11)
H9 0.6273 0.2159 0.6985 0.043*
C10 0.5239 (3) 0.2157 (2) 0.8434 (6) 0.0400 (12)
H10 0.4980 0.2555 0.8088 0.048*
C11 0.4864 (3) 0.1791 (2) 0.9574 (6) 0.0356 (12)
H11 0.4313 0.1935 0.9973 0.043*
C12 0.5992 (3) 0.1055 (2) 0.9501 (5) 0.0261 (10)
C13 0.6433 (3) 0.0445 (2) 1.0125 (5) 0.0261 (10)
C14 0.6486 (3) −0.0404 (2) 1.1866 (6) 0.0338 (11)
H14 0.6248 −0.0634 1.2735 0.041*
C15 0.7240 (3) −0.0644 (2) 1.1228 (6) 0.0356 (11)
H15 0.7531 −0.1029 1.1639 0.043*
C16 0.7557 (3) −0.0294 (2) 0.9946 (6) 0.0355 (11)
H16 0.8068 −0.0448 0.9447 0.043*
I2 0.31079 (3) 0.174754 (18) 0.40131 (6) 0.05895 (14)
O2 0.4688 (2) 0.06383 (16) 0.3226 (4) 0.0437 (9)
H2A 0.4451 0.0977 0.3464 0.066*
H2B 0.4931 0.0711 0.2343 0.066*
O3 0.1581 (3) 0.3013 (2) 0.2003 (6) 0.0820 (14)
H3A 0.1834 0.2718 0.2647 0.123*
H3B 0.1906 0.2956 0.1222 0.123*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.0226 (3) 0.0277 (4) 0.0337 (4) 0.0015 (3) 0.0041 (3) 0.0001 (3)
I1 0.0421 (2) 0.0334 (2) 0.0441 (2) 0.00048 (14) 0.01169 (16) 0.00641 (15)
O1 0.0323 (18) 0.043 (2) 0.0365 (19) −0.0096 (15) −0.0019 (15) 0.0068 (16)
N1 0.026 (2) 0.026 (2) 0.038 (2) 0.0035 (16) 0.0010 (18) −0.0026 (17)
N2 0.025 (2) 0.033 (3) 0.054 (3) −0.0005 (17) −0.0002 (19) −0.004 (2)
N3 0.028 (2) 0.031 (2) 0.041 (2) 0.0048 (17) 0.0071 (18) 0.0000 (19)
N4 0.026 (2) 0.026 (2) 0.031 (2) 0.0006 (16) 0.0035 (17) 0.0010 (16)
N5 0.027 (2) 0.030 (2) 0.033 (2) 0.0018 (16) 0.0060 (17) 0.0003 (17)
N6 0.030 (2) 0.033 (2) 0.034 (2) 0.0034 (17) 0.0086 (18) −0.0019 (18)
N7 0.036 (2) 0.029 (2) 0.032 (2) 0.0006 (17) 0.0052 (18) 0.0009 (17)
N8 0.026 (2) 0.029 (2) 0.029 (2) 0.0038 (16) 0.0005 (17) 0.0021 (17)
C1 0.037 (3) 0.028 (3) 0.054 (3) 0.007 (2) 0.006 (3) −0.007 (2)
C2 0.044 (3) 0.028 (3) 0.061 (4) 0.000 (2) −0.001 (3) −0.009 (3)
C3 0.034 (3) 0.034 (3) 0.063 (4) −0.007 (2) −0.001 (3) −0.011 (3)
C4 0.026 (2) 0.028 (3) 0.030 (3) 0.0016 (19) 0.008 (2) 0.003 (2)
C5 0.026 (2) 0.024 (3) 0.032 (3) 0.0012 (18) 0.007 (2) 0.0037 (19)
C6 0.043 (3) 0.028 (3) 0.045 (3) 0.011 (2) 0.018 (3) 0.001 (2)
C7 0.042 (3) 0.027 (3) 0.041 (3) 0.000 (2) 0.014 (2) −0.004 (2)
C8 0.035 (3) 0.031 (3) 0.034 (3) −0.008 (2) 0.007 (2) −0.002 (2)
C9 0.041 (3) 0.030 (3) 0.036 (3) 0.009 (2) 0.006 (2) 0.003 (2)
C10 0.043 (3) 0.029 (3) 0.047 (3) 0.016 (2) 0.008 (2) 0.003 (2)
C11 0.035 (3) 0.034 (3) 0.038 (3) 0.009 (2) 0.008 (2) −0.002 (2)
C12 0.024 (2) 0.026 (3) 0.025 (2) −0.0002 (18) −0.0007 (19) −0.0024 (19)
C13 0.023 (2) 0.027 (3) 0.027 (2) −0.0007 (18) 0.0013 (19) −0.0027 (19)
C14 0.037 (3) 0.033 (3) 0.029 (3) −0.003 (2) 0.002 (2) 0.002 (2)
C15 0.038 (3) 0.029 (3) 0.036 (3) 0.004 (2) 0.001 (2) 0.006 (2)
C16 0.024 (2) 0.036 (3) 0.042 (3) 0.009 (2) −0.002 (2) −0.002 (2)
I2 0.0455 (2) 0.0452 (3) 0.0851 (3) −0.00794 (17) 0.0113 (2) 0.0031 (2)
O2 0.039 (2) 0.051 (2) 0.044 (2) −0.0021 (16) 0.0151 (17) 0.0064 (17)
O3 0.085 (3) 0.060 (3) 0.105 (4) 0.008 (2) 0.029 (3) −0.004 (3)

Geometric parameters (Å, °)

Mn1—O1 2.131 (3) C1—H1 0.9500
Mn1—N1 2.253 (4) C2—C3 1.375 (7)
Mn1—N4 2.266 (4) C2—H2 0.9500
Mn1—N5 2.270 (4) C3—H3 0.9500
Mn1—N8 2.310 (4) C4—C5 1.489 (6)
Mn1—I1 2.8070 (8) C6—C7 1.367 (6)
O1—H1A 0.8400 C6—H6 0.9500
O1—H1B 0.8400 C7—C8 1.375 (6)
N1—C1 1.346 (6) C7—H7 0.9500
N1—C4 1.350 (5) C8—H8 0.9500
N2—C4 1.329 (5) C9—C10 1.383 (6)
N2—C3 1.346 (6) C9—H9 0.9500
N3—C5 1.329 (5) C10—C11 1.368 (7)
N3—C6 1.340 (6) C10—H10 0.9500
N4—C8 1.345 (5) C11—H11 0.9500
N4—C5 1.347 (5) C12—C13 1.490 (6)
N5—C9 1.331 (6) C14—C15 1.372 (6)
N5—C12 1.351 (5) C14—H14 0.9500
N6—C12 1.334 (5) C15—C16 1.390 (6)
N6—C11 1.339 (6) C15—H15 0.9500
N7—C13 1.327 (5) C16—H16 0.9500
N7—C14 1.344 (6) O2—H2A 0.8400
N8—C16 1.332 (6) O2—H2B 0.8400
N8—C13 1.343 (5) O3—H3A 0.8400
C1—C2 1.361 (7) O3—H3B 0.8400
O1—Mn1—N1 167.23 (13) C2—C3—H3 118.6
O1—Mn1—N4 95.61 (13) N2—C4—N1 126.0 (4)
N1—Mn1—N4 72.96 (13) N2—C4—C5 117.9 (4)
O1—Mn1—N5 91.84 (13) N1—C4—C5 116.1 (4)
N1—Mn1—N5 97.01 (13) N3—C5—N4 125.5 (4)
N4—Mn1—N5 158.58 (13) N3—C5—C4 118.1 (4)
O1—Mn1—N8 82.50 (12) N4—C5—C4 116.5 (4)
N1—Mn1—N8 91.39 (13) N3—C6—C7 122.4 (4)
N4—Mn1—N8 88.60 (13) N3—C6—H6 118.8
N5—Mn1—N8 72.47 (13) C7—C6—H6 118.8
O1—Mn1—I1 93.89 (9) C6—C7—C8 117.8 (4)
N1—Mn1—I1 93.41 (10) C6—C7—H7 121.1
N4—Mn1—I1 98.39 (9) C8—C7—H7 121.1
N5—Mn1—I1 101.11 (10) N4—C8—C7 121.2 (4)
N8—Mn1—I1 172.44 (9) N4—C8—H8 119.4
Mn1—O1—H1A 120.1 C7—C8—H8 119.4
Mn1—O1—H1B 119.7 N5—C9—C10 121.7 (5)
H1A—O1—H1B 108.6 N5—C9—H9 119.2
C1—N1—C4 116.3 (4) C10—C9—H9 119.2
C1—N1—Mn1 126.1 (3) C11—C10—C9 117.2 (4)
C4—N1—Mn1 117.3 (3) C11—C10—H10 121.4
C4—N2—C3 115.6 (4) C9—C10—H10 121.4
C5—N3—C6 116.4 (4) N6—C11—C10 122.8 (4)
C8—N4—C5 116.8 (4) N6—C11—H11 118.6
C8—N4—Mn1 126.3 (3) C10—C11—H11 118.6
C5—N4—Mn1 116.9 (3) N6—C12—N5 125.7 (4)
C9—N5—C12 116.6 (4) N6—C12—C13 117.3 (4)
C9—N5—Mn1 126.1 (3) N5—C12—C13 117.0 (4)
C12—N5—Mn1 116.3 (3) N7—C13—N8 125.9 (4)
C12—N6—C11 115.9 (4) N7—C13—C12 117.4 (4)
C13—N7—C14 115.6 (4) N8—C13—C12 116.7 (4)
C16—N8—C13 117.1 (4) N7—C14—C15 123.4 (4)
C16—N8—Mn1 126.7 (3) N7—C14—H14 118.3
C13—N8—Mn1 115.6 (3) C15—C14—H14 118.3
N1—C1—C2 122.0 (4) C14—C15—C16 116.3 (4)
N1—C1—H1 119.0 C14—C15—H15 121.9
C2—C1—H1 119.0 C16—C15—H15 121.9
C1—C2—C3 117.3 (5) N8—C16—C15 121.7 (4)
C1—C2—H2 121.3 N8—C16—H16 119.1
C3—C2—H2 121.3 C15—C16—H16 119.1
N2—C3—C2 122.8 (5) H2A—O2—H2B 105.5
N2—C3—H3 118.6 H3A—O3—H3B 94.7
O1—Mn1—N1—C1 −157.3 (5) C1—N1—C4—N2 0.3 (7)
N4—Mn1—N1—C1 175.7 (4) Mn1—N1—C4—N2 174.2 (3)
N5—Mn1—N1—C1 −23.7 (4) C1—N1—C4—C5 −178.6 (4)
N8—Mn1—N1—C1 −96.2 (4) Mn1—N1—C4—C5 −4.6 (5)
I1—Mn1—N1—C1 77.9 (4) C6—N3—C5—N4 2.0 (6)
O1—Mn1—N1—C4 29.4 (8) C6—N3—C5—C4 −177.5 (4)
N4—Mn1—N1—C4 2.4 (3) C8—N4—C5—N3 −1.5 (6)
N5—Mn1—N1—C4 163.0 (3) Mn1—N4—C5—N3 177.6 (3)
N8—Mn1—N1—C4 90.5 (3) C8—N4—C5—C4 178.0 (4)
I1—Mn1—N1—C4 −95.4 (3) Mn1—N4—C5—C4 −2.9 (5)
O1—Mn1—N4—C8 5.3 (4) N2—C4—C5—N3 5.6 (6)
N1—Mn1—N4—C8 179.5 (4) N1—C4—C5—N3 −175.5 (4)
N5—Mn1—N4—C8 115.1 (4) N2—C4—C5—N4 −174.0 (4)
N8—Mn1—N4—C8 87.6 (4) N1—C4—C5—N4 5.0 (6)
I1—Mn1—N4—C8 −89.5 (4) C5—N3—C6—C7 −0.7 (7)
O1—Mn1—N4—C5 −173.8 (3) N3—C6—C7—C8 −1.0 (7)
N1—Mn1—N4—C5 0.4 (3) C5—N4—C8—C7 −0.3 (6)
N5—Mn1—N4—C5 −64.0 (5) Mn1—N4—C8—C7 −179.3 (3)
N8—Mn1—N4—C5 −91.5 (3) C6—C7—C8—N4 1.4 (7)
I1—Mn1—N4—C5 91.4 (3) C12—N5—C9—C10 −0.7 (7)
O1—Mn1—N5—C9 −98.7 (4) Mn1—N5—C9—C10 167.2 (4)
N1—Mn1—N5—C9 90.5 (4) N5—C9—C10—C11 −1.7 (7)
N4—Mn1—N5—C9 150.8 (4) C12—N6—C11—C10 −2.3 (7)
N8—Mn1—N5—C9 179.7 (4) C9—C10—C11—N6 3.3 (7)
I1—Mn1—N5—C9 −4.4 (4) C11—N6—C12—N5 −0.4 (6)
O1—Mn1—N5—C12 69.2 (3) C11—N6—C12—C13 179.7 (4)
N1—Mn1—N5—C12 −101.6 (3) C9—N5—C12—N6 1.8 (6)
N4—Mn1—N5—C12 −41.3 (5) Mn1—N5—C12—N6 −167.3 (3)
N8—Mn1—N5—C12 −12.4 (3) C9—N5—C12—C13 −178.3 (4)
I1—Mn1—N5—C12 163.5 (3) Mn1—N5—C12—C13 12.7 (5)
O1—Mn1—N8—C16 87.0 (4) C14—N7—C13—N8 1.3 (6)
N1—Mn1—N8—C16 −81.7 (4) C14—N7—C13—C12 −179.5 (4)
N4—Mn1—N8—C16 −8.8 (4) C16—N8—C13—N7 −0.6 (6)
N5—Mn1—N8—C16 −178.6 (4) Mn1—N8—C13—N7 170.9 (3)
O1—Mn1—N8—C13 −83.5 (3) C16—N8—C13—C12 −179.8 (4)
N1—Mn1—N8—C13 107.8 (3) Mn1—N8—C13—C12 −8.3 (5)
N4—Mn1—N8—C13 −179.3 (3) N6—C12—C13—N7 −2.1 (6)
N5—Mn1—N8—C13 10.9 (3) N5—C12—C13—N7 178.0 (4)
C4—N1—C1—C2 1.7 (7) N6—C12—C13—N8 177.2 (4)
Mn1—N1—C1—C2 −171.7 (4) N5—C12—C13—N8 −2.7 (6)
N1—C1—C2—C3 −2.3 (8) C13—N7—C14—C15 −0.6 (7)
C4—N2—C3—C2 0.7 (8) N7—C14—C15—C16 −0.7 (7)
C1—C2—C3—N2 1.1 (9) C13—N8—C16—C15 −0.9 (6)
C3—N2—C4—N1 −1.4 (7) Mn1—N8—C16—C15 −171.2 (3)
C3—N2—C4—C5 177.4 (4) C14—C15—C16—N8 1.4 (7)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O2 0.84 1.93 2.753 (4) 166.
O1—H1B···O2i 0.84 1.87 2.693 (4) 166.
O2—H2A···I2 0.84 2.63 3.419 (3) 157.
O2—H2B···N6ii 0.84 2.16 2.948 (5) 157.
O2—H2B···N7ii 0.84 2.29 2.884 (5) 128.
O3—H3A···I2 0.84 2.82 3.624 (4) 161.
O3—H3B···I2iii 0.84 2.73 3.517 (4) 157.

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, y, z−1; (iii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2026).

References

  1. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Ha, K. (2011). Z. Kristallogr. New Cryst. Struct. 226, 267–268.
  4. Hong, D. M., Wei, H. H., Gan, L. L., Lee, G. H. & Wang, Y. (1996). Polyhedron, 15, 2335–2340.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Smith, J. A., Galán-Mascarós, J.-R., Clérac, R., Sun, J.-S., Ouyang, X. & Dunbar, K. R. (2001). Polyhedron, 20, 1727–1734.
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811037810/aa2026sup1.cif

e-67-m1414-sup1.cif (22.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811037810/aa2026Isup2.hkl

e-67-m1414-Isup2.hkl (279.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES